首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
卫星钟差解算及其星间单差模糊度固定   总被引:1,自引:0,他引:1  
整数相位模糊度解算可以显著提高GNSS精密单点定位(PPP)的精度。本文提出一种解算卫星钟差的方法,通过固定星间单差模糊度恢复出能够支持单台接收机进行整数模糊度解算的卫星钟差,即所谓的“整数”钟差。为了实现星间单差模糊度固定,分别通过卫星端宽巷FCB解算和模糊度基准的选择与固定恢复出宽巷和窄巷模糊度的整数性质。为了证明本文方法的可行性,采用IGS测站的GPS数据进行卫星钟差解算试验。结果表明,在解算钟差时,星间单差模糊度固定的平均成功率为73%。得到的卫星钟差与IGS最终钟差产品相比,平均的RMS和STD分别为0.170和0.012 ns。448个IGS测站的星间单差宽巷和窄巷模糊度小数部分的分布表明本文得到的卫星钟差和FCB产品具备支持PPP用户进行模糊度固定的能力。基于以上产品开展了模拟动态PPP定位试验,结果表明模糊度固定之后,N、E、U和3D的定位精度(RMS)分别达到0.009、0.010、0.023和0.027 m,与不固定模糊度或采用IGS钟差的结果相比,分别提高了30.8%、61.5%、23.3%和37.2%。  相似文献   

2.
解算所有GPS卫星钟差时要求选用地面跟踪站能够观测到每颗卫星,而组成该网的跟踪站数量对卫星钟差的解算效率有较大影响。跟踪站数量越多,卫星钟差的解算效率就越低,不利于实时应用。本文利用不规则三角网对全球跟踪站进行建模,提出一种新的全球均匀选站方法,并应用于卫星钟差实时解算。试验结果表明:当跟踪站个数达到25个时,卫星钟差解算精度优于0.3 ns,且随着跟踪站的增加,精度无明显提升。此跟踪站分布可作为卫星钟差实时解算的一种选站分布参考。  相似文献   

3.
卫星钟差是卫星定位的重要误差源,实时卫星钟差更是实时精密单点定位的关键技术.基于超快速预报轨道的非差法卫星钟差实时解算,卫星钟差精度会受伪距噪声的影响.基于滤波的参数估计方法,在固定模糊度后,利用载波相位联合模糊度修复伪距,可以削弱伪距噪声,提高卫星钟差解算精度.在实时卫星钟差解算中还可加快模糊度参数的收敛.  相似文献   

4.
接收机位置解算作为卫星导航定位中极其重要的一环,所使用算法的正确与否,直接影响到定位精度。文中使用诺瓦泰接收机采集到的北斗星历数据和伪距观测量,对北斗接收机位置解算的经典算法,包括北斗卫星位置的解算算法和最小二乘法接收机位置解算算法,进行了计算及分析验证。结果表明,利用北斗空间控制接口文件所提供的算法计算所得卫星位置三维误差均在10 m以下,使用最小二乘法解算出的接收机位置三维误差均在5 m以下,均满足北斗官方性能规范要求,从而验证了算法的正确性以及可行性。   相似文献   

5.
多星座数据融合处理时,由于接收机钟差和信号传播延迟的影响,导致信号发射时刻的卫星位置不能精确求定。在定位解算里,可以通过星间差分消除与光速有关的接收机钟差影响,然而与卫星径向速度有关的接收机钟差项却得不到消除。该文详细分析了多星座接收机不同钟差值的产生原因,推导了卫星径向速度对站星距的影响,提出了一种针对多星座的单基准站接收机钟差估计方法,通过统一修正各星座卫星位置,有效消除了与卫星速度有关的接收机钟差项的误差,并且适用于存在1ms时钟跳跃的接收机,实现多星座融合的高精度定位。  相似文献   

6.
卫星钟差是影响卫星定位精度的重要误差源之一,而实时精密单点定位又要求卫星钟差实时更新。卫星钟差的解算可通过非差模型或历元差分模型实现,但非差模型涵盖较多的载波相位模糊度参数,相比消掉模糊度参数的历元差分模型,计算效率要慢许多。历元差分模型仅利用载波相位观测量就可获得高精度卫星钟差历元间差,恢复后的卫星钟差仍可达到一定精度水平。利用历元差分模型可实现北斗卫星钟差的实时解算,试验结果表明:通过滤波得到的卫星钟差历元间差精度优于0.02 ns,恢复后的卫星钟差精度优于0.25 ns.   相似文献   

7.
G PS定位是利用G PS卫星位置,以卫星天线到接收机天线的距离作为观测值来解算接收机坐标的理论和方法。伪距单点定位仅是以G PS信号中的测距码作为距离观测值以此来解算目标的坐标值及接收机钟差的方法。简单介绍了G PS 伪距单点定位的基本理论模型,分别探讨了其最小二乘解法和Kalman滤波解法。最后对两种解算结果进行对比分析, Kalman滤波能够很好的平滑解算结果,使得结果的稳定性更好。  相似文献   

8.
提出了一种利用星间单差法消除接收机钟差的GEO卫星精密定轨方案。通过仿真,详细探讨了相关原理、参数设置、测站分布以及单差选星等关键问题。仿真研究表明,该方法消去了接收机钟差、大部分与测站相关的系统误差以及用模型未完全改正的对流层及电离层延迟残差,能够直接解算卫星轨道参数,减轻测站接收机时钟同步的负担;通过方案对比,确定了一种优化方案,选取合适的卫星对,在现有条件下采用合适的测站分布,利用星间单差方法解算22参数,可以获得高精度的GEO卫星轨道。  相似文献   

9.
在GNSS中,获取各个可见卫星的位置和速度是卫星导航接收机实现定位、测速和定时的必要条件。介绍北斗全球导航卫星的星历数据参数,依据卫星星历参数,给出了卫星空间位置、运行速度和加速度的数学表达式;研究基于轨道插值的卫星状态估计方法,利用分段三次埃尔米特插值计算卫星位置与速度;采用Matlab软件编制星历参数法与插值法的解算软件,并通过实验仿真验证了两种方法的可行性。结果表明,插值法得到的卫星位置误差可满足导航定位需求,在处理数据量大的情况下,插值法提高了计算效率。  相似文献   

10.
为了解决在强干扰环境下由于GPS卫星信号被遮挡而无法定位的问题,从灰色理论(GT)的角度探讨了接收机的钟差序列,提出一种利用灰色理论的钟差预测模型辅助GPS定位的方法。对预测模型的基本思想和具体实现步骤作了详细的介绍,并且将钟差预测值引入到GPS接收机中,实现信号遮挡情况下GPS接收机的定位解算。通过对实测数据的验证分析表明,该钟差预测模型对钟差序列有很好的预测效果,能够在仅有3颗可观测卫星的情况下实现接收机的定位解算。  相似文献   

11.
GNSS receivers estimate 3D antenna position and receiver clock bias when at least four satellites are tracked. If only three satellites are available, a 2D antenna position solution is still possible. We derive an almost exact algorithm for the determination of two possible antenna positions and the corresponding receiver clock biases based on pseudorange measurements to three GNSS satellites and a height measurement. The two ambiguous solutions exactly reflect the same height measurement. One of the solutions can be eliminated if some prior knowledge of the user position, for example, near the Earth, is available. In general, a less accurate height measurement gives a less accurate 2D GNSS solution, and vice versa. The determination of the receiver antenna position is based upon the intersection of two confocal hyperboloid sheets and the ellipsoid, resulting in a hyperbola along which the user is located. The algorithm is verified by numerical computations.  相似文献   

12.
This paper discusses the approaches of software GPS receiver. First, the definition of a software receiver, its difference from a conventional receiver, and the data collection hardware employed is presented. Then the acquisition and tracking algorithm is discussed. The transition from acquisition to tracking for a real time operation is presented. The navigation data decoding, the calculation of satellite position, and user position are discussed briefly. Finally, the advantages of a software receiver is presented. ? 2001 John Wiley & Sons, Inc.  相似文献   

13.
当前的DGPS水下立体定位是基于水面上的基线面阵双曲线定位系统,对于信号接收器位于同一个垂直平面内时并没有给出具体的定位模型。利用垂直面阵上信号接收机的几何关系自定义坐标系,通过测边网解算方法计算出它们在所定义的坐标系中的坐标。水下声源发射器发射信号,经过一段时间后,各信号接收器接收到信号,利用示波器和信号处理技术得到各信号接收器接收时刻的时间差。通过建立距离交汇模式的定位模型,解算出水下声源发射器的三维坐标。结合在湖北清江的多目标水声信号识别与检测试验,根据实际测得的相关数据解算出水下目标发射器的坐标。由于此定位方法不需要GPS精密时钟,节约了定位成本。适合船体携带,操作方便。为水下目标定位提供了一个新的方法。  相似文献   

14.
Calculation and accuracy evaluation of TGD from IFB for BDS   总被引:1,自引:0,他引:1  
With the development of new global navigation satellite system applications, the demand of high accurate positioning navigation timing (PNT) service becomes urgent. For precise PNT, the timing group delay (TGD) is regarded as an important parameter in the satellite navigation message. Instead of using the absolute receiver hardware delay, a method based on receiver inter-frequency bias (IFB, i.e., differential receiver hardware delay between different frequencies) calibration is presented to deal with the rank deficiency of a calculation matrix and to reduce jumps in TGD solutions in BDS. The double-differenced pseudorange obtained from a pair of zero baseline receivers is used to evaluate the IFB calibration accuracy. The estimated precision of TGD is evaluated and compared with GPS TGD provided by IGS. In order to ensure the quality of assessment, a method based on the difference of dual-frequency ionospheric delay is proposed to compare the accuracy of the estimated TGD and broadcast TGD. Finally, the effect of TGD on the user equivalent range error is analyzed. The analysis result shows that for BDS IGSO satellites, the precision of TGD1, which is the differential hardware delay between B1 (1561.098 MHz) and B3 (1268.52 MHz) frequencies, is better than 0.5 ns, and for GEO and MEO satellites the TGD1 is better than 1 and 2 ns, respectively. The precision of TGD2 of all satellites, which is the differential hardware delay between B2 (1207.14 MHz) and B3 frequencies, is better than 0.5 ns. The accuracy analysis result reveals that the proposed TGD estimation method can provide better results when compared with the broadcast data.  相似文献   

15.
The analysis of the time and space distribution of specular (reflecting) points in bistatic altimetry between GPS and CHAMP satellites or SAC-C (taken as examples) is extended from Wagner and Klokočník (2003 J. Geod 77: 128–138). We demonstrate a significantly higher number and density of reflecting points in bistatic altimetry in comparison with traditional monostatic altimetry. After an outline of our older accuracy assessment for the vertical position of the reflecting point, we add a new independent derivation and compare both approaches. We account for orbit errors of both the transmitters (GPS) and receiver (CHAMP) satellites, and the measurement (delay) error. We found that the accuracy of the vertical position of the reflecting point decreases only slowly with increasing off-nadir angle and that the orbit errors must be accounted for if decimeter and better accuracy is required. In this paper, we do not study errors such as state of the ocean, technical parameters of the receiving system, and atmospheric corrections.  相似文献   

16.
广域差分GPS中用户接收机多为较廉价的单频接收机,可以接收差分播发站发播的差分改正信号进行DGPS计算,由于WADGPS的算法和常规算法不一致,差分改正信号难以是标准的RTCM格式,因此必须研制专用的差分信号接收机和DSP运算平台,并在平台上集成用户定位的算法,用户定位软件可以实时对观测数据、差分改正信号进行解码,计算用户的三维位置和速度。  相似文献   

17.
GPS用户利用导航电文中的历书数据进行卫星可见性的计算和预报。美国2004年12月公布新的GPS接口文件中,规定一种新的民用导航电文格式,提出一种简约的历书数据构成。文中针对简约历书简化了卫星位置算法,在此基础上对使用简约历书计算卫星位置的精度以及对卫星上升、下降时间预报精度进行分析,分析了引起误差的主要原因。  相似文献   

18.
多传感器与道路网数据用于汽车导航的研究   总被引:4,自引:0,他引:4  
对车载导航系统中GPS接收机,车论计数器和电子罗盘传感器数据与导航电子地图所提供的道路网络数据进行了综合处理,建立了道路网络数据的网络拓扑关系,在此基础上提出了基于道路网络拓扑关系,利用GPS接收机,车轮计数器和电子罗盘传感器对汽车进行实时定位的算法。最后,对导航中汽车的定位误差进行了分析。实验证明,GPS接收机,车轮计数器和电子罗盘传感器与道路网络数据综合,在导航过程中能够补偿GPS信号技失,实时、高精度、高可靠性地确定汽车的位置。  相似文献   

19.
对经纬仪工业测量系统应用于亚毫米级的大型工件的测量 ,提出了一种快速坐标转换的方法。利用定向参数作为坐标转换参数 ,导出了在统一坐标系下点位坐标的计算公式 ,并对转换后的坐标进行了精度分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号