首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Pajarito fault forms the western margin of the Rio Grande rift in north-central New Mexico, and lies adjacent to Los Alamos National Laboratory, a major Federal research facility. Vertical displacement on this normal fault over the past 1.2 Ma has created a 50- to 120-m-high fault scarp on Bandelier Tuff (1.2 Ma), yielding a long-term average slip rate of ca. 0.1 mm/yr. In support of a Laboratory-wide seismic hazards assessment, we excavated 14 trenches in the Pajarito fault zone to determine the age of the most recent displacement event, the recurrence interval between events, the displacement per event, and the variability in slip rate and recurrence through time. The large number of trenches was required by the large height of the fault scarp and the complexity of the fault zone. Only about half the trenches contained significant thicknesses of Holocene deposits, but in those trenches there was clear evidence for an early-to-mid-Holocene displacement event. The previous event was at least 20–40 ka, and the average recurrence interval over the past ca. 300 ka was about 20–40 kyr. We infer that much of the structural relief across this fault developed soon after eruption of the Bandelier Tuff between 1.0 and 1.2 Ma, and that slip rate slowed considerably after that time.  相似文献   

2.
The Pliocene-early Pleistocene history of the ancestral Rio Grande and Quaternary history of the Rio Mimbres in the southern Rio Grande rift, New Mexico, illustrate how axial rivers may alternately spill into and subsequently abandon extensional basins. Three types of spillover basins are recognized, based on the angle at which the axial river enters the basin and whether it descends the hanging wall dip slope or footwall scarp to reach the basin floor. In the Mimbres basin type, the axial river enters and flows through the spillover basin nearly parallel to the footwall scarp, resulting in a narrow belt of basin-axis-parallel channel sand bodies located near the footwall scarp. In contrast, an axial river may enter a spillover basin at a high angle to its axis, either descending the hanging wall dip slope (Columbus basin type) or footwall scarp (Tularosa basin type), and construct a fluvial fan, consisting of radiating distributary channels orientated nearly perpendicular to the basin axis. Faulting exerts significant control on river spillover by creating the topographic gaps through which the axial river moves and by terminating spillover by subsequently uplifting or tilting the gap. Spillover may also be autocyclic in origin as a result of aggradation to the level of a pre-existing gap, headward erosion creating and/or intersecting a gap, or simple river avulsion upstream of a gap. Predicting facies architecture in the three types of spillover basins is critical to successful subsurface exploration for hydrocarbon reservoirs, groundwater aquifers or placer mineral deposits.  相似文献   

3.
Numerical, experimental and theoretical models of fluvial architecture and palaeosol development are tested with outcrops of Upper Pliocene-Lower Pleistocene sediment in the southern Rio Grande rift, New Mexico. The sediment was deposited and subsequently exhumed in the Jornada del Muerto basin, a westward-tilted half graben whose footwall corresponds to the Rincon Hills and San Diego Mountain fault blocks. The axial river, the ancestral Rio Grande, shared time between the Jornada del Muerto basin and the adjacent Corralitos basin. The ancestral Rio Grande entered the Jornada del Muerto basin via a gap between the footwall blocks, periodically flowing southward towards San Diego Mountain, or making a broad northward sweep into the northern fluvial salient towards the Rincon Hills fault block and unfaulted northern edge of the basin. Ten logged sections up to 35 m thick are correlated using the top of the formation (La Mesa surface), a 1·59 Ma pumice conglomerate, and a ground-water carbonate/opal bed. Additionally, one of the sections is dated by reversal magnetostratigraphy. Consistent with the model of Bridge & Leeder (1979 ) and Bridge & Mackey (1993a ), differential tilting of the Jornada del Muerto half graben resulted in sections directly adjacent to the faults that consist almost exclusively of multistorey channel sands/sandstones, whereas more distal sections contain a greater proportion of crevasse-splay fine sand and overbank mudstone and calcic palaeosols. Along the axis of the northern fluvial salient, a northward decrease in channel/floodplain ratio, a decrease in channel recurrence interval from 171 kyr to 685 kyr, and an increase in the maturity of calcic palaeosols are consistent with southward tilt of the unfaulted northern edge of the basin. An upsection decrease in sediment accumulation rate in the northern fluvial salient from 0·036 mm/ yr to 0·017 mm/ yr corresponds to an increase in the ratio of channel/floodplain facies and in the number of multistorey channel sands/sandstones, and is consistent with the model of Bridge & Leeder (1979 ) in which avulsion frequency is independent of sediment accumulation rate. Stage II and III calcic palaeosols indicate 103−105 year of landscape stability and soil formation between periods of floodplain deposition in response not only to basin tilting but also because the ancestral Rio Grande had multiple paths within the Jornada del Muerto basin and shared time between the Corralitos and Jornada del Muerto basins.  相似文献   

4.
In order to evaluate potential effects of tectonics and climate change on the behaviour of the axial Rio Grande in the Rio Grande rift, a 16·5 km stretch of modern floodplain and Holocene terraces were mapped in the tectonically active Palomas half graben, south‐central New Mexico, USA. In addition, 51 cores and natural exposures were logged and 20 radiocarbon dates were obtained from charcoal, bulk organic matter, mollusc shells and pedogenic calcite. The Holocene alluvium comprises four terraces above the modern floodplain, each of which formed by a period of river incision followed by stability and renewed floodplain construction to a level below that of the previous terraces. Estimated times of incision between Terraces I and II, II and III, and III and IV are after 12 400, 8040 to 5310, and 760 to 550 yr bp , respectively, whereas the incision between Terrace IV and the modern floodplain occurred within the last 260 years. Although there is some evidence for tectonic control on river behaviour in the southern part of the basin, terrace formation is interpreted as being related to climate change, with periods of incision corresponding to times of increased aridity and low sediment/water discharge ratio in the Rio Grande. This process may have resulted from a reduction in intensity and magnitude of summer storms which supply sediment to the axial river, coupled with an increase in spring discharge peak caused by snowmelt in upstream mountain catchments.  相似文献   

5.
A complete understanding of the processes of crustal growth and recycling in the earth remains elusive, in part because data on rock composition at depth is scarce. Seismic velocities can provide additional information about lithospheric composition and structure, however, the relationship between velocity and rock type is not unique. The diverse xenolith suite from the Potrillo volcanic field in the southern Rio Grande rift, together with velocity models derived from reflection and refraction data in the area, offers an opportunity to place constraints on the composition of the crust and upper mantle from the surface to depths of  60 km. In this work, we calculate seismic velocities of crustal and mantle xenoliths using modal mineralogy, mineral compositions, pressure and temperature estimates, and elasticity data. The pressure, temperature, and velocity estimates from xenoliths are then combined with sonic logs and stratigraphy estimated from drill cores and surface geology to produce a geologic and velocity profile through the crust and upper mantle. Lower crustal xenoliths include garnet ± sillimanite granulite, two-pyroxene granulite, charnokite, and anorthosite. Metagabbro and amphibolite account for only a small fraction of the lower crustal xenoliths, suggesting that a basaltic underplate at the crust–mantle boundary is not present beneath the southern Rio Grande rift. Abundant mid-crustal felsic to mafic igneous xenoliths, however, suggest that plutonic rocks are common in the middle crust and were intraplated rather than underplated during the Cenozoic. Calculated velocities for garnet granulite are between  6.9 and 8.0 km/s, depending on garnet content. Granulites are strongly foliated and lineated and should be seismically anisotropic. These results suggest that velocities > 7.0 km/s and a layered structure, which are often attributed to underplated mafic rocks, can also be characteristic of alternating garnet-rich and garnet-poor metasedimentary rocks. Because the lower crust appears to be composed largely of metasedimentary granulite, which requires deep burial of upper crustal materials, we suggest the initial construction of the continental crust beneath the Potrillo volcanic field occurred by thickening of supracrustal material in the absence of large scale magmatic accretion. Mantle xenoliths include spinel lherzolite and harzburgite, dunite, and clinopyroxenite. Calculated P-wave velocities for peridotites range from 7.75 km/s to 7.89 km/s, with an average of 7.82 km/s. This velocity is in good agreement with refraction and reflection studies that report Pn velocities of 7.6–7.8 km/s throughout most of the Rio Grande rift. These calculations suggest that the low Pn velocities compared to average uppermost mantle are the result of relatively high temperatures and low pressures due to thin crust, as well as a fertile, Fe-rich, bulk upper mantle composition. Partial melt or metasomatic hydration of the mantle lithosphere are not needed to produce the observed Pn velocities.  相似文献   

6.
Volcanic rocks of the Latir volcanic field evolved in an open system by crystal fractionation, magma mixing, and crustal assimilation. Early high-SiO2 rhyolites (28.5 Ma) fractionated from intermediate compositionmagmas that did not reach the surface. Most precaldera lavas have intermediate-compositions, from olivine basaltic-andesite (53% SiO2) to quartz latite (67% SiO2). The precaldera intermediate-composition lavas have anomalously high Ni and MgO contents and reversely zoned hornblende and augite phenocrysts, indicating mixing between primitive basalts and fractionated magmas. Isotopic data indicate that all of the intermediate-composition rocks studied contain large crustal components, although xenocrysts are found only in one unit. Inception of alkaline magmatism (alkalic dacite to high-SiO2 peralkaline rhyolite) correlates with, initiation of regional extension approximately 26 Ma ago. The Questa caldera formed 26.5 Ma ago upon eruption of the >500 km3 high-SiO2 peralkaline Amalia Tuff. Phenocryst compositions preserved in the cogenetic peralkaline granite suggest that the Amalia Tuff magma initially formed from a trace element-enriched, high-alkali metaluminous magma; isotopic data suggest that the parental magmas contain a large crustal component. Degassing of water- and halogen-rich alkali basalts may have provided sufficient volatile transport of alkalis and other elements into the overlying silicic magma chamber to drive the Amalia Tuff magma to peralkaline compositions. Trace element variations within the Amalia Tuff itself may be explained solely by 75% crystal fractionation of the observed phenocrysts. Crystal settling, however, is inconsistent with mineralogical variations in the tuff, and crystallization is thought to have occurred at a level below that tapped by the eruption. Spatially associated Miocene (15-11 Ma) lavas did not assimilate large amounts of crust or mix with primitive basaltic magmas. Both mixing and crustal assimilation processes appear to require development of relatively large magma chambers in the crust that are sustained by large basalt fluxes from the mantle. The lack of extensive crustal contamination and mixing in the Miocene lavas may be related to a decreased basalt flux or initiation of blockfaulting that prevented pooling of basaltic magma in the crust.  相似文献   

7.
The Pliocene–Early Pleistocene Mangas Basin in SW New Mexico, USA, was a N–NW-trending full graben that changed southward to an eastward-tilted half graben. Unlike the facies distribution predicted in existing models, the half-graben part of the Mangas Basin was characterized by broad alluvial fans derived from the footwall scarp, smaller hangingwall-derived alluvial fans, and a shallow, closed lake (Lake Buckhorn) that locally lapped onto the hangingwall hills. The distribution of facies within the full-graben part of the Mangas Basin was also unlike that predicted in current models, primarily because of a broad belt of alluvial-fan sediment derived from the eastern footwall scarp and a narrow belt of axial-fluvial sediment adjacent to the western footwall scarp. The distribution of facies in the Mangas Basin does not appear to have been controlled by the eastward tilt of the floor of the half graben or ‘see-saw’ motion of the floor of the full graben, as predicted by existing models, but rather by the large size of the alluvial fans on the eastern side of the basin. These fans were derived from large, high-relief catchments on the footwall scarp of the Mogollon Mountains, the uplift of which began during Early Miocene. This example illustrates how earlier uplift and drainage development in a mountain range may influence facies distribution in a younger extensional basin.  相似文献   

8.
Products of Pliocene (2–4 Ma) mafic to intermediate volcanism in the northwestern Cerros del Rio, a dominantly mafic volcanic field in the Española Basin of the Rio Grande Rift (RGR), range from 49% to 63% SiO2 and exhibit diversity in silica saturation, trace-element patterns, and isotopic compositions. Tholeiites, which are largely confined to west of the Rio Grande, have trace-element abundances that resemble those of oceanic basalts, but with mild depletions in Nb and Ta, and high 87Sr/86Sr, low 143Nd/144Nd, and high δ18O compared to typical OIB. They are regarded as asthenospherically-derived magmas contaminated with continental crust. Alkali basalts and hawaiites erupted from vents east of the Rio Grande are geochemically distinct, having generally higher overall incompatible-element abundances, but with pronounced depletions in K, Rb, Nb and Ta with respect to Th and LREE. Spatially-associated benmoreites, mugearites and latites (collectively termed “evolved” lavas) have similar trace-element characteristics to the mafic mildly-alkaline compositions, but are typically not as depleted in K. Hawaiites and evolved lavas exhibit a good negative correlation of 143Nd/144Nd with SiO2, due to interaction with lower continental crust. The most silicic “evolved” lavas carry the highest proportions of crustal material, and consequently have higher K/Th than the related hawaiites. Several (mostly mafic) lavas contain abundant crustally-derived resorbed quartz xenocrysts in O-isotope disequilibrium with the host magma. The δ18O values of xenocrystic quartz range over 4‰, indicating a variety of quartz-bearing crustal contaminants beneath the Española Basin. The hawaiites, with their unusual combination of trace-element enrichments and depletions, cannot be generated by any process of fractionation or crustal contamination superposed on a common mantle source type (oceanic or arc-source). It is a regional mantle source type, inasmuch as it was also present beneath NW Colorado during the mid-late Cenozoic. We argue that the hawaiite source must have originally existed as arc-source mantle enriched in LILE, generated during Mesozoic to early Cenozoic subduction at the western margin of North America. This arc-source mantle lost K, Rb and Ba, but not Th or LREE, prior to magmagenesis. Selective element loss may have occurred during lithospheric thinning and uprise of hydrated phlogopitebearing peridotite-possibly as a thermal boundary layer between lithosphere and asthenosphere — to shallow mantle depths, with consequent conversion of phlogopite to amphibole (an inferior host for K, Rb and Ba). We suggest that this occurred during the early extensional phase of the northern RGR. Further extension was accompanied by partial melting and release of magma from this source and the underlying asthenosphere, which by the Pliocene was of oceanic type. The hawaiite source mantle is the product of a long history of subduction succeeded by lithospheric extension of the formerly overriding plate. Similar chemical signatures may have developed in the mantle beneath other regions with comparable histories.  相似文献   

9.
Continental ‘overfilled’ conditions during rift initiation are conventionally explained as due to low creation of accommodation compared with sediment supply. Alternatively, sediment supply can be relatively high from the onset of rifting due to an antecedent drainage system. The alluvial Lower Group of the western Plio–Pleistocene Corinth rift is used to investigate the interaction of fluvial sedimentation with early rifting. This rift was obliquely superimposed on the Hellenide mountain belt from which it inherited a significant palaeorelief. Detailed sedimentary logging and mapping of the well‐exposed syn‐rift succession document the facies distributions, palaeocurrents and stratigraphic architecture. Magnetostratigraphy and biostratigraphy are used to date and correlate the alluvial succession across and between fault blocks. From 3·2 to 1·8 Ma, a transverse low sinuosity braided river system flowed north/north‐east to east across east–west‐striking active fault blocks (4 to 7 km in width). Deposits evolved downstream from coarse alluvial conglomerates to fine‐grained lacustrine deposits over 15 to 30 km. The length scale of facies belts is much greater than, and thus not directly controlled by, the width of the fault blocks. At its termination, the distributive river system built small, stacked deltas into a shallow lake margin. The presence of a major antecedent drainage system is supported by: (i) a single major sediment entry point; (ii) persistence of a main channel belt axis; (iii) downstream fining at the scale of the rift basin. The zones of maximum subsidence on individual faults are aligned with the persistent fluvial axis, suggesting that sediment supply influenced normal fault growth. Instead of low accommodation rate during the early rift phase, this study proposes that facies progradation can be controlled by continuous and high sediment supply from antecedent rivers.  相似文献   

10.
H. Cetin   《Engineering Geology》2000,57(3-4):169-178
Special consolidation tests were run on undisturbed samples to study the ability of Quaternary soils adjacent to the Meers fault in southwestern Oklahoma to record and remember the maximum effective (preconsolidation) stresses they experienced during the faulting process. The results show that the soils record >60% of the applied total stresses as preconsolidation stresses in 2 s of loading time, indicating that these stresses could have been recorded during an earthquake faulting event. To record all of the applied total stresses as preconsolidation stresses (100% recording or memory), the loading needs to last at least 4–5 min.  相似文献   

11.
 This paper deals with the problem of increased heavy metal constituents in agricultural soils due to the expanded use of fertilizers and elevated atmospheric deposition. It discusses the extent of contamination in soil and establishes an environmental monitoring program in the chosen area of concern in the southern coastal region of Texas. Grain size, pH, and metals (Cu, Cd, Zn, Pb, Ni, Ba, As, Cr, Mn, and Fe) were determined in soils of the middle Rio Grande basin. The soils were mainly of sand texture and alkaline in character. Fine sand constituted the major proportion of the soil, and clay and silt ranged from 8–30% of the soil. Correlations of metal concentrations to grain size and iron contents were performed. Metals, except Cd and Pb, gave positive to negative relationships with decreases in grain size. Silt gave no relationship with metal content while clay and silt had a positive relationship. All these metals had a positive correlation with iron in the soil. The results indicate metals are associated with coarse sand, clay, and iron hydroxides surfaces of the soil. The comparison of metal content in soil of the middle Rio Grande basin with metals from other areas of the world suggests that it is relatively uncontaminated. Received: 14 December 1998 · Accepted: 19 Jaunuary 1999  相似文献   

12.
Chemical and isotopic data for groundwater from throughout the Middle Rio Grande Basin, central New Mexico, USA, were used to identify and map groundwater flow from 12 sources of water to the basin, evaluate radiocarbon ages, and refine the conceptual model of the Santa Fe Group aquifer system.Hydrochemical zones, representing groundwater flow over thousands to tens of thousands of years, can be traced over large distances through the primarily siliciclastic aquifer system. The locations of the hydrochemical zones mostly reflect the modern predevelopment hydraulic-head distribution, but are inconsistent with a trough in predevelopment water levels in the west-central part of the basin, indicating that this trough is a transient rather than a long-term feature of the aquifer system. Radiocarbon ages adjusted for geochemical reactions, mixing, and evapotranspiration/dilution processes in the aquifer system were nearly identical to the unadjusted radiocarbon ages, and ranged from modern to more than 30 ka. Age gradients from piezometer nests ranged from 0.1 to 2 year cm–1 and indicate a recharge rate of about 3 cm year–1 for recharge along the eastern mountain front and infiltration from the Rio Grande near Albuquerque. There has been appreciably less recharge along the eastern mountain front north and south of Albuquerque.
Resumen Se utilizaron datos químicos e isotópicos de agua subterránea a lo largo de la cuenca central del río Grande, Nuevo México, EEUU, para identificar y mapear el flujo de agua subterránea de 12 fuentes de agua a la cuenca para evaluar edades por medio de radio carbon y para refinar el modelo conceptual del sistema acuífero del Grupo Santa Fé. Se puede establecer zonas hidrotérmicas que representan el flujo de agua subterránea a lo largo de miles a miles de decenas de años en grandes distancias a través del sistema acuífero principalmente siliclástico. Las ubicaciones de las zonas hidroquímicas mayormente reflejan la distribucion de la cabeza hidráulica pre-desarollo moderna pero son inconsistentes con una depresión en los niveles de agua pre-desarollo en la zona central oeste de la cuenca. Esto indica que esta depresión es un rasgo transitorio y no un rasgo de largo plazo del sistema acuífero. Las edades de radio carbon ajustadas para los procesos de reaciones geoquímicas, de mezclado y de evapotranspiración-dilución son casi idénticas a los edades de radio carbon no ajustadas oscilan en un rango desde la modernidad a 30 mil años. Las gradientes de edad de nidos de piezometros van de 0.1 a 2 años cm–1 e indican un sitio de recarga de aproximadamente 3 cm/yr para la recarga a lo largo del frente montañoso oriental e infiltración del río Grande cerca de Albuquerque. Se aprecia una recarga menor a lo largo del frente oriental de montañas al norte y al sur de Albuquerque.

Résumé Des données sur les éléments chimiques et les isotopes présents dans leau souterraine prélevée à divers endroits dans le bassin moyen du Rio Grande, au centre du Nouveau-Mexique (É-U), ont permis de déterminer lexistence et létendue de douze sources deau régionales dans le bassin, dévaluer les âges radiocarbones et de raffiner le modèle conceptuel du système aquifère du groupe de Santa Fe. Des zones hydro-chimiques qui représentent lécoulement de leau souterraine depuis des dizaines de milliers dannées peuvent être suivies sur de longues distances à travers laquifère principalement siliclastique. La position des zones hydro-chimiques reflète principalement la distribution moderne des charges hydrauliques mais est incohérente avec une dépression dans le niveau deau dans la partie centre-ouest du bassin, ce qui indique que cette dépression est un élément transitoire du système aquifère plutôt quun élément à long terme. Les âges radiocarbones ajustés aux réactions géochimiques et aux processus de mélange et dévapotranspiration/dilution qui ont lieu dans laquifère sont presque identiques aux âges non ajustés et varient de la période moderne jusquà 30 ka. Les gradients dâge établis à partir des nids de piézomètres sétendent de 0.1 à 2 a cm–1 et suggèrent un taux de recharge denviron 3 cm a–1 le long du front des montagnes à lest et pour linfiltration provenant du Rio Grande près dAlbuquerque. Il y a eu substantiellement moins de recharge le long du front des montagnes à lest, au nord et au sud dAlbuquerque.
  相似文献   

13.
The Tulungwan-Chaochou Fault system in southern Taiwan represents the boundary between a slate belt of moderate metamorphic grade and a relatively unmetamorphosed fold-and-thrust belt. The offset between hanging wall and footwall of this fault ranges from 7 to 11 km and is considered one of the major tectonostratigraphic faults in Taiwan. This 75-km-long fault system is also one of the most conspicuous topographic features in Taiwan. The geometry, kinematic history and associated subsidiary structures have not been resolved. Field mapping of fabrics and brittle faults show that a 45-km-long west-northwest-vergent antiform defined by folded slaty cleavage exists in the hanging wall of the fault. This antiform has not been previously described and apparently formed in a brittle environment. The flat crest and tight forelimb of the antiform suggests a two-stage deformation model composed of a fault-bend fold followed by a trishear fold. We infer that regional scale fold is associated with a thrust that splays upward from the main detachment.  相似文献   

14.
Hydrogeology Journal - In the High Plains (HP) region of northeastern New Mexico (NE NM), USA, underlying bedrock aquifers are utilized where the High Plains Aquifer is thin, absent, or...  相似文献   

15.
The calibration of a groundwater model with the aid of hydrochemical data has demonstrated that low recharge rates in the Middle Rio Grande Basin may be responsible for a groundwater trough in the center of the basin and for a substantial amount of Rio Grande water in the regional flow system. Earlier models of the basin had difficulty reproducing these features without any hydrochemical data to constrain the rates and distribution of recharge. The objective of this study was to use the large quantity of available hydrochemical data to help calibrate the model parameters, including the recharge rates. The model was constructed using the US Geological Surveys software MODFLOW, MODPATH, and UCODE, and calibrated using 14C activities and the positions of certain flow zones defined by the hydrochemical data. Parameter estimation was performed using a combination of nonlinear regression techniques and a manual search for the minimum difference between field and simulated observations. The calibrated recharge values were substantially smaller than those used in previous models. Results from a 30,000-year transient simulation suggest that recharge was at a maximum about 20,000 years ago and at a minimum about 10,000 years ago.
Resumen La calibración de un modelo de aguas subterráneas con el apoyo de datos hidroquímicos ha demostrado que la recarga relativamente baja en la cuenca media del Río Grande es probablemente responsable de una depresión de aguas subterráneas en el centro de la cuenca y de la presencia de una cantidad considerable de agua del Río Grande en el acuífero del Grupo Santa Fe. Los modelos propuestos con anterioridad para la cuenca tenían dificultades para reproducir estas características ya que no tenían datos hidroquímicos que permitieran delimitar los ritmos y distribución de recarga. El objetivo del presente estudio consistió en utilizar una gran cantidad de datos hidroquímicos disponibles para ayudar a calibrar los parámetros del modelo, incluyendo los ritmos de recarga. El modelo se construyó utilizando los modelos MODFLOW, MODPATH, y UCODE del USGS, mientras que la calibración se realizó en base a concentraciones de 14C y a la posición de ciertas zonas definidas con los datos hidroquímicos. La estimación de parámetros se realizó en base a una combinación de técnicas de regresiones no lineares y a una búsqueda a viva fuerza del error mínimo entre los datos observados y los simulados. Los valores de recarga calibrados fueron significativamente más bajos que los estimados en los modelos anteriores. Los resultados de una simulación transitoria de 30,000 años sugieren que la recarga durante la última glacial máxima (LGM) fue diez veces el ritmo moderno, pero que la recarga que ocurrió inmediatamente después de la LGM fue más baja que el ritmo moderno.

Résumé Le calibrage dun modèle hydrogéologique avec laide de données hydrochimiques a démontré que la recharge relativement faible dans le Grand Bassin du Middle Rio est vraisemblablement responsable dune dépression des eaux souterraines dans le centre du bassin et de la présence dune quantité substantielle deau du Rio Grande dans laquifère du Groupe de Santa Fe. Les modèles antérieurs avaient des difficultés à reproduire ses conclusions sans laide de données hydrochimiques pour contraindre les taux et la distribution de la recharge. Lobjectif de cette étude était dutiliser une grande quantité de données hydrochimiques permettant de calibrer les paramètres du modèle, et notamment les taux de recharge. Le modèle a été construit avec les logiciels MODFLOW, MODPATH et UCODE, et calibré en utilisant les concentrations en 14C et la position de certaines zones définies par les données hydrochimiques. Lestimation de certains paramètres a été réalisée en utilisant une combinaison de techniques de régression non linéaire et une méthode de recherche exhaustive (Brute Force Search) de lerreur minimum entre les résultats des observations et les simulations. Les valeurs de la recharge calibrée sont substantiellement plus basses que celles estimées dans les modèles antérieurs. Les résultats dune simulation en régime transitoire sur 30.000 ans suggèrent que la recharge au maximum de la dernière glaciation (last glacial maximum, LGM) était 10 fois supérieure au taux actuel, mais que la recharge qui a suivit la LGM était plus bas que la recharge actuelle.
  相似文献   

16.
We provide new field data from geologic mapping and bedrock structural geology along the western side of the Matese Mts in central Italy, a region of high seismicity, strain rates among the highest of the entire Apennines (4–5 mm/yr GPS-determined extension), and poorly constrained active faults. The existing knowledge on the Aquae Iuliae normal fault (AIF) was implemented with geometric and kinematic data that better constrain its total length (16.5 km), the minimum long-term throw rate (0.3–0.4 mm/yr, post-late glacial maximum, LGM), and the segmentation. For the first time, we provide evidence of post-350 ka and possibly late Quaternary activity of the Ailano – Piedimonte Matese normal fault (APMF). The APMF is 18 km long. It is composed of a main 11 km-long segment striking NW–SE and progressively bending to the E–W in its southern part, and a 7 km-long segment striking E–W to ENE-WSW with very poor evidence of recent activity. The available data suggest a possible post-LGM throw rate of the main segment of ≳0.15 mm/yr. There is no evidence of active linkage in the step-over zone between the AIF and APMF (Prata Sannita step-over).An original tectonic model is proposed by comparing structural and geodetic data. The AIF and APMF belong to two major, nearly parallel fault systems. One system runs at the core of the Matese Mts and is formed by the AIF and the faults of the Gallo-Letino-Matese Lake system. The other system runs along the western side of the Matese Mts and is formed by the APMF, linked to the SE with the Piedimonte Matese – Gioia Sannitica fault. The finite extension of the APMF might be transferred to the NW towards the San Pietro Infine fault. The nearly 2–3 mm/yr GPS-determined extension rate is probably partitioned between the two systems, with a ratio that is difficult to establish due to poor GPS coverage. The proposed model, though incomplete (several faults/transfer zones need further investigations), aids in the seismotectonic interpretation of poorly-known earthquakes (e.g., 346/355 AD earthquake on the Ailano – Piedimonte Matese – Gioia Sannitica fault system), and stimulates and further orients seismotectonic investigations aimed at constraining the segmentation pattern and seismogenic potential of the area.  相似文献   

17.
The results of geochemical and geochronological study of the Kengurak-Sergachi gabbroanorthosite massif in the Selenga-Stanovoi superterrane, southern frame of the Siberian craton, are presented. According to geochemical peculiarities, the massif rocks are close to the autonomous “massif-type anorthosite.” The massif age corresponds to 1866 ± 6 Ma based on the results of U-Pb zircon dating. The Kengurak-Sergachi massif was intruded most likely in post-collision epoch concurrently to formation of the South Siberian giant post-collision magmatic belt (1.87–1.84 Ga) extending along the southwestern flank of the Siberian craton.  相似文献   

18.
19.
藏南洛扎地区过铝质花岗岩的地球化学特征及构造背景   总被引:26,自引:8,他引:18  
洛扎及其以南地区分布有规模不等、产状不同的过铝质二云母(白云母)二长花岗岩和电气石二长花岗岩,这些岩体侵位的时代为中新世,构成了高喜马拉雅花岗岩带的东延部分。岩体以高铝、低镁铁组分,高锶、氧同位素比值为特征,地球化学研究显示它们是泥质岩的深熔作用和岩浆的结晶分异作用所形成的产物。过铝质花岗岩是在后碰撞造山作用阶段的大规模伸展拆离作用背景下沿拆离构造带侵位的,形成于藏南拆离系韧性活动阶段的晚期,是一种典型的后碰撞过铝质花岗岩。  相似文献   

20.
藏南江孜盆地北缘火山岩地球化学特征及其大地构造背景   总被引:3,自引:1,他引:3  
江孜盆地北缘火山岩可分为2个火山岩带,各带又有2个喷发旋回不同时代的火山岩具相似的岩石化学特征,表现为富钛、富铝、富钠、低钾的特点,属拉斑玄武岩系列,三叠纪和早白垩世火山岩的痕量元素具富集大离子不相容元素的特肛.稀土元素及其球粒陨石标准化配分型式显示其喷发构造背景为大陆裂谷环境。晚白垩世火山岩的痕量元素特征可分为富集大离子不相容元素、高场强元素和仅富集大离子不相容元素2种类型,上下层位的稀土元素特征和配分型式不同,喷发的构造环境分别为大陆裂谷环境和大洋环境。结合区域地质成果认为,雅鲁藏布江结合带在三叠纪和早白垩世时为大陆裂谷构造环境,晚白垩世早期为大陆裂谷向大洋演化的构造背景,晚期形成洋壳,其形成至少经历了4次脉动式的演化过程  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号