首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Photometric correction is a necessary step in planetary image pre-processing since the images of planetary surfaces are acquired by orbiting spacecraft at various observational geometries. In this study, visible (748 nm) and near-infrared (948 nm) bands of Hyper Spectral Imager (HySI) onboard Chandrayaan-1 have been used to derive a preliminary photometric correction for lunar data. The purpose of the proposed photometric correction for HySI is to convert observations taken at solar incidence (i), sensor emission (e), and the solar phase angles (α) to a fixed geometry by applying i?=?α?=?30° and e?=?0° to each image. The Lommel–Seeliger function was used to model the lunar limb darkening effect, while topography data from the merged Digital Elevation Model of Lunar Reconnaissance Orbiter—Lunar Orbiter Laser Altimeter (LRO-LOLA) and SELENE Terrain Camera (TC) was used to correct local topographic effects. Data from Moon Mineralogy Mapper (M3), SELENE Multiband Imager (MI) and Clementine Ultraviolet and Visible Camera (UV/VIS) were also used to compare radiance, reflectance and phase functions derived from HySI. Our analysis reveals that HySI is darker than M3 primarily due to low surface radiance conditions observed by HySI. The derived phase functions for the two HySI bands indicate a good correlation between the derived reflectance and phase angle as well as with the phase functions derived for the empirically corrected M3 data. This approach led to the derivation of a photometric correction for maria regions. Finally, it is expected that the proposed correction would be applicable to all HySI images covering the lunar mare region.

  相似文献   

2.
Calculations are made to determine the sizes of stone and iron meteoroids which could penetrate the atmosphere of Venus and cause hypervelocity impact craters on the planet's surface. Using scaling relationships based on kinetic energy, impact crater size is related to meteoriod size. Finally, it is determined that the smallest impact craters that might exist on Venus are on the order of 150 to 300 meters in diameter.  相似文献   

3.
With widespread evidence of both heat sources and water (either liquid or solid), hydrothermal systems are likely to have existed on Mars. We model hydrothermal systems in two sizes of fresh impact craters, one simple and one complex, and find that a hydrothermal system forms on the crater floor. In the larger complex craters with a substantial melt sheet, a lake can form, even under current martian atmospheric conditions. By comparing these hydrothermal systems to those that exist and have been studied extensively on the Earth, we make predictions as to the types of minerals that could be precipitated and the potential habitability of such systems by primitive organisms.  相似文献   

4.
Preliminary measurements of craters and boulders have been made in various locations on Eros from images acquired during the first nine months of NEAR Shoemaker's orbital mission, including the October 2000 low altitude flyover. (We offer some very preliminary, qualitative analysis of later LAF images and very high-resolution images obtained during NEAR's landing on 12 February 2001). Craters on Eros >100 m diameter closely resemble the saturated crater population of Ida; Eros is more heavily cratered than Gaspra but lacks the saturated giant craters of Mathilde. These craters and the other large-scale geological features were formed over a duration of very roughly 2 Gyr while Eros was in the main asteroid belt, between the time when its parent body was disrupted and Eros was injected into an Earth-approaching orbit (probably tens of Myr ago). Saturation equilibrium had been expected to shape Eros' crater population down to very small sizes, as on the lunar maria. However, craters <200 m diameter are instead progressively depleted toward smaller sizes and are a factor of ∼200 below empirical saturation at diameters of 4 m. Conversely, boulders and positive relief features (PRFs) rise rapidly in numbers (differential power-law index ∼−5) and those <10 m in size dominate the landscape at high resolutions. The pervasive boulders and minimal craters on Eros is radically different from the lunar surface at similar scales. This may be partly explained by a major depletion of meter-scale projectiles in the asteroid belt (due to the Yarkovsky Effect: Bell 2001), which thus form few small craters and destroy few boulders. Additionally, the small size and low gravity of Eros may result in redistribution or loss of ejecta due to seismic shaking, thus preferentially destroying small craters formed in such regolith. Possibly Eros has only a patchy, thin regolith of mobile fines; the smaller PRFs may then reflect exposures of fractured bedrock or piles of large ejecta blocks, which might further inhibit formation of craters <10 m in size. Eros may well have been largely detached dynamically and collisionally from the main asteroid belt for the past tens of Myr, in which case its cratering rate would have dropped by two orders of magnitude, perhaps enhancing the relative efficacy of other processes that would normally be negligible in competition with cratering. Such processes include thermal creep, electrostatic levitation and redistribution of fines, and space weathering (e.g., bombardment by micrometeorites and solar wind particles). Combined with other small-body responses to impact cratering (e.g., greater widespread distribution of bouldery ejecta), such processes may also help explain the unexpected small-scale character of geology on Eros. If there was a recent virtual hiatus in cratering of Eros (during which only craters <∼300 m diameter would be expected to have formed), space weathering may have reached maturity, thus explaining Eros' remarkable spectral homogeneity compared with Ida.  相似文献   

5.
Impact craters on the lunar surface have a variety of morphometric characteristics that are very useful in understanding the evolutionary history of lunar landscape morphologies. Based on digital elevation model data and photographs from China’s Chang’E-1 lunar orbiter, we develop morphologic parameters and quantitative methods for presenting the morphometric characteristics of impact craters, analyzing their relational distribution, and estimating the relative order of their formation. We also analyze features in profile where craters show signs of having formed on the edge of previously existing craters to show that superimposed impacts affect morphologic reconstructions. As a result, impact craters have significant effects on the reconstruction of ancient topography and the estimation of relative formation ages.  相似文献   

6.
7.
Approximately 22,000 small domes have been identified on the 25% of the surface of Venus imaged by Venera 15/16. The word dome is used to imply a broad, lens-shaped, positive topographic feature. The domes: (1) are generally circular in planimetric outline; (2) range in diameter from the effective limit of Venera resolution (2 km) to 20 km; (3) show flank slopes generally 10 ° and possibly 5 °; and (4) occur in association with mottled plains units. Associated features include summit pits, radar bright surfaces, and basal topographic platforms. There are two significant areas of major dome concentrations approximately 180 ° in longitude apart: (1) the largest concentration occurs in the Akkruva Colles area of Niobe Planitia, centered at approximately 45 ° N/120 ° E, just north of the flanks of the Thetis Regio rise; and (2) another concentration occurs in northwestern Guinevere Planitia, centered at approximately 35 ° N/300 ° E, on the north flank of the Beta Regio rise. In addition to these major areas of concentrations, domes occur in smaller concenrations throughout the imaged area of Venus, in association with coronae, arachnoids, intermediate sized hills interpreted to be volcanic constructs, large volcanic centers and calderas. The characteristics and geologic associations of small domes are consistent with an interpretation of their origin as volcanic, and on the basis of their low slopes, individual characteristics, and geologic associations they are interpreted to represent dominantly effusive low shield volcanoes. The large number of small domes implies a large number of multiple centralized eruptions, each one of which represents a discrete, relatively small, volume of material available to build an edifice over a finite time period. Calculated modal volume is 0.73 km3 for individual edifices. Based on the number identified by Venera, the total number of small domes estimated for the entire planet 4.4 × 106 and total edifice volume over the entire planet represents a minimum volume equivalent to a layer approximately 7 m thick over the planet and representing 0.03% of the estimated crustal volume of Venus. In absolute number, size range, and distribution they appear to be similar to terrestrial oceanic seamounts. The global abundance and distribution, size frequency distribution, minimum size, and changes in these characteristics with latitude for the domes will be particularly important in understanding the way in which the domes form and their relationship to global models of tectonism and heat flow on Venus. Increased spatial resolution and coverage from Magellan data will enable a more thorough assessment of these features and associated questions, particularly where radar incidence angles are 15 °.'Geology and Tectonics of Venus', special issue edited by Alexander T. Basilevsky (USSR Acad. of Sci., Moscow), James W. Head (Brown University, Providence), Gordon H. Pettengill (MIT, Cambridge, Massachusetts) and R. S. Saunders (J.P.L., Pasadena).  相似文献   

8.
Currently, 18 impact structures have been identified on the continent of Africa. No impact structures are so far known in Ethiopia, with the exception of a suggestion of an impact crater centered on the town of Shakiso, southern Ethiopia. Our field work, petrographic, and geochemical studies on rocks from the area do not show any evidence of an impact structure at that locality. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
Solar System Research - The paper discusses three types of processes of destruction of small lunar craters: (1) destruction by overlapping craters; (2) destruction due to filling with ejecta from...  相似文献   

10.
11.
The present small amount of water in the atmosphere of Venus, in connection with the estimated short time scale of water loss from this planet, has lead to the hypothesis that the water concentration in the Venusian atmosphere is in a dynamical equilibrium, where the losses are counter-balanced by a suitable water source. The main candidate water sources are: (a) outgassing from the Venusian surface, due to volcanic activity and (b) cometary impacts. The lack of observational evidence of cometary impacts is usually attributed either to the rarity of such events or to the fact that presently their observational signature is not well understood. In this paper we report on a photographic evidence of a short duration dark feature on Venus, which was observed on 18 May 1988. After eliminating the possibilities of a film defect and an interference from an artificial Earth satellite or an interplanetary object, we conclude that this feature was the signature of an event that took place on the upper haze layer of the Venusian atmosphere. We propose that this event was actually the impact of a small (~1010 gr) comet-like object, consisting mainly of water, on Venus. This impact caused the temporary evaporation ot the sol H2SO4 particles of the upper haze layer and, consequently, a decrease of the albedo of the region around the point of entrance of the comet in the Venusian cloud layers. This region of lower albedo appears as a dark feature in the reported photograph. Our model accounts for the short duration of the feature as well as for its shape.  相似文献   

12.
Large yardang formations, found on Earth and Mars, have not been detected in Venera 15/16 imagery of Venus.  相似文献   

13.
《Planetary and Space Science》2007,55(12):1636-1652
Venus Express is the first European mission to planet Venus. The mission aims at a comprehensive investigation of Venus atmosphere and plasma environment and will address some important aspects of the surface physics from orbit. In particular, Venus Express will focus on the structure, composition, and dynamics of the Venus atmosphere, escape processes and interaction of the atmosphere with the solar wind and so to provide answers to the many questions that still remain unanswered in these fields. Venus Express will enable a breakthrough in Venus science after a long period of silence since the period of intense exploration in the 1970s and the 1980s.The payload consists of seven instruments. Five of them were inherited from the Mars Express and Rosetta projects while two instruments were designed and built specifically for Venus Express. The suite of spectrometers and imaging instruments, together with the radio-science experiment, and the plasma package make up an optimised payload well capable of addressing the mission goals to sufficient depth. Several of the instruments will make specific use of the spectral windows at infrared wavelengths in order to study the atmosphere in three dimensions. The spacecraft is based on the Mars Express design with minor modifications mainly needed to cope with the thermal environment around Venus, and so a very cost-effective mission has been realised in an exceptionally short time.The spacecraft was launched on 9 November 2005 from Baikonur, Kazakhstan, by a Russian Soyuz-Fregat launcher and arrived at Venus on 11 April 2006. Venus Express will carry out observations of the planet from a highly elliptic polar orbit with a 24-h period. In 3 Earth years (4 Venus sidereal days) of operations, it will return about 2 Tbit of scientific data.Telecommunications with the Earth is performed by the new ESA ground station in Cebreros, Spain, while a nearly identical ground station in New Norcia, Australia, supports the radio-science investigations.  相似文献   

14.
《Icarus》1987,69(2):221-229
Ground-based infrared observations have been made of the night hemisphere of the planet Venus around 1.7 and 2.3 μm, confirming the continued presence of dark and light patterns at these wavelengths. The data are inconsistent with two published hypotheses for their origin, but allow a third explanation invoking a broken layer of partially opaque clouds seen projected against the thermal background below. It is shown that around 2.3 μm the major cloud layer at an altitude of about 48 km provides that background, but the intensity of radiatin at 1.74 μm exceeds that expected and is unexplained.  相似文献   

15.
Galactic cosmic ray bombardment provides a permanent background ionosphere in planetary atmospheres. A transport technique is used to compute the cosmic ray ionization rate profile in a model of the Venusian atmosphere at altitudes between 55 and 100 km. These ionization rates are then applied to a model of ion chemistry to predict equilibrium electron and ion density profiles. Ionization rates for typical solar flare proton events are available from earlier calculations and have been included.  相似文献   

16.
Physical properties(e.g., ejecta size and distribution) of impact craters are crucial and essential to understanding the ejecta excavation and deposition process, estimating rock breakdown rate, and revealing their evolution characteristics. However, whether these physical properties are scale-dependent and how they evolve in different radial regions needs further studies. In this study, we first investigated the physical properties and evolution of subkilometer(D ≤ 800 m) craters on lunar maria...  相似文献   

17.
Jane L. Fox 《Icarus》2011,216(2):625-639
We have modeled the near and post-terminator thermosphere/ionosphere of Venus with a view toward understanding the relative importance of EUV solar fluxes and downward fluxes of atomic ions transported from the dayside in producing the mean ionosphere. We have constructed one-dimensional thermosphere/ionosphere models for high solar activity for seven solar zenith angles (SZAs) in the dusk sector: 90°, 95°, 100°, 105°, 110°, 115° and 125°. For the first 4 SZAs, we determine the optical depths for solar fluxes from 3 Å to 1900 Å by integrating the neutral densities numerically along the slant path through the atmosphere. For SZAs of 90°, 95°, and 100°, we first model the ionospheres produced by absorption of the solar fluxes alone; for 95°, 100°, and 105° SZAs, we then model the ion density profiles that result from both the solar source and from imposing downward fluxes of atomic ions, including O+, Ar+, C+, N+, H+, and He+, at the top of the ionospheric model in the ratios determined for the upward fluxes in a previous study of the morphology of the dayside (60° SZA) Venus ionosphere. For SZAs of 110°, 115° and 125°, which are characterized by shadow heights above about 300 km, the models include only downward fluxes of ions. The magnitudes of the downward ion fluxes are constrained by the requirement that the model O+ peak density be equal to the average O+ peak density for each SZA bin as measured by the Pioneer Venus Orbiter Ion Mass Spectrometer. We find that the 90° and 95° SZA model ionospheres are robust for the solar source alone, but the O+ peak density in the “solar-only” 95° SZA model is somewhat smaller than the average value indicated by the data. A small downward flux of ions is therefore required to reproduce the measured average peak density of O+. We find that, on the nightside, the major ion density peaks do not occur at the altitudes of peak production, and diffusion plays a substantial role in determining the ion density profiles. The average downward atomic ion flux for the SZA range of 90–125° is determined to be about 1.2 × 108 cm−2 s−1.  相似文献   

18.
Analysis of Doppler tracking residuals from the Pioneer-Venus Orbiter on March 6–7, 1979 shows gravitational features generally compatible with Kaula's scaled rule for the planet. The track spectrum is significantly deficient only at 1 cycle, undoubtedly the result of the over-adjustment of the (simple elliptic) trajectory to the data. The low degree spectrum, from these passes, is possibly up to 30% stronger than the rule, the result depending on more exact mass-simulation of the orbit adjustment process. In contrast with the Earth, the deep Interior of Venus may be more active (if these passes are typical).  相似文献   

19.
The resurfacing evolution of Venus has been evaluated through Monte Carlo simulations. For the first time, the sizes of volcanic flows in the models were generated using the frequency-size distribution of volcanic units measured on Venus. A non-homogeneous spatial generation of volcanic units was included in the models reproducing the Beta-Alta-Themis volcanic anomaly. Crater modification is simulated using a 3D approach. The final number of modified craters and randomness of the crater population were used to evaluate the success of the models, comparing the results from our simulations with Venus observations. The randomness of the crater population is evaluated using pair-correlation statistics. On the one hand, a catastrophic resurfacing event followed by moderate volcanic activity covering ≈40% of the planetary surface can reproduce the number of modified craters and the pair-correlation statistics do not reject randomness. On the other hand, the pair-correlation test for equilibrium steady-state resurfacing models rejects the randomness of the crater population when reproducing the observed frequency-size distribution of the volcanic units with a non-homogeneous spatial generation of volcanic units.  相似文献   

20.
The observed record of impact craters on the surface of the planet Venus can be used to calculate the contribution of fine materials generated by impact processes to the global sedimentary cycle. Using various methods for the extending the population of impact craters with diameters larger than 8 km observed on the northern 25% of the Venus to the entire surface area of the planet, we have estimated how materials ejected from the integrated record of impact cratering over the past 0.5 to 1.0 æ might have been globally distributed. Relationships for computing the fraction of ejected materials from impact craters in a given size range originally developed for the Moon (and for terrestrial nuclear explosion cratering experiments) were scaled for Venus conditions, and the ejecta fragments with sizes less than 30 m were considered to represent those with the greatest potential for global transport and eventual fallout. A similar set of calculations were carried out using the observed terrestrial cratering record, corrected for the missing population of small craters and oceanic impacts that have either been eroded or are unobserved (due to water cover). Our calculations suggest that both Venus and the Earth should have experienced approximately 6000 impact events over the past 0.5 to 1 æ (in the size range from 1 km to about 180 km). The cumulative global thickness of impact-derived fine materials that could have produced from this record of impacts in this time period is most likely between 1–2 mm for Venus, and certainly no more than 6 mm (assuming an enhanced population of large 150–200 km scale impact events). For Earth, the global cumulative thickness is most likely 0.2 to 0.3 mm, and certainly no more than 2 to 3 mm. The cumulative volume of impact ejecta (independent of particle size) for Venus generated over the past 1 æ, when spread out over the global surface area to form a uniform layer, would fall between 2 and 12 meters, although 99% of this material would be deposited in the near rim ejecta blanket (from 1 to 2.3 crater radii from the rim crest), and only 0.02% would be available for global transport as dust-sized particles. Thus, our conclusion is that Venus, as with the Earth, cannot have formed a substantial impact-derived regolith layer over the past billion years of its history as is typical for smaller silicate planets such as the Moon and Mercury. This conclusion suggests that there must be other extant mechanisms for sediment formation and redistribution in the Venus environment, on the basis of Venera Lander surface panoramas which demonstrate the occurrence of local sediment accumulations.'Geology and Tectonics of Venus', special issue edited by Alexander T. Basilevsky (USSR Acad. of Sci. Moscow), James W. Head (Brown University, Providence), Gordon H. Pettengill (MIT, Cambridge, Massachusetts) and R. S. Saunders (J.P.L., Pasadena).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号