首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
含氟废水的粉煤灰处理实验研究   总被引:5,自引:0,他引:5  
进行了影响粉煤灰处理含氟废水的各种条件实验,(pH、水灰比、氟浓度、振荡平衡时间),结果表明最佳处理条件是pH值为2.5、水灰比为小于20、氟浓度小于500mg/l、振荡平衡时间大于2.5h,并研究了粉煤灰处理含氟废水的机理,给出了其吸附等温式。  相似文献   

2.
Coal combustion in power plants in India produces large quantities of coal-related wastes, e.g. fly ash and bottom ash. Indian coals used in power stations are of high ash content, thus resulting in the generation of large amounts of fly ash (~100 million tons/year). Combustion of coal results in enhanced concentration of most radionuclides found in waste materials. In the present work, an attempt has been made to assess the radiological impact of the Kolaghat thermal power plant in West Bengal, India. The fly ashes and coal from the power plant were analysed for 238U, 232Th and 40K by a NaI (Tl)-based gamma-ray spectrometer. The results show that 226Ra and 232Th range from 81.9-126 and 132-169 Bq/kg in fly ash and 25-50 and 39-55 Bq/kg in coal. These results are high compared to those of other thermal power plants of India. Hence, the Kolaghat fly ash has a significant amount of radioactivity which, if not properly disposed, will be a serious threat to the ambient environment.  相似文献   

3.
Feed coals and fly ashes from a coal-fired power station burning Alberta subbituminous coal were examined for a period of thirty-eight weeks to determine the variation in emitted mercury. Feed coal samples were analyzed for proximate, calorific value and Hg content, while fly ash samples were examined for C and Hg contents. The maceral content of the feed coal was also determined. The emitted mercury was calculated and compared to mercury emitted from the stack according to a mass-balance calculation from a previous study for the same station.Mercury contents ranged from 0.029 to 0.066 mg/kg for feed coal, and from 0.069 to 0.112 mg/kg for fly ash. The carbon/char in fly ash was separated into reactive (vitrinitic/bimacerate) and less reactive (inertinitic) chars using ZnBr2 at specific gravities of 1.7, 2.0, and 2.25 to 2.4. The result shows that there is a positive correlation between the carbon and mercury content of the fly ash. The reactive char particles in the fly ash may be responsible for the capture mercury in fly ash. The percentage of estimated captured mercury by fly ash increases with increasing carbon content (%) in fly ash. The percentage of emitted mercury for the period of 38 weeks is estimated to be within the range of 49% to 76% of the total input of mercury.  相似文献   

4.
The fluoride contained in the filter liquor produced by fly ash in the thermal power plant which takes the coal as fuel can lead to groundwater pollution. Therefore, it is of great significance to study the migration characteristics of the pollutants in groundwater, in order to control and prevent the groundwater fluoride pollution. By adopting the numerical modeling method, this paper takes the ash-storage yard of Shahe Power Plant in Xingtai City as an example, to study the characteristics of fluoride migration in phreatic water, and establish a two-dimensional groundwater flow and water quality model on the basis of the hydrogeological condition analysis in this study area. Meanwhile, based on the Vmodflow software, the migration regulation of the fluoride in groundwater has been simulated. Because the phreatic aquifer of this area belonging to the Shahe alluvial-diluvial sediments and with a coarse lithology as well as high permeability, the migration and diffusion ability of the fluoride in this area is relatively strong. It turns out that the longest migration distance in 5 years is 892 m and that within 8 years is 1 515 m.  相似文献   

5.
Anthropogenic arsenic menace in Delhi Yamuna Flood Plains   总被引:2,自引:1,他引:1  
Arsenic, one of the most poisonous chemical elements, was analyzed in the waters of the host of the 2010 Commonwealth Games, i.e., New Delhi. The study revealed shocking outcomes with arsenic concentrations well beyond the safe limits set by WHO, and a maximum concentration up to 180 ppb was found in the groundwater. Analysis of around 120 water samples collected extensively along the Yamuna Flood Plain showed that more than 55% had arsenic contamination beyond the WHO limit of 10 ppb. The maximum value of arsenic in coal and fly ash from Rajghat coal-based thermal power plant contained 200 and 3,200 ppb, respectively. Moreover, the ore petrography of coal samples shows the presence of arsenopyrite mineral. Maximum concentration of arsenic contamination is found within a 5-km radius from power plants. In the perspective of Delhi, arsenic contamination is purely anthropogenic due to coal-based thermal power plants, which had already shown toxic arsenic, fluorine and China-type coal effects. The presence of such power plants in coal field locations, e.g., West Bengal and Bangladesh, could release the arsenic due to combustion in superthermal power plants, thus accentuating the arsenic concentration besides the natural arsenic coming from the foreland basins of the Himalaya in Indian sub-continent.  相似文献   

6.
The aim of this study was to investigate the geochemical characteristics of arsenic in the solid material samples of the Mae Moh Mine and also the Mae Moh power plants fly ash samples were systematically studied. Arsenic concentration in overburden, coal lignite and fly ash are variable (depending on source of solid samples). The results show that the strata of overburden, J seam of coal and fly ash are rich in arsenic and also relatively soluble from fly ash; it occurs as a surface precipitate on the ash particle. The experimental study on speciation in the strata also indicates that the arsenic speciation of Mae Moh solid samples are mainly arsenate, As (V), which are approaching exceed 80%. Arsenic content in the main of overburden is in the range of 14.3–888.8 mg/kg, which is larger than the arsenic background soil values. Solid materials polluted wastewater; the arsenic speciation was present predominantly as arsenate in the surface water of a series of Mae Moh solid materials basins.  相似文献   

7.
招远地热田位于胶东隆起区,元古代蚀变花岗岩分布广泛,地下热水微量元素丰富。为查明地下热水微量组分的赋存条件、花岗岩热储环境与地热资源量,利用地下热水水化学分析、热储分析及有效能源换算法,建立Gibbs模型,进行PHREEQC模拟并开展热储估算。研究结果显示:(1)地下热水水化学类型为Cl—Na型,与海水水化学类型一致,地下热水溶解性固体总量(TDS)介于1 359.7~5 302.0 mg/L,锶、溴、偏硅酸等微量组分的质量浓度分别达26.20,7.50,88.00 mg/L,均超过国家医疗热矿水水质标准;(2)地热田东北方向的玲珑花岗岩中锶的质量分数较高,介于334~1 805 mg/kg,是地下热水中锶的一个重要来源;(3)热储温度在107~215℃之间,硅-焓图解法分析冷水混入比例为33.6%~58.9%。结果显示:40~60℃的总可用能源19.73 TJ/a,总热能达5 479.57 MW·h,吨油当量471.16 toe;>60℃的总可用能源301.57 TJ/a,总热能达83 771.53 MW·h,吨油当量为7 203.06 toe。综合分析认为研究区地热资源丰富,...  相似文献   

8.
The aim of this paper was to explore new factors that might be reasons for the occurrence of fluoride-rich groundwater in the area around a construction site. During the construction of two deep shafts of the Mizunami Underground Research Laboratory (MIU) in Mizunami city, central Japan, a large quantity of groundwater with high fluoride concentration was charged into the shafts. Chemical investigation carried out during the excavation revealed that fluoride concentrations in the area around the MIU site greatly exceeded those prescribed by Japanese standards. Therefore, the origin of fluoride ion was experimentally investigated. Samples were collected from the core of a deep borehole drilled in the study area. The weathering - and alteration levels of the collected granites varied greatly. Granitic powders were used to measure fluoride content in the granitic rock mass. The fluoride content ranged between 200 and 1300 mg/kg. The powders were reacted with purified water for 80 days. The results of water–rock interaction showed granitic rock to be one of the main sources of fluoride-rich groundwater in Mizunami area. Fluoride concentrations in these solutions that were shaken for 80 days varied between 2 and 7 mg/l. This change may have occurred as a result of the spatial distribution of fluoride ions in the granite mass as evidenced by mineralogical analysis of fluoride content in several specimens. X-ray powder diffraction analysis of the rock before- and after the water–rock interaction tests manifested that the presence of fluorite mineral was relatively small compared to other minerals. The degree of weathering and alteration might be an additional factor causing dissolution of fluoride-rich minerals. However, it was difficult to interpret the change in fluorite composition by X-ray diffraction analysis.  相似文献   

9.
Leaching characteristics of fly ash   总被引:6,自引:0,他引:6  
The disposal of fly ash as a byproduct of thermic power stations, results in significant environmental problems. The leaching of coal fly ash during disposal is of concern for possible contamination, especially for the aquatic environment when ash is in contact with water. The aim of this study was to investigate the leaching behaviour of fly ashes currently disposed in Kemerkoy Power Plant (Turkey) fly-ash-holding pond. The studies were conducted with fly ashes from the electrostatic precipitators (fresh fly ash) and from the fly ash pond (pre-leached fly ash). The fly ashes has alkaline in nature and pH ranges between 11.9 to 12.2. The pre-leached fly ash exhibited lower EC values (7,400 µS) than the fresh fly ash (10,300 µS). In contrast to Fe and Pb, the elements such as Cr, Cd, Cu and Co did not leach from the fly ash. The Ca and Mn concentrations decreased with increasing temperature whereas, Na and K concentrations increased. The results showed that the most important effects of fly ash leaching were pH, Na, Ca, K, Fe, Mg, Mn and Pb.  相似文献   

10.
《Applied Geochemistry》2005,20(7):1309-1319
Petroleum coke has been used as a supplement or replacement for coal in pulverized-fuel combustion. At a 444-MW western Kentucky power station, the combustion of nearly 60% petroleum coke with moderate- to high-sulfur Illinois Basin coal produces fly ash with nearly 50% uncombusted petroleum coke and large amounts of V and Ni when compared to fly ash from strictly pulverized coal burns. Partitioning of the V and Ni, known from other studies to be concentrated in petroleum coke, was noted. However, the distribution of V and Ni does not directly correspond to the amount of uncombusted petroleum coke in the fly ash. Vanadium and Ni are preferentially associated with the finer, higher surface area fly ash fractions captured at lower flue gas temperatures. The presence of uncombusted petroleum coke in the fly ash doubles the amount of ash to be disposed, makes the fly ash unmarketable because of the high C content, and would lead to higher than typical (compared to other fly ashes in the region) concentrations of V and Ni in the fly ash even if the petroleum coke C could be beneficiated from the fly ash. Further studies of co-combustion ashes are necessary in order to understand their behavior in disposal.  相似文献   

11.
黔西南高砷煤开发现状与污染调查   总被引:2,自引:0,他引:2  
贵州省黔西南州的兴仁县是典型的高砷煤矿区,经化验,该区煤中砷含量普遍偏高,最大可达21 000mg/kg,为Ⅱ型的高砷矿区;水体和土壤砷含量亦高,土壤中砷的最高含量为234.141mg/kg,最低含量5.279mg/kg,平均值37.735mg/kg;水中砷的含量相对较低,最高含量为0.004 3mg/L,平均值为0.000 5mg/L;河流沉积物中砷的最高含量为219.140mg/kg,最低值为20.676mg/kg,平均值为60.700mg/kg。分析认为土壤中砷与受矿业活动影响的灌溉水体有关,矿业开采已造成了当地水环境、土壤环境、大气环境的严重污染。  相似文献   

12.
Present concentrations and distributions of heavy metals through profiles, surface soil, and stream sediment samples in the Hunchun area, north-eastern China, were investigated to determine the elemental background values. This study also aims to characterize potentially toxic materials such as pulverized fly ash (PFA) from power stations or ash and slag from coal used domestically in urban areas, agrochemicals applied inappropriately, and urban sewage sludges from Hunchun City, as well as to ascertain the possibility of natural enrichment through site characterization by mineralogical and geochemical investigation. The distribution of contaminants in the alluvial soils (fluvisol) of this area has been influenced by several interacting factors. The parent alluvial materials from weathered products of amphiboles have made coatings such as ferrihydrite, goethite, and hematite. This natural inheritance factor is supported by the fact that the concentrations of weak acid-extractable (plant-available) heavy metals are very low, except for Fe and Mn. However, in agricultural soils and adjacent stream sediments, an anthropogenic input of Cd, Pb, Ni and Cr by agrochemicals is strongly suggested. Also, F contamination by coal combustion and the dissolution of F-bearing minerals could cause some future problems. Wide distribution and significantly high concentrations of Cd, Fe, Mn, and F in soils throughout the combination of pollutants originating from lithogenic and the anthropogenic sources pose potential problems in utilizing water resources. Received: 14 June 1999 · Accepted: 27 December 1999  相似文献   

13.
A geochemical study on thermal water has been carried out in Tianshui and its adjacent area, Gansu province, China. Chemical and isotopic contents were employed in the investigation on the origin and evolution of thermal water and the evaluation of reservoir temperature in the geothermal systems. Thermal waters in Wushan and Tianshui are characterized by outlet temperatures from 15 to 38°C and low TDS (226?C255?mg/L), defined as bicarbonate water. Its origin may be attributed to the interaction between meteoric rain, biotite plagioclase gneiss and carbonate reservoir rocks. In contrast, thermal waters in Tongwei and Qingshui have higher outlet temperatures of 25?C54.2°C and a moderate TDS of 915?C1,793?mg/L, regarded as sulfate waters. These sulfate waters may arise from the interaction between meteoric water, granite and amphogneiss. Isotopic data presented here suggest that thermal waters in the study area have a meteoric origin without being significantly effected by water?Crock isotope exchange. Chemical geothermometry indicates the existence of a deep geothermal reservoir of low-to-medium enthalpy (70?C111°C) in the Tianshui study area.  相似文献   

14.
The maximum concentration of the majority of the trace metals in the leachates from shake and column test of lignite fly ash (LFA) was within the prescribed limits; however, total dissolved solids, total hardness, cations and anions (except K+), being above the prescribed limits, may lead to the increase in the hardness and salinity in the soil on the disposal of LFA. Present generation of huge amount of fly ash from thermal power plants (TPPs) is a big challenge concerning contamination of soil, crop produce and surface and ground water bodies due to the presence of some of the toxic trace metals in it. The leaching behavior of alkaline LFA (pH, 10.94), from TPP of Neyveli Lignite Corporation (NLC), India, was investigated by shake and column tests using water and sodium acetate buffer. The leaching of trace metals from LFA was governed by their concentrations, association with the ash particles, leaching duration and pH of the leachate (most influencing parameter). The leaching of metals followed the order: buffer column > aqueous column > aqueous shake > buffer shake test.  相似文献   

15.
粉煤灰处理含氟废水的正交试验研究   总被引:6,自引:0,他引:6  
对粉煤灰处理含氟废水进行了正交试验研究。结果表明各因素对F-去除率的影响顺序为:pH>V/M>T>CF-,极差R分别为49.6、9.1、4.9和3.6;在pH=5、V/M=10、T=3h时,粉煤灰对于CF-<500 mg/L的废水具有较好的去除效果;粉煤灰吸附F-的行为符合Langmuir等温方程,方程为Ce/qe=0.251 8Ce+6.087 3。  相似文献   

16.
The laterite nickel (Ni) ore smelting operation in Niquelândia (Goiás state, Brazil) produced large amounts of smelting wastes, stockpiled on dumps (slags) and in settling ponds (fly ash). In this study we present data on the chemistry, mineralogy and pH-dependent leaching behaviours of these two waste materials.Bulk chemical analyses indicated that both wastes contained significant amounts of potentially toxic elements (PTEs), with substantially higher concentrations in the case of the fly ash (up to 2.51 wt% Ni, 1870 mg/kg Cr and 488 mg/kg Co). The mineralogical investigations carried out using X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and electron microprobe (EPMA) indicated that the slag was mainly composed of silicate glass, olivine and pyroxene. In contrast, the fly ash was composed of Ni-bearing serpentine-like phases (originating from the furnace feed), Ni-bearing glass, olivine, pyroxene and spinel. The pH-dependent leaching behaviour was performed according the EU standard experimental protocol (CEN/TS 14997) in the pH range of 3–12. The leaching was highly pH-dependent for both materials, and the highest releases of PTEs occurred at pH 3. The slag generally exhibited an U-shaped leaching behaviour of the PTEs as a function of pH, and was found to release up to 48.0 mg/kg Ni, 25.6 mg/kg Cr, and 1.42 mg/kg Co. The fly ash was significantly more reactive, and exhibited its highest leaching level of PTEs between pH 3 and 7. The maximum observed release corresponded to 5750 mg/kg Ni, 4.35 mg/kg Cr, and 112 mg/kg Co. The leached Ni concentrations after 24 h of leaching in deionized water exceeded the limit for hazardous waste by more than 100x according to the EU legislation (40 mg/kg Ni). X-ray Absorption Near Edge Structure (XANES) and Extended X-ray Absorption Fine Structures (EXAFS) spectra indicated that Ni in the fly ash is predominantly bound in a serpentine-like phase, and during the fly ash experimental alteration it was mainly released from the second shell (corresponding to the atomic distances between Ni and Si, Mg, Fe in high-temperature silicates, glass, and partially dissolved serpentine). This study shows that disposal sites for the fly ash can represent a significant source of local pollution, and direct recycling of the fly ash in the smelting technology (as currently adopted at the Barro Alto new smelter and since few years also at the Niquelândia smelter) is the best environment-friendly option for handling of fly ash in the future.  相似文献   

17.
Mercury capture by fly ash C was investigated at five lignite- and subbituminous-coal-burning Bulgarian power plants (Republika, Bobov Dol, Maritza East 2, Maritza East 3, and Sliven). Although the C content of the ashes is low, never exceeding 1.6%, the Hg capture on a unit C basis demonstrates that the low-rank-coal-derived fly ash carbons are more efficient in capturing Hg than fly ash carbons from bituminous-fired power plants. While some low-C and low-Hg fly ashes do not reveal any trends of Hg versus C, the 2nd and, in particular, the 3rd electrostatic precipitator (ESP) rows at the Republika power plant do have sufficient fly ash C range and experience flue gas sufficiently cool to capture measurable amounts of Hg. The Republika 3rd ESP row exhibits an increase in Hg with increasing C, as observed in other power plants, for example, in Kentucky power plants burning Appalachian-sourced bituminous coals. Mercury/C decreases with an increase in fly ash C, suggesting that some of the C is isolated from the flue gas stream and does not contribute to Hg capture. Mercury capture increases with an increase in Brunauer-Emmett-Teller (BET) surface area and micropore surface area. The differences in Hg capture between the Bulgarian plants burning low-rank coal and high volatile bituminous-fed Kentucky power plants suggests that the variations in C forms resulting from the combustion of the different ranks also influence the efficiency of Hg capture.  相似文献   

18.
骆亚生  李靖  徐丽 《岩土力学》2009,30(Z2):67-71
粉煤灰是火电厂燃煤的副产品,如何处理利用是国内外十分关注的问题。目前,解决这一问题的途径很多,利用粉煤灰进行筑坝或作为基础填筑材料是比较有效的消纳方法。粉煤灰是一种轻质、多孔松散体,在许多方面具有比较优越的工程性能,但因为纯的粉煤灰缺少必要的凝聚力,对水的反映较为敏感,从而对工程的安全运行造成不利影响。在粉煤灰中掺合不同量的黏土有望改善粉煤灰的工程性能,对不同掺土量粉煤灰力学特性的研究有助于更好促进粉煤灰的工程应用。以咸阳渭河电厂粉煤灰为研究对象,对其掺入不同比例的黄土掺合形成掺土粉煤灰,通过击实试验、压缩试验、直剪试验和三轴试验等研究不同掺土量下粉煤灰的工程特性,得到不同掺土量对粉煤灰变形及强度特性的影响规律,为在工程中有效利用粉煤灰,改善其工程性质提供参考。  相似文献   

19.
 The most appropriate and widely used source of drinking water for the populations of the upper regions of Ghana is groundwater. In general, groundwater quality is acceptable except for some parts of the Bolgatanga and Bongo Districts, where there are occurrences of elevated levels of natural groundwater fluoride. Concentrations of groundwater fluoride in excess of the World Health Organization (WHO) maximum guideline value (1.5 mg/l) in the Bongo area have been known since 1978. However, the effect of fluoride on people ingesting the water did not receive public and medical attention until October 1993, when health personnel were asked to investigate the cause of stained teeth in school children. The investigation established that 62% of the total population of school children in the Bongo area had dental fluorosis. Against this background, a study was initiated to understand the geochemistry, genesis, and distribution of fluoride in relation to the geology of the area. Groundwater fluoride in the upper regions ranges from 0.11 to 4.60 ppm, with the highest concentrations associated with the fluorine-enriched Bongo coarse-grained hornblende granite and syenite suite. The source of groundwater fluoride within the Bongo granitoids is dissolution of the mineral fluorite and dissolution of and anion exchange with micaceous minerals and their clay products. Applying the WHO recommended guideline values for fluoride in drinking water reveals that 49% of wells in the area deliver water below the optimum level of 0.5 mg/l F; these populations are thus prone to dental caries. Twenty-eight percent of the wells fall within the optimum interval for good dental health (0.5–1.5 mg/l F). Twenty-three percent of the wells have concentrations above the recommended maximum guideline limit of 1.5 mg/l F; this population is susceptible to dental and possibly skeletal fluorosis. Climatic conditions of the area suggest that the individual water consumption is in the order of 3 to 4 l which is higher than the WHO estimate of 2 l/adult/day. In addition, dietary intake for the upper region population is probably higher than WHO baseline values (0.2–0.5 mg/day). This implies that a much higher population is susceptible to developing dental and skeletal fluorosis than originally suspected. Geochemical symbol plot maps help geochemists understand factors controlling the distribution and uptake of fluoride in the upper regions, but they are of minimal value to health officials responsible for planning epidemiological studies and dental health education programs in the region. By casting fluoride data into contoured 'geochemical health-risk maps' using intake interval guidelines more closely aligned to regional climatic and dietary conditions, health officals can better judge the impacts (regional and population based) of fluoride on segments of the population, such as various sex and age groups. Received: 11 March 1997 · Accepted: 17 June 1997  相似文献   

20.
The major element and Sr isotope systematics and geochemistry of coal fly ash and its interactions with environmental waters were investigated using laboratory flow-through column leaching experiments (sodium carbonate, acetic acid, nitric acid) and sequential batch leaching experiments (water, acetic acid, hydrochloric acid). Column leaching of Class F fly ash samples shows rapid release of most major elements early in the leaching procedure, suggesting an association of these elements with soluble and surface bound phases. Delayed release of certain elements (e.g., Al, Fe, Si) signals gradual dissolution of more resistant silicate or glass phases as leaching continues. Strontium isotope results from both column and batch leaching experiments show a marked increase in 87Sr/86Sr ratio with continued leaching, yielding a total range of values from 0.7107 to 0.7138. For comparison, the isotopic composition of fluid output from a fly ash impoundment in West Virginia falls in a narrow range around 0.7124. The experimental data suggest the presence of a more resistant, highly radiogenic silicate phase that survives the combustion process and is leached after the more soluble minerals are removed. Strontium isotopic homogenization of minerals in coal does not always occur during the combustion process, despite the high temperatures encountered in the boiler. Early-released Sr tends to be isotopically uniform; thus the Sr isotopic composition of fly ash could be distinguishable from other sources and is a useful tool for quantifying the possible contribution of fly ash leaching to the total dissolved load in natural surface and ground waters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号