首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate spatial clustering of 2414 aftershocks along the Izmit Mw = 7.4 August 17, 1999 earthquake rupture zone. 25 days prior to the Düzce earthquake Mw = 7.2 (November 12, 1999), we analyze two spatial clusters, namely Sakarya (SC) and Karadere–Düzce (KDC). We determine the earthquake frequency–magnitude distribution (b-value) for both clusters. We find two high b-value zones in SC and one high b-value zone in KDC which are in agreement with large coseismic surface displacements along the Izmit rupture. The b-values are significantly lower at the eastern end of the Izmit rupture where the Düzce mainshock occurred. These low b-values at depth are correlated with low postseismic slip rate and positive Coloumb stress change along KDC. Since low b-values are hypothesized with high stress levels, we propose that at the depth of the Düzce hypocenter (12.5 km), earthquakes are triggered at higher stresses compared to shallower crustal earthquake. The decrease in b-value from the Karadere segment towards the Düzce Basin supports this low b-value high stress hypothesis at the eastern end of the Izmit rupture. Consequently, we detect three asperity regions which are correlated with high b-value zones along the Izmit rupture. According to aftershock distribution the half of the Düzce fault segment was active before the 12 November 1999 Düzce mainshock. This part is correlated with low b-values which mean high stress concentration in the Düzce Basin. This high density aftershock activity presumably helped to trigger the Düzce event (Mw = 7.2) after the Izmit Mw 7.4 mainshock.  相似文献   

2.
Cheng-Horng Lin   《Tectonophysics》2007,443(3-4):271
In 1999, a large earthquake (Mw = 7.6) occurred along the Chelungpu fault in the fold-and-thrust belt of western Taiwan. To shed more light on the subsurface structures and the seismogenic layers, three-dimensional velocity structures were inverted by using the travel times of both P- and S-waves from 2391 aftershocks recorded by the Central Weather Bureau during the 15 months that followed. From tomography, a typical image of the large-scale thrusting structures in the upper crust across the Chelungpu fault was obtained. In general, high velocities beneath the Western Foothills and Central Ranges are separated from low velocities beneath the Coastal Plain by an east-dipping boundary that is roughly consistent with the Chelungpu fault on the surface. The contrast in velocity on either side of the Chelungpu fault is indicative of about a 7- to 9-km vertical offset in the upper crust. The relocated hypocenter for the Chi-Chi earthquake shifts by 2.2 km toward the northwest, and its focal depth decreases by 0.7 km. A plot of focal depths versus rock velocities where the aftershocks occurred shows earthquakes are more inclined to occur in rock with a velocity of around 5.6 km/s. This strongly suggests the seismogenic layer in the fold-and-thrust belt of Taiwan is more structure-dependent than depth-dependent.  相似文献   

3.
2022年1月8日青海门源MS 6.9地震发生在青藏高原东北缘的祁连山断块内部,仪器震中位于海原活动断裂系西段的冷龙岭断裂带上,是该断裂系自1920年海原8.5级大地震后再次发生M>6.5的强震。考察结果的初步总结表明,此次门源地震产生了呈左阶斜列分布、总长度近23 km的南北两条破裂,在两者之间存在长约3.2 km、宽近2 km的地表破裂空区。南支破裂(F1)出现在托来山断裂的东段,走向91°,长约2.4 km,以兼具向南逆冲的左旋走滑变形为主,最大走滑位移近0.4 m。北支主破裂(F2)出现在冷龙岭断裂的西段,总长度近20 km,以左旋走滑变形为主,呈整体微凸向北东的弧形展布,包含了走向分别为102°、109°和118°的西、中、东三段,最大走滑位移出现在中段,为3.0±0.2 m。此外,在北支主破裂中—东段的北侧新发现一条累计长度约7.6 km、以右旋正断为主的北支次级破裂(F3),累计最大走滑量约0.8 m,最大正断位移约1.5 m。综合分析认为,整个同震破裂以左旋走滑变形为主,具有双侧破裂特点,宏观震中位于北支主破裂的中段,其地表走滑位移很大可能与震源破裂深度浅有关,其中的右旋正断次级破裂可能是南侧主动盘向东运移过程中拖曳北侧块体发生差异运动所引起的特殊变形现象。印度与欧亚板块近南北向强烈碰撞挤压导致南祁连断块沿海原左旋走滑断裂系向东挤出,从而引发该断裂系中的托来山断裂与冷龙岭断裂同时发生破裂,成为导致此次强震的主要动力机制。在此大陆动力学背景下,以海原左旋走滑断裂系为主边界的祁连山断块及其周边的未来强震危险性需得到进一步重视。   相似文献   

4.
The Mw 7.7 earthquake that struck SE Pakistan on 24 September 2013 at 11.29.48 UTC was a sinistral strike-slip event on a branch of the Ornach-Nal-Chaman fault system which hereabouts separates the Eurasian Plate from the Indian Plate. Although the focus was at a depth of 15 km and 400 km inland the earthquake was accompanied by the emergence of an island off the Makran coast and the generation of a tsunami with a peak amplitude of 27 cm at Muscat (Oman) and 20 cm at Chah Bahar (Iran). At DART marine buoy 23228 in the Indian Ocean 500 km to the south a series of seismic Rayleigh waves about 4 min after the main shock was followed 54 min later by a tsunami with a peak amplitude of 1 cm. The Rayleigh series is here attributed to seafloor vibration during accelerated subduction of the Arabian Plate beneath the Eurasian Plate, and the tsunami to the development or reactivation of one or more reverse faults on the seaward portion of the Makran imbricate fan. As in the 2010.2.27 Mw 8.8 Maule (Chile), the 2004.12.26 Mw 9.2 Sumatra–Andaman, the 2005.3.28 Mw 8.7 Nias (Indonesia) and the 2011.3.11 Mw 9.0 Tohoku (Japan) earthquakes, the link between tsunami generation and slip on the megathrust is thus very indirect, to the detriment of attempts to mitigate coastal hazards using teleseismic data when nearshore seafloor monitoring would probably prove more effective.  相似文献   

5.
Both the genesis and rates of activity of shallow intraplate seismic activity in central Chile are poorly understood, mainly because of the lack of association of seismicity with recognizable fault features at the surface and a poor record of seismic activity. The goal of this work is to detail the characteristics of seismicity that takes place in the western flank of the Andes in central Chile. This region, located less than 100 km from Santiago, has been the site of earthquakes with magnitudes up to 6.9, including several 5+ magnitude shocks in recent years. Because most of the events lie outside the Central Chile Seismic Network, at distances up to 60 km to the east, it is essential to have adequate knowledge of the velocity structure in the Andean region to produce the highest possible quality of epicentral locations. For this, a N–S refraction line, using mining blasts of the Disputada de Las Condes open pit mine, has been acquired. These blasts were detected and recorded as far as 180 km south of the mine. Interpretation of the travel times indicates an upper crustal model consisting of three layers: 2.2-, 6.7-, and 6.1-km thick, overlying a half space; their associated P wave velocities are 4.75–5.0 (gradient), 5.8–6.0 (gradient), 6.2, and 6.6 km/s, respectively.Hypocentral relocation of earthquakes in 1986–2001, using the newly developed velocity model, reveals several regions of concentrated seismicity. One clearly delineates the fault zone and extensions of the strike-slip earthquake that took place in September 1987 at the source of the Cachapoal River. Other regions of activity are near the San José volcano, the source of the Maipo River, and two previously recognized lineaments that correspond to the southern extension of the Pocuro fault and Olivares River. A temporary array of seismographs, installed in the high Maipo River (1996) and San José volcano (1997) regions, established the hypocentral location of events with errors of less than 1 km. These events are clustered along no particular lineament approximately 25 km away from the San José and Maipo volcanoes. Recurrence intervals, based on a frequency magnitude relationship for lower magnitude events, indicate that earthquakes with magnitudes of 4.7 and 7 have a repeat time of 1 and 1200 years, respectively. Focal mechanisms of the two largest events indicate horizontal maximum and minimum compressive stresses with σ1 varying from a NW–SE orientation in the north to E–W at the southern extreme.  相似文献   

6.
The July 2003 sequence in the Gulf of Saros (Northeastern Aegean Sea) is investigated, in terms of accurate event locations and source properties of the largest events. The distribution of epicenters shows the activation of a 25-km long zone, which extends in depth between 9 and 20 km. The major slip patch of the 6 July 2003 Mw 5.7 mainshock is confined in a small area (45 km2), which coincides with the deeper (12–20 km) part of the activated zone. The epicenters of the sequence follow the northern margin of the Saros depression. This observation supports recent studies, according to which the continuation of the Ganos fault in the Gulf of Saros does not coincide with the fault along the northern coast of the Gelibolu peninsula, but it is located at the northern boundary of the Saros depression. This is further supported by the fact that the focal mechanisms of the mainshock and of the largest aftershocks of the 2003 sequence imply almost pure dextral strike-slip faulting, whereas the fault bounding the Gulf of Saros to the south appears as a normal fault on seismic sections. Thus, we infer that the principle deformation zone consists of a major strike-slip fault, which lies close to the northern margin of the Saros depression and this fault could be regarded as the continuation of the northern branch of the North Anatolian Fault into the Saros Gulf and North Aegean Trough as suggested by regional tectonic models. The northeastern extent of the 2003 sequence marks the western termination (at 26.3° E) of a long-term seismic quiescence observed in the period following the 1912 Ganos earthquake, which may be associated with the extend of the rupture of the particular earthquake.  相似文献   

7.
The Aysén Region, southern Chile, is the area located at the southern end of the Nazca-South America subduction zone, to the east of the Chile Triple Junction. This region has historically presented low levels of seismicity mostly related to volcanism. Nonetheless, a seismic sequence occurred in 2007, related to the reactivation of the strike-slip Liquiñe-Ofqui Fault System (LOFS), confirmed that this region is not exempt from major seismic activity M ∼ 7. Here we present results from background local seismicity of two years (2004–2005) preceding the sequence of 2007. Event magnitudes range between 0.5 and 3.4 ML and hypocenters occur at shallow depths, mostly within the upper 10 km of crust, in the overriding South American plate. No events were detected in the area locus of the 2007 sequence, and the Wadati–Benioff (WB) plane is not observable given the lack of subduction inter-plate seismicity in the area. A third of the seismicity is related to Hudson volcano activity, and sparse crustal events can be spatially associated with the trace of the Liquiñe-Ofqui fault, showing the largest detected magnitudes, in particular at the place where the two main branches of the LOFS meet. Other minor sources of seismicity correspond to glacial calving in the terminal zones of glaciers and mining explosions.  相似文献   

8.
C. Pro  E. Buforn  A. Udías 《Tectonophysics》2007,433(1-4):65-79
The dimensions and rupture velocities of four earthquakes, two in the Mid-Atlantic Ridge and two in Iceland with strike–slip mechanisms and magnitudes (Mw) between 6.2 and 6.8 were studied using the directivity effects of Rayleigh and body waves. For Rayleigh waves we used the directivity function for different pairs of stations and for body waves the waveforms of P and SH waves corresponding to a simple extended line source. We have found that three have very shallow depths about 3 km and one 8 km, fault lengths between 12 km and 21 km, and a low rupture velocity of about 1.5 km/s to 2.0 km/s which supports the idea of the presence of slow earthquakes in transform faults.  相似文献   

9.
We have carried out seismological observations within the Sea of Marmara (NW Turkey) in order to investigate the seismicity induced after Gölcük–İzmit (Kocaeli) earthquake (Mw 7.4) of August 17, 1999, using ocean bottom seismometers (OBSs). High-resolution hypocenters and focal mechanisms of microearthquakes have been investigated during this Marmara Sea OBS project involving deployment of 10 OBSs within the Çınarcık (eastern Marmara Sea) and Central-Tekirdağ (western Marmara Sea) basins during April–July 2000. Little was known about microearthquake activity and their source mechanisms in the Marmara Sea. We have detected numerous microearthquakes within the main basins of the Sea of Marmara along the imaged strands of the North Anatolian Fault (NAF). We obtained more than 350 well-constrained hypocenters and nine composite focal mechanisms during 70 days of observation. Microseismicity mainly occurred along the Main Marmara Fault (MMF) in the Marmara Sea. There are a few events along the Southern Shelf. Seismic activity along the Main Marmara Fault is quite high, and focal depth distribution was shallower than 20 km along the western part of this fault, and shallower than 15 km along its eastern part. From high-resolution relative relocation studies of some of the microearthquake clusters, we suggest that the western Main Marmara Fault is subvertical and the eastern Main Marmara Fault dips to south at 45°. Composite focal mechanisms show a strike-slip regime on the western Main Marmara Fault and complex faulting (strike-slip and normal faulting) on the eastern Main Marmara Fault.  相似文献   

10.
We investigate background seismic activity of the Abruzzo region, a 5000 km2 area located within the Central Apennines of Italy, where in the past 600 years at least 5 large earthquakes (I = XI–X) have occurred.Between April 2003 and September 2004, a dense temporary seismic network composed of 30 digital three-component seismic stations recorded 850 earthquakes with 0.9 < ML < 3.7. We present earthquake locations and focal mechanisms obtained by standard procedures and an optimized velocity model computed with a search technique based on genetic algorithms.The seismicity occurs at a low and constant rate of  2.6 e− 04 events/daykm2 and is sparsely distributed within the first 15 km of the crust. Minor increases in the seismicity rate are related to the occurrence of small and localised seismic sequences that occur at the tip of major active normal faults along secondary structures.We observe that during the 16 months of study period, the Fucino fault system responsible for the 1915 Fucino earthquake (MS = 7.0), and the major normal faults of the area, did not produce significant seismic activity.Fault plane solutions evaluated using P-wave polarity data show the predominance of normal faulting mechanisms ( 55%) with NE-trending direction of extension coherent with the regional stress field active in this sector of the Apennines. Around 27% of the focal solutions have pure strike–slip mechanisms and the rest shows transtensional faulting mechanisms that mainly characterise the kinematics of the secondary structures activated by the small sequences.We hypothesize that the largest known NW-trending normal faults are presently locked and we propose that in the case of activation, the secondary structures located at their tips may act as transfer faults accommodating a minor part of the extensional deformation with strike–slip motion.  相似文献   

11.
A set of 41 focal mechanisms (1989–2006) from P-wave first polarities is computed from relocated seismic events in the Giudicarie–Lessini region (Southern Alps). Estimated hypocentral depths vary from 3.1 to 20.8 km, for duration magnitudes (MD) in the range 2.7–5.1. Stress and strain inversions are performed for two seismotectonic zones, namely G (Giudicarie) and L (Lessini). This subdivision is supported by geological evidence, seismicity distribution, and focal mechanism types. The available number of data (16 in G, 22 in L) does not make possible any further subdivisions. Seismotectonic zones G and L are undergoing different kinematic regimes: thrust with strike-slip component in G, and strike-slip in L. Principal stress and strain axes in each sub-region show similar orientations. The direction of maximum horizontal compressive stress is roughly perpendicular to the thrust fronts along the Giudicarie Belt in zone G, and compatible with right-lateral strike-slip reactivation of the faults belonging to the Schio-Vicenza system in zone L. On the whole, kinematic regimes and horizontal stress orientations show a good fit with other stress data from focal mechanisms and breakouts and with geodetic strain rate axes.  相似文献   

12.
We have studied the focal mechanisms of the 1980, 1997 and 1998 earthquakes in the Azores region from body-wave inversion of digital GDSN (Global Digital Seismograph Network) and broadband data. For the 1980 and 1998 shocks, we have obtained strike–slip faulting, with the rupture process made up of two sub-events in both shocks, with total scalar seismic moments of 1.9 × 1019 Nm (Mw = 6.8) and 1.4 × 1018 Nm (Mw = 6.0), respectively. For the 1997 shock, we have obtained a normal faulting mechanism, with the rupture process made up of three sub-events, with a total scalar seismic moment of 7.7 × 1017 Nm (Mw = 5.9). A common characteristic of these three earthquakes was the shallow focal depth, less than 10 km, in agreement with the oceanic-type crust. From the directivity function of Rayleigh (LR) waves, we have identified the NW–SE plane as the rupture plane for the 1980 and 1998 earthquakes with the rupture propagating to the SE. Slow rupture velocity, about of 1.5 km/s, has been estimated from directivity function for the 1980 and 1998 earthquakes. From spectral analysis and body-wave inversion, fault dimensions, stress drop and average slip have been estimated. Focal mechanisms of the three earthquakes we have studied, together with focal mechanisms obtained by other authors, have been used in order to obtain a seismotectonic model for the Azores region. We have found different types of behaviour present along the region. It can be divided into two zones: Zone I, from 30°W to 27°W; Zone II, from 27°W to 23°W, with a change in the seismicity and stress direction from Zone I. In Zone I, the total seismic moment tensor obtained corresponded to left-lateral strike–slip faulting with horizontal pressure and tension axes in the E–W and N–S directions, respectively. In Zone II, the total seismic moment tensor corresponded to normal faulting, with a horizontal tension axis trending NE–SW, normal to the Terceira Ridge. The stress pattern for the whole region corresponds to horizontal extension with an average seismic slip rate of 4.4 mm/yr.  相似文献   

13.
文章以地质地貌与地震遗迹野外调查获得的第一手资料为基础,重点介绍了实皆断裂的活动习性、2012年地震产生的建筑物破坏与地震地表破裂带特征.实皆断裂是一条规模宏大,以右旋走滑为主的全新世活动断裂,其水平滑动速率为18~20 mm/a.历史上沿实皆断裂曾发生10余次7级以上强震,迄今保留有1839年曼德勒因瓦M 8、193...  相似文献   

14.
The Maule, Chile, (Mw 8.8) earthquake on 27 February 2010 triggered deformation events over a broad area, allowing investigation of stress redistribution within the upper crust following a mega-thrust subduction event. We explore the role that the Maule earthquake may have played in triggering shallow earthquakes in northwestern Argentina and Chile. We investigate observed ground deformation associated with the Mw 6.2 (GCMT) Salta (1450 km from the Maule hypocenter, 9 h after the Maule earthquake), Mw 5.8 Catamarca (1400 km; nine days), Mw 5.1 Mendoza (350 km; between one to five days) earthquakes, as well as eight additional earthquakes without an observed geodetic signal. We use seismic and Interferometric Synthetic Aperture Radar (InSAR) observations to characterize earthquake location, magnitude and focal mechanism, and characterize how the non-stationary, spatially correlated noise present in the geodetic imagery affects the accuracy of our parameter estimates. The focal mechanisms for the far-field Salta and Catamarca earthquakes are broadly consistent with regional late Cenozoic fault kinematics. We infer that dynamic stresses due to the passage of seismic waves associated with the Maule earthquake likely brought the Salta and Catamarca regions closer to failure but that the involved faults may have already been at a relatively advanced stage of their seismic cycle. The near-field Mendoza earthquake geometry is consistent with triggering related to positive static Coulomb stress changes due to the Maule earthquake but is also aligned with the South America-Nazca shortening direction. None of the earthquakes considered in this study require that the Maule earthquake reactivated faults in a sense that is inconsistent with their long-term behavior.  相似文献   

15.
During May 2003 a swarm of 16 earthquakes (ML = 0.6–2.1) occurred at Anjalankoski, south-eastern Finland. The activity lasted for three weeks, but additional two events were observed at the same location in October 2004. A comparison of the waveforms indicated that the source mechanisms and the hypocentres of the events were nearly identical.A relative earthquake location method was applied to better define the geometry of the cluster and to identify the fault plane associated with the earthquakes. The relocated earthquakes aligned along an ENE–WSW trending zone, with a lateral extent of about 1.0 km by 0.8 km. The relative location and the waveform-modelling of depth sensitive surface wave (Rg) and S-to-P converted body wave (sP) phases indicated that the events were unusually shallow, most likely occurring within the first 2 km of the surface. The revised historical earthquake data confirm that shallow swarm-type seismicity is characteristic to the area.The focal mechanism obtained as a composite solution of the five strongest events corresponds to dip-slip motion along a nearly vertical fault plane (strike = 250°, dip = 80°, rake = 90°). The dip and strike of this nodal plane as well as the relocated hypocentres coincide with an internal intrusion boundary of the Vyborg rapakivi batholith.The events occur under a compressive local stress field, which is explained by large gravitational potential energy differences and ridge-push forces. Pore-pressure changes caused by intrusion of ground water and/or radon gas into the fracture zones are suggested to govern the swarm-type earthquake activity.  相似文献   

16.
The Xianshuihe fault zone is a seismo-genetic fault zone of left-lateral slip in Southwest China. Since 1725, a total of 59 Ms ≥ 5.0 earthquakes have occurred along this fault zone, including 18 Ms 6.0–6.9 and eight Ms ≥ 7.0 earthquakes. The seismic risk of the Xianshuihe fault zone is a large and realistic threat to the western Sichuan economic corridor. Based on previous studies, we carried out field geological survey and remote sensing interpretation in the fault zone. In addition, geophysical surveys, trenching and age-dating were conducted in the key parts to better understand the geometry, spatial distribution and activity of the fault zone. We infer to divide the fault zone into two parts: the northwest part and the southeast part, with total eight segments. Their Late Quaternary slip rates vary in a range of 11.5 mm/a –(3±1) mm/a. The seismic activities of the Xianshuihe fault zone are frequent and strong, periodical, and reoccurred. Combining the spatial and temporal distribution of the historical earthquakes, the seismic hazard of the Xianshuihe fault zone has been predicted by using the relationship between magnitude and frequency of earthquakes caused by different fault segments. The prediction results show that the segment between Daofu and Qianning has a possibility of Ms ≥ 7.0 earthquakes, while the segment between Shimian and Luding is likely to have earthquakes of about Ms 7.0. It is suggested to establish a GPS or In SAR-based real-time monitoring network of surface displacement to cover the Xianshuihe fault zone, and an early warning system of earthquakes and post seismic geohazards to cover the major residential areas.  相似文献   

17.
Three large earthquakes (Mw>4.5) were triggered within 5 min, 85 km west of a Mw 6.5 earthquake in the South Iceland Seismic Zone (SISZ). We report on surface effects of these triggered earthquakes, which include fresh rupture, widespread rockfall, disrupted rockslides and block slides. Field data confirm that the earthquakes occurred along N-striking right-lateral strike-slip faults. Field data also support the conclusion from modeling of InSAR data that deformation from the second triggered event was more significant than for the other two. A major hydrological effect was the draining of water through an open fissure on a lake bed, lowering the lake level by greater than 4 m. Field relationships suggest that a component of aseismic slip could have been facilitated by water draining into the fault zone.  相似文献   

18.
We revisit the April 1979 Montenegro earthquake sequence to invert for finite-fault slip models for the mainshock of 15 April 1979 (Mw 7.1) and of the strongest aftershock of 24 May 1979 (Mw 6.2) using P, SH and SV waveforms, retrieved from IRIS data center. We also used body waveform modelling inversion to confirm the focal mechanism of the mainshock as a pure thrust mechanism and rule out the existence of considerable strike slip component in the motion. The mainshock occurred along a shallow (depth 7 km), low angle (14°) thrust fault, parallel to the coastline and dipping to the NE. Our preferred slip distribution model for the mainshock indicates that rupture initiated from SE and propagated towards NW, with a speed of 2.0 km/s. Moment was released in a main slip patch, confined in an area of L  50 km × W  23 km. The maximum slip ( 2.7 m) occurred  30 km to the NW of the hypocenter (location of rupture initiation). The average slip is 49 cm and the total moment release over the fault is 4.38e19 Nm. The slip model adequately fits the distribution of the Mw ≥ 4.3 aftershocks, as most of them are located in the regions of the fault plane that did not slip during the mainshock. The 24 May 1979 (Mw 6.2) strongest aftershock occurred  40 km NW of the mainshock. Our preferred slip model for this event showed a characteristic two-lobe pattern, where each lobe is  7.5 × 7.5 km2. Rupture initiated in the NW lobe, where the slip obtained its maximum value of 45 cm, very close to the hypocenter, and propagated towards the south-eastern lobe where it reached another maximum value — for this lobe — of 30 cm, approximately 10 km away from the hypocenter. To indirectly validate our slip models we produced synthetic PGV maps (Shake maps) and we compared our predictions with observations of ground shaking from strong motion records. All comparisons were made for rock soil conditions and in general our slip models adequately fit the observations especially at the closest stations where the shaking was considerably stronger. Through the search of the parameter space for our inversions we obtained an optimum location for the mainshock at 42.04°N and 19.21° E and we also observed that better fit to the observations was obtained when the fault was modeled as a blind thrust fault.  相似文献   

19.
The 400 km-long Karakax left-lateral strike-slip fault is the westernmost segment of the Altyn Tagh fault. It separates northwestern Tibet to the south from the Tarim basin to the north. The western section of the Karakax fault exhibits clear co-seismic surface ruptures of past large earthquakes. Geomorphic offset measurements from the field and high-resolution Ikonos images along 1.5 km across the Sanshiliyingfang fan and along 55 km of the fault, range from 3 to 28 m, with distinct clusters at 6 ± 2(3), 14 ± 2, 19 ± 2 and 24 ± 3 m. The cluster of the smallest offsets around 6 m (full range from 3 to 10 m) distributed over a minimum length of 55 km, is attributed to the last largest surface rupturing event that testifies of the occurrence of a magnitude Mw 7.4-7.6 earthquake along the Karakax fault. We interpret the other offset clusters as the possible repetition of similarly sized events thus favoring a characteristic slip model for the Karakax fault. In a 3 m-deep trench dug across the active trace of the fault we can identify the main rupture strands of the last and penultimate events. The penultimate event horizon, a silty-sand layer, has been radiocarbon dated at 975-1020 AD (AMS 14C age). It is proposed that large Mw 7.4-7.6 events with co-seismic slip of about 6 m rupture the Karakax fault with a return time of about 900 years implying an average slip-rate of about 6-7 mm/years during the late Holocene. These results suggest that the Karakax fault is the largest left-lateral strike-slip fault at the rim of northwestern Tibet accommodating eastward movement of Tibet due to the India-Eurasia collision.  相似文献   

20.
F. Di Luccio  E. Fukuyama  N.A. Pino   《Tectonophysics》2005,405(1-4):141-154
On October 31, 2002 a ML = 5.4 earthquake occurred in southern Italy, at the margin between the Apenninic thrust belt (to the west) and the Adriatic plate (to the east). In this area, neither historical event nor seismogenic fault is reported in the literature. In spite of its moderate magnitude, the earthquake caused severe damage in cities close to the epicenter and 27 people, out of a total of 29 casualties, were killed by the collapse of a primary school in S. Giuliano di Puglia. By inverting broadband regional waveforms, we computed moment tensor solutions for 15 events, as small as ML = 3.5 (Mw = 3.7). The obtained focal mechanisms show pure strike-slip geometry, mainly with focal planes oriented to NS (sinistral) and EW (dextral). In several solutions focal planes are rotated counterclockwise, in particular for later events, occurring west of the mainshock. From the relocated aftershock distribution, we found that the mainshock ruptured along an EW plane, and the fault mechanisms of some aftershocks were not consistent with the mainshock fault plane. The observed stress field, resulting from the stress tensor inversion, shows a maximum principal stress axis with an east–west trend (N83°W), whereas the minimum stress direction is almost N–S. Considering both the aftershock distribution and moment tensor solutions, it appears that several pre-existing faults were activated rather than a single planar fault associated with the mainshock. The finite fault analysis shows a very simple slip distribution with a slow rupture velocity of 1.1 km/s, that could explain the occurrence of a second mainshock about 30 h after. Finally, we attempt to interpret how the Molise sequence is related to the normal faulting system to the west (along the Apennines) and the dextral strike-slip Mattinata fault to the east.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号