首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The equilibrium fractionation factors between mirabilite (Na2SO4·10H2O) and saturated sodium sulphate solution at 25°C and 0°C and between ice and 2·5 molal sodium chloride solution at ?10°C have been measured. For mirabilite, the deuterium factors are 1·017 and 1·019, and the oxygen-18 factors are 1·0014 and 1·0020 at 25°C and 0°C, respectively. For ice, the factors are 1·024 for deuterium and 1·0022 for oxygen-18 at ?10°C. These fractionation factors are used to estimate the fractionation factors between ice and mirabilite and concentrated sea water at ?10°C. It is concluded that the average binding strengths of hydrogen in ice and mirabilite are very similar.  相似文献   

2.
Peter K. Swart 《Earth》1983,19(1):51-80
The present theories on the fractionation of stable isotopes in scleractinian corals are critically discussed in the light of data available on primary productivity, respiration and stable isotope chemistry. These data support a model of fractionation in which the carbon and oxygen isotopes are decoupled. Calcification occurs from a reservoir of carbon dioxide derived from both organic and inorganic sources. Photosynthesis preferentially fixes13C and thereby leaves behind13C. Increases in the rate of photosynthesis therefore also enrich the carbon isotope ratio of the skeleton. From theoretical considerations, photosynthesis has little effect on the oxygen isotope ratio of the skeleton, a fact confirmed by available data. The process of respiration adds depleted carbon and oxygen to the calcification reservoirs. The varying correlations between carbon and oxygen isotopes seen in hermatypic corals are caused by changes in the relationship between photosynthesis and respiration at different geographical localities. The isotopic compositions in the skeletons of non-zooxanthellate corals, which show a consistent positive correlation, can also be explained by the above scenario.  相似文献   

3.
The oxygen isotope fractionation factor of dissolved oxygen gas has been measured during inorganic reduction by aqueous FeSO4 at 10−54 °C under neutral (pH 7) and acidic (pH 2) conditions, with Fe(II) concentrations ranging up to 0.67 mol L−1, in order to better understand the geochemical behavior of oxygen in ferrous iron-rich groundwater and acidic mine pit lakes. The rate of oxygen reduction increased with increasing temperature and increasing Fe(II) concentration, with the pseudo-first-order rate constant k ranging from 2.3 to 82.9 × 10−6 s−1 under neutral conditions and 2.1 to 37.4 × 10−7 s−1 under acidic conditions. The activation energy of oxygen reduction was 30.9 ± 6.6 kJ mol−1 and 49.7 ± 13.0 kJ mol−1 under neutral and acidic conditions, respectively. Oxygen isotope enrichment factors (ε) become smaller with increasing temperature, increasing ferrous iron concentration, and increasing reaction rate under acidic conditions, with ε values ranging from −4.5‰ to −11.6‰. Under neutral conditions, ε does not show any systematic trends vs. temperature or ferrous iron concentration, with ε values ranging from −7.3 to −10.3‰. Characterization of the oxygen isotope fractionation factor associated with O2 reduction by Fe(II) will have application to elucidating the process or processes responsible for oxygen consumption in environments such as groundwater and acidic mine pit lakes, where a number of possible processes (e.g. biological respiration, reduction by reduced species) may have taken place.  相似文献   

4.
Empirical calibration of oxygen isotope fractionation in zircon   总被引:2,自引:0,他引:2  
New empirical calibrations for the fractionation of oxygen isotopes among zircon, almandine-rich garnet, titanite, and quartz are combined with experimental values for quartz-grossular. The resulting A-coefficients (‰K2) are:
ZrcAlmGrsTtn
Qtz2.642.713.033.66
Zrc0.070.391.02
Alm0.320.95
Grs0.63
Full-size table
  相似文献   

5.
《Chemical Geology》2003,193(1-2):59-80
The increment method is applied to calculation of oxygen isotope fractionation factors for common magmatic rocks. The 18O-enrichment degree of the different compositions of magmatic rocks is evaluated by the oxygen isotope indices of both CIPW normative minerals and normalized chemical composition. The consistent results are obtained from the two approaches, pointing to negligible oxygen isotope fractionation between rock and melt of the same compositions. The present calculations verify the following sequence of 18O-enrichment in the magmatic rocks: felsic rocks>intermediate rocks>mafic rocks>ultramafic rocks. Two sets of internally consistent fractionation factors are acquired for phenocryst–lava systems at the temperatures above 1000 K and rock–water systems in the temperatures range of 0–1200 °C, respectively. The present calculations are consistent with existing data from experiments and/or empirical calibrations. The obtained results can be used to quantitatively determine the history of water–rock interaction and to serve geological thermometry for various types of magmatic rocks (especially extrusive rocks).  相似文献   

6.
岩浆岩体系氧同位素分馏系数的理论计算   总被引:4,自引:4,他引:4  
The increment method is applied tocalcuation of oxygen isotope fractionation factors for common magmatic rocks by usingoxygen isotope indices for known minerals.The results show that there are some differencesin the degree of 18O-enrichment for the different types of magmatic rocks,andtheir sequence of 18O-enrichment is reckoned as follows acid rocks >neutral rocks > basic rocks > ultrabasic rocks.Two sets of internally consistentfractionation factors for phenocryst-lava systems at temperacture above 1000K and forrock-water systems in the temperature range of 0 to 1200℃ are acquired, respectively.Thetheoretical calibrations are consistent with the data from hydrothermal experiments andempirical estimates.The present results can be used to quantitatively determine thehistory of water-rock exchange and to serve geological thermometry for various magmaticrocks (especially extrusive rocks containing phenocryst).  相似文献   

7.
We present a model of bacterial sulfate reduction that includes equations describing the fractionation relationship between the sulfur and the oxygen isotope composition of residual sulfate (δ34SSO4_residual, δ18OSO4_residual) and the amount of residual sulfate. The model is based exclusively on oxygen isotope exchange between cell-internal sulfur compounds and ambient water as the dominating mechanism controlling oxygen isotope fractionation processes. We show that our model explains δ34SSO4_residual vs. δ18OSO4_residual patterns observed from natural environments and from laboratory experiments, whereas other models, favoring kinetic isotope fractionation processes as dominant process, fail to explain many (but not all) observed δ34SSO4_residual vs. δ18OSO4_residual patterns. Moreover, we show that a “typical” δ34SSO4_residual vs. δ18OSO4_residual slope does not exist. We postulate that measurements of δ34SSO4_residual and δ18OSO4_residual can be used as a tool to determine cell-specific sulfate reduction rates, oxygen isotope exchange rates, and equilibrium oxygen isotope exchange factors. Data from culture experiments are used to determine the range of sulfur isotope fractionation factors in which a simplified set of equations can be used. Numerical examples demonstrate the application of the equations. We postulate that, during denitrification, the oxygen isotope effects in residual nitrate are also the result of oxygen isotope exchange with ambient water. Consequently, the equations for the relationship between δ34SSO4_residual, δ18OSO4_residual, and the amount of residual sulfate could be modified and used to calculate the fractionation-relationship between δ15NNO3_residual, δ18ONO3_residual, and the amount of residual nitrate during denitrification.  相似文献   

8.
Carbon isotope fractionation in wood during carbonization   总被引:1,自引:0,他引:1  
A significant uncertainty exists as to whether δ13C values in charcoal meaningfully represent the stable isotopic content of the original material, with studies suggesting variable responses to both natural and laboratory heating. An extensive study was undertaken using fully homogenised samples of wood taken from Eucalyptus spp., Quercus robur and Pinus radiata. The results demonstrate that the duration of heating had no tangible effect on the final composition of the charred material, with the δ13C and carbon content of wood fixed after 30 min of heating. Furthermore, all three wood types become progressively depleted in 13C with increasing temperature. The results demonstrate that even at temperatures commonly reached in natural fires (<450 °C) isotopic fractionation of up to 1.3‰ can take place indicating that the absolute values obtained from charcoal extracted for paleoenvironmental reconstruction must be interpreted with caution.  相似文献   

9.
Silicon isotope fractionation during magmatic differentiation   总被引:3,自引:0,他引:3  
The Si isotopic composition of Earth’s mantle is thought to be homogeneous (δ30Si = −0.29 ± 0.08‰, 2 s.d.) and not greatly affected by partial melting and recycling. Previous analyses of evolved igneous material indicate that such rocks are isotopically heavy relative to the mantle. To understand this variation, it is necessary to investigate the degree of Si isotopic fractionation that takes place during magmatic differentiation. Here we report Si isotopic compositions of lavas from Hekla volcano, Iceland, which has formed in a region devoid of old, geochemically diverse crust. We show that Si isotopic composition varies linearly as a function of silica content, with more differentiated rocks possessing heavier isotopic compositions. Data for samples from the Afar Rift Zone, as well as various igneous USGS standards are collinear with the Hekla trend, providing evidence of a fundamental relationship between magmatic differentiation and Si isotopes. The effect of fractionation has been tested by studying cumulates from the Skaergaard Complex, which show that olivine and pyroxene are isotopically light, and plagioclase heavy, relative to the Si isotopic composition of the Earth’s mantle. Therefore, Si isotopes can be utilised to model the competing effects of mafic and felsic mineral fractionation in evolving silicate liquids and cumulates.At an average SiO2 content of ∼60 wt.%, the predicted δ30Si value of the continental crust that should result from magmatic fractionation alone is −0.23 ± 0.05‰ (2 s.e.), barely heavier than the mantle. This is, at most, a maximum estimate, as this does not take into account weathered material whose formation drives the products toward lighter δ30Si values. Mass balance calculations suggest that removal of continental crust of this composition from the upper mantle will not affect the Si isotopic composition of the mantle.  相似文献   

10.
The oxygen isotope fractionation between kyanite and calcium carbonate has been investigated experimentally at four temperatures in the range between 625 and 775 °C at 13 kbar. Because of low exchange rates, the isotopic reaction was enhanced by polymorphic transformation of andalusite to kyanite. With this experimental modification a close approach to equilibrium was reached in all runs. The temperature dependence of the equilibrium fractionation is described by the equation 1000 ln ky-cc=−2.62×106/T 2. Application of the experimental results to natural quartz-kyanite-garnet assemblages indicates the preservation of the oxygen isotope composition of kyanite acquired during its formation, reflecting its extremely low oxygen diffusivity. This refractory behaviour restricts the use of kyanite for thermometry but opens the possibility to use its O-isotope composition as an indicator for recognition of polymetamorphic rock histories and reconstruction of the prograde evolution of a metamorphic sequence. Received: 8 June 1998 / Accepted: 24 August 1998  相似文献   

11.
Using established methods of statistical mechanical calculation and a recent compilation of vibrational frequency data, we have computed oxygen isotope reduced partition function ratios (β values) for a large number of carbonate minerals. The oxygen isotope β values of carbonates are inversely correlated to both the mass and radius of the cation bonded to the carbonate anion but neither correlation is good enough to be used as a precise and accurate predictor of β values. There is an approximately 0.6% relative increase in the β values of aragonite per 10 kbar increase in pressure. These estimates of the pressure effect on β values are broadly similar to those deduced previously for calcite using the methods of mineral physics. In comparing the β values of our study with those derived recently from first-principles lattice dynamics calculations, we find near-perfect agreement for calcite and witherite (<0.3% deviation), reasonable agreement for dolomite (<0.9% deviation) and somewhat poorer agreement for aragonite and magnesite (1.5-2% deviation). In the system for which we have the most robust constraints, CO2-calcite, there is excellent agreement between our calculations and experimental data over a broad range of temperatures (0-900 °C). Similarly, there is good to excellent correspondence between calculation and experiment for most other low to moderate atomic mass carbonate minerals (aragonite to strontianite). The agreement is not as good for high atomic mass carbonates (witherite, cerussite, otavite). In the case of witherite and cerussite, the discrepancy may be due, in part, to our calculation methodology, which does not account for the effect of cation mass on the magnitude of vibrational frequency shifts associated with heavy isotope substitution. However, the calculations also reveal an incompatibility between the high- and low-temperature experimental datasets for witherite and cerussite. Specifically, the shapes of fractionation factor versus 1/T2 curves in the calcite-witherite and calcite-cerussite systems do not conform to the robust constraints on the basic shape of these curves provided by theory. This suggests that either the high- or low-temperature datasets for both minerals is in error. Dolomite-calcite fractionation factors derived from our calculations fall within the wide range of fractionations for this system given by previous experimental and natural sample studies. However, our compilation of available low-temperature (25-80 °C) experimental data reveal an unusual temperature dependence of fractionations in this system; namely, the data indicate an increase in the magnitude of fractionations between dolomite (or proto-dolomite) and calcite with increasing temperature. Such a trend is incompatible with theory, which stipulates that fractionations between carbonate minerals must decrease monotonically with increasing temperature. We propose that the anomalous temperature dependence seen in the low-temperature experimental data reflect changes in the crystallinity and degree of cation ordering of the dolomite phase over this temperature interval and the effect these changes have on the vibrational frequencies of dolomite. Similar effects may be present in natural systems at low-temperature and must be considered in applying experimental or theoretical fractionation data to these systems. In nearly all cases, carbonate mineral-calcite fractionation factors given by the present calculations are in as good or better agreement with experimental data than are fractionations derived from semi-empirical bond strength methods.  相似文献   

12.
We report the results of an experimental calibration of oxygen isotope fractionation between quartz and zircon. Data were collected from 700 to 1000 °C, 10–20 kbar, and in some experiments the oxygen fugacity was buffered at the fayalite–magnetite–quartz equilibrium. Oxygen isotope fractionation shows no clear dependence on oxygen fugacity or pressure. Unexpectedly, some high-temperature data (900–1000 °C) show evidence for disequilibrium oxygen isotope partitioning. This is based in part on ion microprobe data from these samples that indicate some high-temperature quartz grains may be isotopically zoned. Excluding data that probably represent non-equilibrium conditions, our preferred calibration for oxygen isotope fractionation between quartz and zircon can be described by:
This relationship can be used to calculate fractionation factors between zircon and other minerals. In addition, results have been used to calculate WR/melt–zircon fractionations during magma differentiation. Modeling demonstrates that silicic magmas show relatively small changes in δ18O values during differentiation, though late-stage mafic residuals capable of zircon saturation contain elevated δ18O values. However, residuals also have larger predicted melt–zircon fractionations meaning zircons will not record enriched δ18O values generally attributed to a granitic protolith. These results agree with data from natural samples if the zircon fractionation factor presented here or from natural studies is applied.  相似文献   

13.
Mercury isotope fractionation during liquid-vapor evaporation experiments   总被引:2,自引:0,他引:2  
Liquid-vapor mercury isotope fractionation was investigated under equilibrium and dynamic conditions. Equilibrium evaporation experiments were performed in a closed glass system under atmospheric pressure between 0 and 22 °C, where vapor above the liquid was sampled at chemical equilibrium. Dynamic evaporation experiments were conducted in a closed glass system under 10−5 bar vacuum conditions varying (1) the fraction of liquid Hg evaporated at 22 °C and (2) the temperature of evaporation (22-100 °C). Both, residual liquid and condensed vapor fractions were analyzed using stannous chloride CV-MC-ICP-MS.Equilibrium evaporation showed a constant liquid-vapor fractionation factor (α202/198) of 1.00086 ± 0.00022 (2SD, n = 6) within the 0-22 °C range. The 22 °C dynamic evaporations experiments displayed Rayleigh distillation fractionation behavior with liquid-vapor α202/198 = 1.0067 ± 0.0011 (2SD), calculated from both residual and condensed vapor fractions. Our results confirm historical data (1920s) from Brönsted, Mulliken and coworkers on mercury isotopes separation using evaporation experiments, for which recalculated δ202Hg′ showed a liquid-vapor α202/198 of 1.0076 ± 0.0017 (2SD). This liquid-vapor α202/198 is significantly different from the expected kinetic α202/198 value ((202/198)0.5 = 1.0101). A conceptual evaporation model of back condensation fluxes within a thin layer at the liquid-vapor interface was used to explain this discrepancy. The δ202Hg′ of condensed vapor fractions in the 22-100 °C temperature range experiments showed a negative linear relationship with 106/T2, explained by increasing rates of exchange within the layer with the increase in temperature.Evaporation experiments also resulted in non-mass-dependent fractionation (NMF) of odd 199Hg and 201Hg isotopes, expressed as Δ199Hg′ and Δ201Hg′, the deviation in ‰ from the mass fractionation relationship with even isotopes. Liquid-vapor equilibrium yielded Δ199Hg′/Δ201Hg′ relationship of 2.0 ± 0.6 (2SE), which is statistically not different from the one predicted for the nuclear field shift effect (Δ199Hg/Δ201Hg ≈ 2.47). On the other hand, evaporation under dynamic conditions at 22 °C led to negative anomalies in the residual liquid fractions that are balanced by positive anomalies in condensed vapors with lower Δ199Hg′/Δ201Hg′ ratios of 1.2 ± 0.4 (2SD). This suggests that either magnetic isotope effects may have occurred without radical chemistry or an unknown NMF process on odd isotopes operated during liquid mercury evaporation.  相似文献   

14.
低温环境下铁同位素分馏的若干重要过程   总被引:4,自引:1,他引:4  
详细了解同位素分馏的过程与机理是运用稳定同位素体系解决科学问题的关键.本文对沉淀、溶解、吸附、氧化、还原、生物等过程中的Fe同位素分馏研究结果进行了系统总结.在沉淀过程中,优先沉淀轻同位素;在吸附过程中,Fe(Ⅲ)矿物优先吸附重同位素;氧化还原过程中,Fe的化合价越高,Fe同位素组成越重.  相似文献   

15.
低温环境下铜同位素分馏的若干重要过程   总被引:2,自引:1,他引:2  
Cu同位素是一种新的地球化学示踪剂.正确运用这一同位素示踪技术的前提是对其同位素分馏机理和过程有足够的认识.本文报道了室温下CuSO4·5H2O结晶过程产生分馏的实验结果,并系统地总结了低温条件下Cu同位素分馏的一些重要过程,其中包括沉淀过程、还原过程、吸附过程、生物过程等.  相似文献   

16.
Oxygen isotope fractionation was experimentally studied in the quartz-wolframite-water system from 200 to 420 °C. The starting wolframite was synthesized in aqueous solutions of Na2WO4 · 2H2O + FeCl2 · 4H2O or MnCl2 · 4H2O. The starting solutions range in salinity from 0 to 10 equivalent wt.% NaCl. Experiments were conducted in a gold-lined stainless steel autoclave, with filling degrees of about 50%. The results showed no significant difference in equilibrium isotope fractionation between water and wolframite, ferberite and huebnerite at the same temperature (310 °C ). The equilibrium oxygen isotope fractionation factors of wolframite and water tend to be equal with increasing temperature above 370 °C, but to increase significantly with decreasing temperature below 370 °C: 1000 ln αwf-H2o= 1.03×106T−2-4.91 (370 °C ±200 °C ) 1000 ln αwf-H2o = 0.21×106T −2-2.91 (420 °C -370 °C ±) This projects was financially supported by the National Natural Science Foundation of China.  相似文献   

17.
The increment method is adopted to calculate oxygen isotope fractionation factors for mantle minerals, particularly for the polymorphic phases of MgSiO3 and Mg2SiO4. The results predict the following sequence of 18O-enrichment: pyroxene (Mg,Fe,Ca)2Si2O6>olivine (Mg,Fe)2SiO4>spinel (Mg,Fe)2SiO4>ilmenite (Mg,Fe, Ca)SiO3>perovskite (Mg,Fe,Ca)SiO3. The calculated fractionations for the calcite-perovskite (CaTiO3) system are in excellent agreement with experimental calibrations. If there would be complete isotopic equilibration in the mantle, the spinel-structured silicates in the transition zone are predicted to be enriched in 18O relative to the perovskite-structured silicates in the lower mantle but depleted in 18O relative to olivines and pyroxenes in the upper mantle. The oxygen isotope layering of the mantle would essentially result from differences in the chemical composition and crystal structure of mineral phases at different mantle depths. Assuming isotopic equilibrium on a whole earth scale, the chemical structure of the Earth's interior can be described by the following sequence of 18O-enrichment: uppr crust>lower crust>upper mantle>transition zone>lower mantle >core.  相似文献   

18.
In this study, we investigated Fe and Li isotope fractionation between mineral separates of olivine pheno- and xenocrysts (including one clinopyroxyene phenocryst) and their basaltic hosts. Samples were collected from the Canary Islands (Teneriffa, La Palma) and some German volcanic regions (Vogelsberg, Westerwald and Hegau). All investigated bulk samples fall in a tight range of Li and Fe isotope compositions (δ56Fewr = 0.06–0.17‰ and δ7Lima = 2.5–5.2‰, assuming δ7Li of the olivine-free matrix is virtually identical to that of the bulk sample for mass balance reasons). In contrast, olivine phenocrysts display highly variable, but generally light Fe and mostly light Li isotope compositions compared to their respective olivine-free basaltic matrix, which was considered to represent the melt (with δ56Feol = ? 0.24 to 0.14‰ and δ7Liol = ? 10.5 to + 6.5‰, respectively). Single olivine crystals from one sample display even a larger range of δ56Feol between ? 0.7 and + 0.1‰. One single clinopyroxene phenocryst displays the lightest Li isotope composition (δ7Licpx = ? 17.7‰), but no Fe isotope fractionation relative to melt. The olivine phenocrysts show variable Mg# and Ni (correlated in most cases) that range between 0.89 and 0.74 and between 300 and 3000 μg/g, respectively. These olivines likely grew by fractional crystallization in an evolving magma. One sample from the Vogelsberg volcano contained olivine xenocrysts (Mg# > 0.89 and Ni > 3000 μg/g), in addition to olivine phenocrysts. This sample displays the highest Li- and the second highest Fe-isotope fractionation between olivine and melt (Δ7Liol-melt = ? 13; Δ56Feol-melt = ? 0.29).Our data, i.e. the variable olivine- at constant whole rock and matrix isotope compositions, strongly indicate disequilibrium, i.e. kinetic Fe and Li isotope fractionation between olivine and melt (for Li also between cpx and melt) during fractional crystallization. Δ7Liol-melt is correlated with the Li partitioning between olivine and melt (i.e. with Liol/Limelt), indicating Li isotope fractionation due to preferential (faster) diffusion of 6Li into olivine during fractional crystallization. Olivine with low Δ7Liol-melt, also have low Δ56Feol-melt, indicating that Fe isotope fractionation is also driven by diffusion of isotopically light Fe into olivine, potentially, as Fe–Mg inter-diffusion. The lowest Δ56Feol-melt (? 0.40) was observed in a sample from Westerwald (Germany) with abundant magnetite, indicating relatively oxidizing conditions during magma differentiation. This may have enhanced equilibrium Fe isotope fractionation between olivine and melt or fine dispersed magnetite in the basalt matrix may have shifted its Fe isotope composition towards higher δ56Fe. The decoupling of Li- and Fe isotope fractionation in cpx is likely due to faster diffusion of Li relative to Fe in cpx, implying that the large investigated cpx phenocryst resided in the magma for only a short period of time which was sufficient for Li- but not for Fe diffusion. The absence of any equilibrium Fe isotope fractionation between the investigated cpx phenocryst and its basaltic host may be related to the similar Fe3 +/Fe2 + of cpx and melt. In contrast to cpx, the generally light Fe isotope composition of all investigated olivine separates implies the existence of equilibrium- (in addition to diffusion-driven) isotope fractionation between olivine and melt, on the order of 0.1‰.  相似文献   

19.
Iron isotopes fractionate during hydrothermal processes. Therefore, the Fe isotope composition of ore-forming minerals characterizes either iron sources or fluid histories. The former potentially serves to distinguish between sedimentary, magmatic or metamorphic iron sources, and the latter allows the reconstruction of precipitation and redox processes. These processes take place during ore formation or alteration. The aim of this contribution is to investigate the suitability of this new isotope method as a probe of ore-related processes. For this purpose 51 samples of iron ores and iron mineral separates from the Schwarzwald region, southwest Germany, were analyzed for their iron isotope composition using multicollector ICP-MS. Further, the ore-forming and ore-altering processes were quantitatively modeled using reaction path calculations. The Schwarzwald mining district hosts mineralizations that formed discontinuously over almost 300 Ma of hydrothermal activity. Primary hematite, siderite and sulfides formed from mixing of meteoric fluids with deeper crustal brines. Later, these minerals were partly dissolved and oxidized, and secondary hematite, goethite and iron arsenates were precipitated. Two types of alteration products formed: (1) primary and high-temperature secondary Fe minerals formed between 120 and 300 °C, and (2) low-temperature secondary Fe minerals formed under supergene conditions (<100 °C). Measured iron isotope compositions are variable and cover a range in δ56Fe between −2.3‰ and +1.3‰. Primary hematite (δ56Fe: −0.5‰ to +0.5‰) precipitated by mixing oxidizing surface waters with a hydrothermal fluid that contained moderately light Fe (δ56Fe: −0.5‰) leached from the crystalline basement. Occasional input of CO2-rich waters resulted in precipitation of isotopically light siderite (δ56Fe: −1.4 to −0.7‰). The difference between hematite and siderite is compatible with published Fe isotope fractionation factors. The observed range in isotopic compositions can be accounted for by variable fractions of Fe precipitating from the fluid. Therefore, both fluid processes and mass balance can be inferred from Fe isotopes. Supergene weathering of siderite by oxidizing surface waters led to replacement of isotopically light primary siderite by similarly light secondary hematite and goethite, respectively. Because this replacement entails quantitative transfer of iron from precursor mineral to product, no significant isotope fractionation is produced. Hence, Fe isotopes potentially serve to identify precursors in ore alteration products. Goethites from oolitic sedimentary iron ores were also analyzed. Their compositional range appears to indicate oxidative precipitation from relatively uniform Fe dissolved in coastal water. This comprehensive iron isotope study illustrates the potential of the new technique in deciphering ore formation and alteration processes. Isotope ratios are strongly dependent on and highly characteristic of fluid and precipitation histories. Therefore, they are less suitable to provide information on Fe sources. However, it will be possible to unravel the physico-chemical processes leading to the formation, dissolution and redeposition of ores in great detail.  相似文献   

20.
Inverse kinetic isotope fractionation during bacterial nitrite oxidation   总被引:4,自引:0,他引:4  
Natural abundance stable isotopes in nitrate (), nitrite (), and nitrous oxide (N2O) have been used to better understand the cycling of nitrogen in marine and terrestrial environments. However, in order to extract the greatest information from the distributions of these isotopic species, the kinetic isotope effects for each of the relevant microbial reactions are needed. To date, kinetic isotope effects for nitrite oxidation and anaerobic ammonium oxidation (anammox) have not been reported. In this study, the nitrogen isotope effect was measured for microbial nitrite oxidation to nitrate. Nitrite oxidation is the second step in the nitrification process, and it plays a key role in the regeneration of nitrate in the ocean. Surprisingly, nitrite oxidation occurred with an inverse kinetic isotope effect, such that the residual nitrite became progressively depleted in 15N as the reaction proceeded. Three potential explanations for this apparent inverse kinetic isotope effect were explored: (1) isotope exchange equilibrium between nitrite and nitrous acid prior to reaction, (2) reaction reversibility at the enzyme level, and (3) true inverse kinetic fractionation. Comparison of experimental data to ab initio calculations and theoretical predictions leads to the conclusion that the fractionation is most likely inverse at the enzyme level. Inverse kinetic isotope effects are rare, but the experimental observations reported here agree with kinetic isotope theory for this simple N-O bond-forming reaction. Nitrite oxidation is therefore fundamentally different from all other microbial processes in which N isotope fractionation has been studied. The unique kinetic isotope effect for nitrite oxidation should help to better identify its role in the cycling of nitrite in ocean suboxic zones, and other environments in which nitrite accumulates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号