首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Samarium-neodymium isotopic analyses of unleached and acid-leached mineral fractions from the recently identified olivine-bearing shergottite Northwest Africa 1195 yield a crystallization age of 347 ± 13 Ma and an value of +40.1 ± 0.9. Maskelynite fractions do not lie on the Sm-Nd isochron and appear to contain a martian surface component with low 147Sm/144Nd and 143Nd/144Nd ratios that was added during shock. The Rb-Sr system is disturbed and does not yield an isochron. Terrestrial Sr appears to have affected all of the mineral fractions, although a maximum initial 87Sr/86Sr ratio of 0.7016 is estimated by passing a 347 Ma reference line through the maskelynite fraction that is least affected by contamination. The high initial value and the low initial 87Sr/86Sr ratio, combined with the geologically young crystallization age, indicate that Northwest Africa 1195 is derived from a source region characterized by a long-term incompatible-element depletion.The age and initial Sr and Nd isotopic compositions of Northwest Africa 1195 are very similar to those of Queen Alexandra Range 94201, indicating these samples were derived from source regions with similar Sr-Nd isotopic systematics. These similarities suggest that these two meteorites share a close petrogenetic relationship and might have been erupted from a common volcano. The meteorites Yamato 980459, Dar al Gani 476, Sayh al Uhaymir 005/008, and Dhofar 019 also have relatively old ages between 474 and 575 Ma and trace element and/or isotopic systematics that are indicative of derivation from incompatible-element-depleted sources. This suggests that the oldest group of meteorites is more closely related to one another than they are to the younger meteorites that are derived from less incompatible-element-depleted sources. Closed-system fractional crystallization of this suite of meteorites is modeled with the MELTS algorithm using the bulk composition of Yamato 980459 as a parent. These models reproduce many of the major element and mineralogical variations observed in the suite. In addition, the rare earth element systematics of these meteorites are reproduced by fractional crystallization using the proportions of phases and extents of crystallization that are calculated by MELTS. Other shergottites that demonstrate enrichments in incompatible-elements and have evolved Sr and Nd isotopic systematics have some geochemical systematics that are similar to those observed in the depleted group. Most notably, although they exhibit a very limited range of incompatible trace element and isotopic compositions, they have highly variable major element compositions. This is also consistent with evolution from a common mantle source region by variable amounts of fractional crystallization. If this scenario is correct, it suggests that the combined effects of source composition and fractional crystallization are likely to account for the major element, trace element, and isotopic diversity of all shergottites.  相似文献   

2.
Uranium-lead ratios (commonly represented as 238U/204Pb = μ) calculated for the sources of martian basalts preserve a record of petrogenetic processes that were active during early planetary differentiation and formation of martian geochemical reservoirs. To better define the range of μ values represented by the source regions of martian basalts, we completed U-Pb elemental and isotopic analyses on whole rock, mineral and leachate fractions from the martian meteorite Queen Alexandra Range 94201 (QUE 94201). The whole rock and silicate mineral fractions have unradiogenic Pb isotopic compositions that define a narrow range (206Pb/204Pb = 11.16-11.61). In contrast, the Pb isotopic compositions of weak HCl leachates are more variable and radiogenic. The intersection of the QUE 94201 data array with terrestrial Pb in 206Pb/204Pb-207Pb/204Pb-208Pb/204Pb compositional space is consistent with varying amounts of terrestrial contamination in these fractions. We calculate that only 1-7% contamination is present in the purified silicate mineral and whole rock fractions, whereas the HCl leachates contain up to 86% terrestrial Pb. This terrestrial Pb contamination generated a 206Pb-207Pb array in the QUE fractions that appears to represent an ancient age, which contrasts with a much younger crystallization age of 327 ± 10 Ma derived from Rb-Sr and Sm-Nd isochrons (Borg L. E., Nyquist L. E., Taylor L. A., Wiesmann H. and Shih C. -Y. (1997) Constraints on Martian differentiation processes from Rb-Sr and Sm-Nd isotopic analyses of the basaltic shergottite QUE 94201. Geochim. Cosmochim. Acta61, 4915-4931). Despite the contamination, and accepting 327 ± 10 Ma as the crystallization age, we use the U-Pb data to determine the initial 206Pb/204Pb of QUE 94201 to be 11.086 ± 0.008 and to calculate the μ value of its mantle source to be 1.82 ± 0.01. The μ value calculated for the QUE 94201 source is the lowest determined for any martian basalt source, and, when compared to the highest values determined for martian basalt sources, indicates that μ values in martian source reservoirs vary by at least a factor of two. Additionally, the range of source μ values indicates that the μ value of bulk silicate Mars is approximately three. The amount of variation in the μ values of the mantle sources (μ ∼ 2-4) is greater than can be explained by igneous processes involving silicate phases alone. We suggest the possibility that a small amount of sulfide crystallization may generate greater extents of U-Pb fractionation during formation of the mantle sources of martian basalts.  相似文献   

3.
Uranium-lead, Rb-Sr, and Sm-Nd isotopic analyses have been performed on the same whole-rock, mineral, and leachate fractions of the basaltic martian meteorite Zagami to better constrain the U-Pb isotopic systematics of martian materials. Although the Rb-Sr and Sm-Nd systems define concordant crystallization ages of 166 ± 6 Ma and 166 ± 12 Ma, respectively, the U-Pb isotopic system is disturbed. Nevertheless, an age of 156 ± 6 Ma is derived from the 238U-206Pb isotopic system from the purest mineral fractions (maskelynite and pyroxene). The concordance of these three ages suggest that the 238U-206Pb systematics of the purest Zagami mineral fractions have been minimally disturbed by alteration and impact processes, and can therefore be used to constrain the behavior of U and Pb in the Zagami source region. The μ value of the Zagami source region can be estimated, with some confidence from the 238U-206Pb isochron, to be 3.96 ± 0.02. Disturbance of the U-Pb isotopic systems means that this represents a minimum value. The μ value of the Zagami source is significantly lower than the μ values estimated for most basaltic magma sources from Earth and the Moon. This is surprising given the high initial 87Sr/86Sr ratio (0.721566 ± 82) and low initial εNd value (−7.23 ± 0.17) determined for Zagami that indicate that this sample is derived from one of the most highly fractionated reservoirs from any known planetary body. This suggests that Mars is characterized by a low bulk planet U/Pb ratio, a feature that is consistent with its relatively volatile-rich nature.The leachates contain terrestrial common Pb that was probably added to the meteorite during handling, curation, or sawing. The mineral fractions, particularly those with significant amounts of impact melt glass, contain a second contaminant. The presence of this contaminant results in Pb-Pb ages that are older than the crystallization age of Zagami, indicating that the contaminant is characterized by a high 207Pb/206Pb ratio. Such a contaminant could be produced by removal of single-stage Pb from a relatively high μ martian reservoir before ∼1.8 Ga, and therefore could be an ancient manifestation of hydrous alteration of martian surface material.  相似文献   

4.
The Yandangshan syenite is a representative Late Cretaceous igneous pluton cropping out in SE China. U–Pb zircon dating using LA‐ICP‐MS yielded a crystallization age of 98±1 Ma for the syenite. Petrographically and geochemically of shoshonitic affinity, it is enriched in LREE and LILE, and has a pronounced Nb–Ta trough in the primitive mantle‐normalized trace element spider diagram. Zircon ?Hf(t) values vary from ?3.04 to ?7.71, displaying a unimodal distribution. The syenite also has high Sr [(87Sr/86Sr) i  = 0.7086–0.7089], low Nd [?Nd(t) = ?6.57 to ?7.64] isotopic ratios, plotting in the enriched mantle field on an ?Nd(t) versus (87Sr/86Sr) i diagram. We propose that the Yandangshan syenite was generated by pyroxene‐dominated high‐pressure fractional crystallization from basaltic magma that was derived from an enriched mantle source. Although coexisting Yandangshan rhyolites have Sr–Nd isotopic compositions similar to the Yandangshan syenite, they were not derived from the same source. Instead, the rhyolitic magma was produced by partial melting of crustal materials as a result of the underplating of basaltic magma. The crust‐like Sr–Nd–Hf isotopic signature of the Yandangshan syenite is ascribed to mantle sources that were enriched by subducted sediments. Formation of Yandangshan syenite may represent roll‐back of the subducting palaeo‐Pacific plate and migration of the arc front to the Yandangshan area at ~98 Ma.  相似文献   

5.
The oxygen fugacity of the Dar al Gani 476 martian basalt is determined to be quartz-fayalite-magnetite (QFM) −2.3 ± 0.4 through analysis of olivine, low-Ca pyroxene, and Cr-spinel and is in good agreement with revised results from Fe-Ti oxides that yield QFM −2.5 ± 0.7. This estimate falls within the range of oxygen fugacity for the other martian basalts, QFM −3 to QFM −1. Oxygen fugacity in martian basalts correlates with 87Sr/86Sr, 143Nd/144Nd, and La/Yb ratios, indicating that the mantle source of the basalts is reduced and that assimilation of crust-like material controls the oxygen fugacity. This allows constraints to be placed on the oxidation state of the martian mantle and on the nature of assimilated crustal material. The assimilated material may be the product of early and extensive hydrothermal alteration of the martian crust, or it may be amphibole- or phlogopite-bearing basaltic rock within the crust. In either case, water may play a significant role in the oxidation of basaltic magmas on Mars, although it may be secondary to assimilation of ferric iron-rich material.  相似文献   

6.
The isotopic compositions of Nd and Sr and concentrations of major and trace elements were measured in flows and tuffs of the Woods Mountains volcanic center of eastern California to assess the relative roles of mantle versus crustal magma sources and of fractional crystallization in the evolution of silicic magmatic systems. This site was chosen because the contrast in isotopic composition between Precambrian-to-Mesozoic country rocks and the underlying mantle make the isotope ratios sensitive indicators of the proportions of crustal- and mantle-derived magma. The major eruptive unit is the Wild Horse Mesa tuff (15.8 m.y. old), a compositionally zoned rhyolite ignimbrite. Trachyte pumice fragments in the ash-flow deposits provide information on intermediate composition magma types. Crustal xenoliths and younger flows of basalt and andesite (10 m.y. old) provide opportunities to confirm the isotopic compositions of potential mantle and crustal magma sources inferred from regional patterns. The trachyte and rhyolite have Nd values of -6.2 to -7.5 and initial 87Sr/86Sr ratios mostly between 0.7086 and 0.7113. These magmas cannot have been melted directly from the continental basement because the Nd values are too high. They also cannot have formed by closed system fractional crystallization of basalt because the 87Sr/86Sr ratios are higher than likely values for parental basalt. Both major and trace element variations indicate that crystal fractionation was an important process. These results require that the silicic magmas are end products of the evolution of mantle-derived basalt that underwent extensive fractional crystallization accompanied by assimilation of crustal rock. The mass fraction of crustal components in the trachyte and rhyolite is estimated to be between 10% and 40%, with the lower end of the range considered more likely. The generation of magmas with SiO2 contents greater than 60% appears to be dominated by crystal fractionation with minimal assimilation of upper crustal rocks.  相似文献   

7.
Dynamic crystallization experiments have been performed on synthetic glasses representative of shock-generated melts observed in Los Angeles, Sayh al Uhaymir 150 and Dar al Gani 476 martian basalts. On the basis of qualitative (texture) and quantitative (fractal analysis) results, we show that melt pockets in Los Angeles cooled at a rate of 1040-1560 °C/h. Sayh al Uhaymir 150 and Dar al Gani 476 melt pockets cooled at 780 °C/h. Conductive cooling models, for a range of meteoroid diameters (10-50 cm), indicate that the minimum meteoroid diameter was small, on the order of 10-15 cm and that melt pockets cooled from post-shock temperatures within minutes. Our results also have bearing on shock implanted martian atmospheric components because it is during cooling that the melt pockets have the potential to lose gases. Modeling of argon diffusion in a spherical melt pocket indicates that during cooling and quench crystallization ∼4-60% of trapped martian atmospheric argon may be lost from the melt pocket through diffusive transport.  相似文献   

8.
Detailed Rb-Sr and Sm-Nd isotopic analyses have been completed on the lherzolitic shergottites ALH77005 and LEW88516. ALH77005 yields a Rb-Sr age of 185 ± 11 Ma and a Sm-Nd age of 173 ± 6 Ma, whereas the Rb-Sr and Sm-Nd ages of LEW88516 are 183 ± 10 and 166 ± 16 Ma, respectively. The initial Sr isotopic composition of ALH77005 is 0.71026 ± 4, and the initial εNd value is +11.1 ± 0.2. These values are distinct from those of LEW88516, which has an initial Sr isotopic composition of 0.71052 ± 4 and an initial εNd value of +8.2 ± 0.6. Several of the mineral and whole rock leachates lie off the Rb-Sr and Sm-Nd isochrons, indicating that the isotopic systematics of the meteorites have been disturbed. The Sm-Nd isotopic compositions of the leachates appear to be mixtures of primary igneous phosphates and an alteration component with a low 143Nd/144Nd ratio that was probably added to the meteorites on Mars. Tie lines between leachate-residue pairs from LEW88516 mineral fractions and whole rocks have nearly identical slopes that correspond to Rb-Sr ages of 90 ± 1 Ma. This age may record a major shock event that fractionated Rb/Sr from lattice sites located on mineral grain boundaries. On the other hand, the leachates could contain secondary alteration products, and the parallel slopes of the tie lines could be coincidental.Nearly identical mineral modes, compositions, and ages suggest that these meteorites are very closely related. Nevertheless, their initial Sr and Nd isotopic compositions differ outside analytical uncertainty, requiring derivation from unique sources. Assimilation-fractional-crystallization models indicate that these two lherzolitic meteorites can only be related to a common parental magma, if the assimilant has a Sr/Nd ratio near 1 and a radiogenic Sr isotopic composition. Further constraints placed on the evolved component by the geochemical and isotopic systematics of the shergottite meteorite suite suggest that it (a) formed at ∼4.5 Ga, (b) has a high La/Yb ratio, (c) is an oxidant, and (d) is basaltic in composition or is strongly enriched in incompatible elements. The composition and isotopic systematics of the evolved component are unlike any evolved lunar or terrestrial igneous rocks. Its unusual geochemical and isotopic characteristics could reflect hydrous alteration of an evolved Martian crustal component or hydrous metasomatism within the Martian mantle.  相似文献   

9.
Analyses of Sm-Nd and U-Th-Pb systematics, REE, Ba, Sr, Rb and K concentrations were carried out for whole rock and mineral separates from the Nakhla meteorite. The 1.26 ±.07 b.y. Sm-Nd age obtained in this work is in good agreement with those previously obtained by the Rb-Sr and Ar-Ar methods. The high initial ?Nd value of +16 suggests that Nakhla was derived from a light REE-depleted, old planetary mantle source. U-Th-Pb data, after correction for pre-analytical terrestrial Pb contamination assuming an age of 1.26 b.y., suggest that the age of the Nakhla source is ?4.33 b.y. The agreement in the age determined by three independent radiometric methods and the high initial ?Nd value strongly suggest that the 1.3 b.y. age dates one thorough igneous event in the parent body which not only reset these isotopic systems but also established the chemical and petrologic characteristics observed for the Nakhla meteorite.Using a three-stage Sm-Nd evolution model in combination with LIL element data and estimated partition coefficients, we have tested partial melting and fractional crystallization models to estimate LIL element abundances in a possible Nakhla source. Our model calculations suggest that partial melting of the light REE-depleted source followed by extensive fractional crystallization (?50%) of the partial melt could account for the REE abundances in the Nakhla constituent minerals. The estimated source is depleted in the light REE, Ba, Rb and K and therefore may resemble the MORB source in the earth's upper mantle or the upper 60–300 km of the moon.The significantly younger age of Nakhla than the youngest lunar rock; the young differentiation age inferred from the U-Th-Pb data, and the estimated LIL element abundances (including those of K, U and Th) in the source suggest that the Nakhla meteorite may have been derived from a relatively large, well-differentiated planetary body such as Mars.  相似文献   

10.
Alkalic and tholeiitic basalts were erupted in the central Arizona Transition Zone during Miocene-Pliocene time before and after regional faulting. The alkalic lava types differ from the subalkaline lavas in Sr, Nd and Pb isotopic ratios and trace element ratios and, despite close temporal and spatial relationships, the two types appear to be from discrete mantle sources. Pre-faulting lava types include: potassic trachybasalts (87Sr/86Sr = 0.7052 to 0.7055, Nd= –9.2 to –10.7); alkali olivine basalts (87Sr/ 86Sr = 0.7049 to 0.7054, Nd= –2 to 0.2); basanite and hawaiites (87Sr/86Sr = 0.7049 to 0.7053, Nd= –3.5 to –7.8); and quartz tholeiites (87Sr/86Sr = 0.7047, Nd= –1.4 to –2.6). Post-faulting lavas have lower 87Sr/86Sr (<0.7045) and Nd from –3.2 to 2.3. Pb isotopic data for both preand post-faulting lavas form coherent clusters by magma type with values higher than those associated with MORB but within the range of values found for crustal rocks and sulfide ores in Arizona and New Mexico. Pb isotopic systematics appear to be dominated by crustal contamination. Effects of assimilation and fractional crystallization are inadequate to produce the Sr isotopic variations unless very large amounts of assimilation occurred relative to fractionation. It is impossible to produce the Nd isotopic variations unless ancient very unradiogenic material exists beneath the region. Moreover the assumption that the alkalic lavas are cogenetic requires high degrees of fractionation inconsistent with major- and trace-element data. Metasomatism of the subcontinental lithosphere above a subduction zone by a slab-derived fluid enriched in Sr, Ba, P and K could have produced the isotopic and elemental patterns. The degree of metasomatism apparently decreased upward, with the alkalic lavas sampling more modified regions of the mantle than the tholeiitic lavas. Such metasomatism may have been a regional event associated with crustal formation at about 1.6 Ga. Disruption and weakening of the subcontinental lithosphere in the Transition Zone of the Colorado Plateau by volcanism probably made deformation possible.  相似文献   

11.
Isotopic ratios of Nd and Sr have been measured in a suite of samples spanning most of the exposed stratigraphy of the Skaergaard intrusion in order to detect and quantify input (such as assimilated wallrock and fresh magma) into the magma chamber during crystallization. Unlike 18O and D, Nd and Sr isotope ratios do not appear to have been significantly affected by circulation of meteoric waters in the upper part of the intrusion. Variations in initial 87Sr/86Sr and Nd suggest that the Skaergaard magma chamber was affected during its crystallization by a small amount (2%–4%) of assimilation of Precambrian gneiss wallrock (high 87Sr/86Sr, low Nd) and possibly recharge of uncontaminated magma. Decreases in Nd and increases in 87Sr/86Sr during the early stages (0%–30%) of crystallization give way to approximately unchanging isotopic ratios through crystallization of the latest-deposited cumulates. Modelling of assimilation-fractional crystallization-recharge processes using these data as constraints shows that the assimilation rate must have been decreasing throughout crystallization. In addition, the isotope data allow replenishment by an amount of uncontaminated magma equal to 20%–30% of the total intrusion mass, occurring either continuously or in pulses over the first 75% of crystallization. Comparison of the recharge models with published Mg/(Mg+Fe2+) data from Skaergaard cumulates shows that the modelled replenishment rates are not inconsistent with available major element data, although significant recharge during the final 25% of crystallization can be ruled out. The isotope data show that the Skaergaard magma could have incorporated only a small amount of the gneiss that it displaced from the floor of the chamber; assimilation appears to have taken place primarily across a partially molten zone that formed at the roof from the wallrock that was dislodged during emplacement. In the latest stages of crystallization (>75% crystallized), the Skaergaard magma may have become stratified into two separately-convecting layers, effectively insulating Layered Series cumulates from further contamination.  相似文献   

12.
Basalts and basaltic cumulates from Mars (delivered to Earth as meteorites) carry a record of the history of that planet - from accretion to initial differentiation and subsequent volcanism, up to recent times. We provide new microprobe data for plagioclase, olivine, and pyroxene from 19 of the martian meteorites that are representative of the six types of martian rocks. We also provide a comprehensive WDS map dataset for each sample studied, collected at a common magnification for easy comparison of composition and texture. The silicate data shows that plagioclase from each of the rock types shares similar trends in Ca-Na-K, and that K2O/Na2O wt% of plagioclase multiplied by the Al content of the bulk rock can be used to determine whether a rock is “enriched” or “depleted” in nature. Olivine data show that meteorite Y 980459 is a primitive melt from the martian mantle as its olivine crystals are in equilibrium with its bulk rock composition; all other olivine-bearing Shergottites have been affected by fractional crystallization. Pyroxene quadrilateral compositions can be used to isolate the type of melt from which the grains crystallized, and minor element concentrations in pyroxene can lend insight into parent melt compositions.In a comparative planetary mineralogy context, plagioclase from Mars is richer in Na than terrestrial and lunar plagioclase. The two most important factors contributing to this are the low activity of Al in martian melts and the resulting delayed nucleation of plagioclase in the crystallizing rock. Olivine from martian rocks shows distinct trends in Ni-Co and Cr systematics compared with olivine from Earth and Moon. The trends are due to several factors including oxygen fugacity, melt compositions and melt structures, properties which show variability among the planets. Finally, Fe-Mn ratios in both olivine and pyroxene can be used as a fingerprint of planetary parentage, where minerals show distinct planetary trends that may have been set at the time of planetary accretion.Although the silicate mineralogical data alone cannot support one specific model of martian magmatism over another, the data does support the basic igneous reservoirs proposed for Mars, and may also be used to constrain some aspects of specific petrogenetic models. Examples include enriched and depleted reservoirs that can be identified by plagioclase K, Na and Al composition, multivalent element partitioning in olivine and pyroxene (V, Cr) elucidates oxygen fugacity conditions of the reservoirs, and minor element concentrations (i.e., Cr in pyx) show that proposed fractional crystallization models linking Y 980459 to QUE 94201 will not work.  相似文献   

13.
The results of our combined U-Pb, Rb-Sr, and Sm-Nd isotope study of mare basalt 10017 contribute to the understanding of the petrogenetic processes involved in the origin of geochemical diversity in lunar mare basalt sources, as well as the U-Pb isotope systematics of the Moon. The Rb-Sr, Sm-Nd, and 238U-206Pb isotope systems yield concordant crystallization ages of 3.633 ± 0.057 Ga, 3.678 ± 0.069 Ga, and 3.616 ± 0.098 Ga, respectively. The 235U-207Pb isochron yields an older, though still concordant, age of 3.80 ± 0.12 Ga. Neither the 206Pb-207Pb system nor U-Pb concordia system yields an age for 10017 that is concordant with the age determined from the Sm-Nd, Rb-Sr, and 238U-206Pb systems. The initial 87Sr/86Sr of 10017 is 0.69941 ± 7 and the initial εNd is +3.2 ± 0.4. Initial Pb isotopic compositions, determined from the U-Pb isochrons, are 206Pb/204Pbi = 31 ± 11 and 207Pb/204Pbi = 34 ± 15. Together, these initial Pb compositions constrain the μ value of the 10017 source to be 70 ± 30, assuming a single-stage Pb growth model. This is considerably lower than μ values typically estimated for mare basalt sources (∼100-600). Regardless, the μ values calculated for the sources of mare basalts, as well as other lunar samples, show a range that is larger than can be explained by fractionation of U from Pb solely by crystallization of silicate phases and ilmenite during magma ocean solidification and formation of lunar mantle sources. The U-Pb isotope systematics may reflect late-stage formation of a sulfide phase, which strongly fractionates Pb from U but has minimal effect on Rb/Sr or Sm/Nd compositions, during crystallization of the lunar magma ocean.  相似文献   

14.
The Mazaertag layered intrusion is located in the northwestern part of the Tarim large igneous province where several early Permian layered mafic-ultramafic intrusions host important Fe-Ti oxide deposits. The intrusion covers an area of ~0.13 km~2 and has a vertical stratigraphic thickness of at least300 m. It consists chiefly of olivine clinopyroxenite, and is cut through by the nearby mafic-ultramafic dykes. In this paper, we report new mineral chemistry data and whole-rock chemical and isotopic compositions for the Mazaertag intrusion along with whole-rock isotopic compositions for the nearby mafic dykes. The averaged compositions of cumulus olivine, clinopyroxene and intercumulus plagioclase within individual samples range from Fo_(71-73),Mg~# = 76 to 79 and An_(65-75) but they do not define sustained reversals. The observed mineral compositions are consistent with the differentiation of a single batch of magma in a closed system. Rocks of the Mazaertag intrusion are characterized by enrichment in light REE relative to heavy REE, positive Nb and Ta anomalies and a small range of age-corrected ε_(Nd)(t)(-0.1 to +0.9) and initial ~(87)Sr/~(86)Sr values(0.7044 to 0.7068). The slightly lower ε_(Nd)(t), initial ~(206)Pb/~(204)Pb and higher initial ~(87)Sr/~(86)Sr values of the intrusion compared to those of the least contaminated dykes[ε_(Nd)(t) =+2.8 to +3.4;(~(206)Pb/~(204)Pb)_i = 18.516-18.521;(~(87)Sr/~(86)Sr)_i = 0.7038-0.7041] imply that the Mazaertag magma was subjected to small to modest degrees of contamination by the upper crust. The Sr-Nd isotopic compositions of the least contaminated dykes are consistent with derivation from a FOZO-like mantle source. The parental magma of the Mazaertag intrusion, estimated from clinopyroxene compositions using mineral-melt partition coefficients, has trace element compositions similar to some of the most primitive mafic dykes in the same area. This suggests that the Mazaertag intrusion and mafic dykes shared a similar mantle source. Therefore, the parental magma of the Mazaertag intrusion was interpreted to have originated from a mantle plume. Based on the Cr_2 O_3 contents in titanomagnetite and less-evolved characteristics of the Mazaertag intrusion compared to the Wajilitag Fe-Ti oxide deposit in Bachu, it is speculated that there might not be a potential to find economic Fe-Ti oxide mineralization in the intrusion.  相似文献   

15.
An isotopic study was systemically carried out on the granitic complex, diorite-porphyrite, ores and ore minerals of the 103 Ma Xiaoxinancha gold-rich copper deposit in Jilin province to determine the geodynamic model of diagenesis and metallogenesis. Results show that the initial Nd and Sr isotopic compositions of the granitic complex are in the range of 0.70425–0.70505 for (87Sr/86Sr)i , 0.51243–0.51264 for INd, and –1.31 to +2.64 for εNd(t); those of the diorite-porphyrite are in the range from 0.70438–0.70448 for (87Sr/86Sr)i, 0.51259–0.51261 for INd, and +1.56 to +2.09 for εNd(t). For ores and sulfides, the (87Sr/86Sr)i , INd, and εNd(t) values are in the range from 0.70440–0.70805, 0.51259–0.51279 and +1.72 to +5.56, respectively. The Pb isotopic ratios of the granitic complex range from 18.2992–18.6636 for 206Pb/204Pb, from 15.5343–15.5660 for 207Pb/204Pb, and from 38.1640–38.5657 for 208Pb/204Pb. For diorite-porphyrite, the isotopic ratios of 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb are 18.3919, 15.5794 and 38.3566, respectively, whereas those of the ores and ore sulfides vary from 18.2275–18.3770 for 206Pb/204Pb, from 15.5555–15.5934 for 207Pb/204Pb and from 38.1318–38.3131 for 208Pb/204Pb. The results indicate that the mineralization was correlated to the formation and evolution of the granitic complex and the diorite-porphyrite. Combining with the reported data in petrologic characteristics, elemental geochemistry and chronology, conclusions can be drawn that the geodynamic settings of diagenesis and metallogenesis of this deposit were consistent with the subduction of the Izanagi oceanic plate during the Early Cretaceous. The diorite-porphyrite was formed by the emplacement of the adakitic magma triggered by partial melting of the enriched mantle, which originated from the derivative continental lithospheric mantle metasomatized by dehydration fluids from the subducting oceanic crust. The granitic complex was produced by fractional crystallization of the mixture between the adakitic magma and the high-K calc-alkaline acidic magma, which were generated by the remelting of the lower crust in the course of intraplate upwelling of the adakitic magma. The ore-bearing fluid reservoir convened in a late stage of the evolution of the mixed magma chamber.  相似文献   

16.
The magma sources for granitic intrusions related to the Mesozoic White Mountain magma series in northern New England, USA, are addressed relying principally upon Nd isotopes. Many of these anorogenic complexes lack significant volumes of exposed mafic lithologies and have been suspected of representing crustal melts. Sm–Nd and Rb–Sr isotope systematics are used to evaluate magma sources for 18 felsic plutons with ages ranging from about 120 to 230 Ma. The possibility of crustal sources is further examined with analyses of representative older crust including Paleozoic granitoids which serve as probes of the lower crust in the region. Multiple samples from two representative intrusions are used to address intrapluton initial isotopic heterogeneities and document significant yet restricted variations (<1 in Nd). Overall, Mesozoic granite plutons range in Nd [T] from +4.2 to -2.3, with most +2 to 0, and in initial 87Sr/86Sr from 0.7031 to 0.709. The isotopic variations are roughly inversely correlated but are not obviously related to geologic, geographic, or age differences. Older igneous and metamorphic crust of the region has much lower Nd isotope ratios with the most radiogenic Paleozoic granitoid at Nd [180 Ma] of -2.8. These data suggest mid-Proterozoic separation of the crust in central northern New England. Moreover, the bulk of the Mesozoic granites cannot be explained as crustal melts but must have large mantle components. The ranges of Nd and Sr isotopes are attributed to incorporation of crust by magmas derived from midly depleted mantle sources. Crustal input may reflect either magma mixing of crustal and mantle melts or crustal assimilation which is the favored interpretation. The results indicate production of anorogenic granites from mantle-derived mafic magmas.  相似文献   

17.
Extensive Permo-Carboniferous volcanism has been documented from the Bohemian Massif. The late Carboniferous volcanic episode started at the Duckmantian–Bolsovian boundary and continued intermittently until Westphalian D to Stephanian B producing mainly felsic and more rarely mafic volcanics in the Central Bohemian and the Sudetic basins. During the early Permian volcanic episode, after the intra-Stephanian hiatus, additional large volumes of felsic and mafic volcanics were extruded in the Sudetic basins. The volcanics of both episodes range from entirely subalkaline (calc-alkaline to tholeiitic) of convergent plate margin-like type to transitional and alkaline of within-plate character. A possible common magma could not be identified among the Carboniferous and Permian primitive magmas, but a common geochemical signature (enrichment in Th, U, REE and depletion in Nb, Sr, P, Ti) in the volcanic series of both episodes was recognized. On the other hand, volcanics of both episodes differ in intensities of Nb, Sr and P depletion and also, in part, in their isotope signatures. High 87Sr/86Sr (0.707–0.710) and low εNd (−6.0 to −6.1) are characteristic of the Carboniferous mafic volcanics, whereas low 87Sr/86Sr (0.705–0.708) and higher εNd ranging from −2.7 to −3.4 are typical of the Permian volcanics. Felsic volcanics of both episodes vary substantially in 87Sr/86Sr (0.705–0.762) and εNd (−0.9 to −5.1). Different depths of magma source or heterogeneity of the Carboniferous and Permian mantle can be inferred from variation in some characteristic elements of the geochemical signature for volcanics in some basins. The Sr–Nd isotopic data with negative εNd values confirm a significant crustal component in the volcanic rocks that may have been inherited from the upper mantle source and/or from assimilation of older crust during magmatic underplating and ascending of primary basic magma. Two different types of primary magma development and formation of a bimodal volcanic series have been recognized: (i) creation of a unique magma by assimilation fractional crystallization processes within shallow-level reservoirs (type Intra-Sudetic Basin) and (ii) generation and mixing of independent mafic and felsic magmas, the latter by partial melting of upper crustal material in a high-level chamber (type Krkonoše Piedmont Basin). A similar origin for the Permo-Carboniferous volcanics of the Bohemian Massif is obvious, however, their geochemical peculiarities in individual basins indicate evolution in separate crustal magma chambers.  相似文献   

18.
The lunar meteorite Northwest Africa (NWA) 032 is a low-Ti basalt that has incompatible-element abundances and Th/Sm ratios characteristic of the involvement of late stage magma ocean crystallization products (urKREEP) in its petrogenesis. This sample is very fine-grained and contains terrestrial weather products. A progressive leaching procedure was therefore developed and applied to magnetic separates and whole rock fractions to obtain Rb-Sr and Sm-Nd ages. Although many of the leachates, as well as the unleached mineral and whole rock fractions contain terrestrial alteration products, selected residue fractions yield concordant Rb-Sr and Sm-Nd ages. Rubidium-Sr isotopic analyses yield an age of 2947 ± 16 Ma with an initial 87Sr/86Sr of 0.700057 ± 17. These characteristics indicate NWA 032 is derived from a source region with an 87Rb/86Sr ratio of 0.044 ± 0.001. This value is higher than all but those determined for KREEP basalts, and suggests that NWA 032 is derived from a source region that has higher incompatible-element abundances than other low-Ti basalts. Samarium-neodymium isotopic analysis yield a concordant age of 2931 ± 92 Ma and an initial εNd of +9.71 ± 0.74 corresponding to a source region with 147Sm/144Nd ratio of 0.246 ± 0.004. The initial Nd isotopic composition stands in contrast to the initial Sr isotopic composition by requiring NWA 032 to be derived from a source with lower incompatible-element abundances than most low-Ti basalts. The source of NWA 032 is therefore unlike those of other lunar basalts.Modeling of magma ocean cumulate formation demonstrates that unlike other low-Ti basalt source regions the NWA 032 source is a mixture of olivine, pigeonite, and clinopyroxene bearing cumulates and only a small amount of urKREEP. Furthermore, unlike other mare basalt sources, the NWA 032 source does not contain appreciable quantities of plagioclase. Partial melting models demonstrate that the incompatible-element characteristics of the NWA 032 result from formation by smaller degrees of partial melting than other mare basalts. Thus, the incompatible-element geochemical signature that is observed in NWA 032 appears to reflect the combined effects of generation from an unusual plagioclase-free incompatible-element-depleted source region by very small degrees of partial melting. This study demonstrates that both the presence of urKREEP in the source region and small degrees of partial melting generate magmas with similar, but not identical, incompatible-element characteristics. In addition, it underscores the fact that there is significantly more geochemical diversity on the Moon than is represented by samples collected by the American and Soviet lunar missions.  相似文献   

19.
Abstract The Lajimiao norite-gabbro complex, as a part of the ophiolites on the southern side of the North Qinling belt, consists of gabbro and norite-gabbro. They were derived from different magma series: the gabbro was derived from tholeiitic magma series with higher TiO2, REE abundance and Fe3+ / Fe2+ ratio; norite-gabbro was derived from calc-alkali magma series with lower TiO2, Fe3+ / Fe2+ ratio and REE abundance and much lower HREE abundance, which suggests that the source of the norite-gabbro magma was deeper and controlled by eclogite facies. Geochemical characteristics of both plutonic rocks are similar to those of island-arc basalts, such as relatively high contents of Ba, Pb and Sr and relatively low contents of Nb, Zr and Ni. The Sr, Nd isotopic characteristics of the Lajimiao norite-gabbro complex are similar to those of ophiolites. Its 8Nd values are constant, about +2; whereas 8Sr values have wide variation from — 6.4 to +31.2 and positively correlate with Na2O, H2O+ and CO2 contents and the Fe3+ / Fe2+ ratio. The ?Nd—Nd / Th, ?Nd—La/Nb and ?Nd—Ba/Nb diagrams clearly show that there were significant components of terrigenous sediments in the mantle source of the Lajimiao norite-gabbro complex. It suggests that large amount of sediments had been carried into the mantle by the subducted ancient Qinling sea plate during the Palaeozoic.  相似文献   

20.
Advances in field observations and experimental petrology on anatectic products have motivated us to investigate the geochemical consequences of accessory mineral dissolution and nonmodal partial melting processes. Incorporation of apatite and monazite dissolution into a muscovite dehydration melting model allows us to examine the coupling of the Rb-Sr and Sm-Nd isotope systems in anatectic melts from a muscovite-bearing metasedimentary source. Modeling results show that (1) the Sm/Nd ratios and Nd isotopic compositions of the melts depend on the amount of apatite and monazite dissolved into the melt, and (2) the relative proportion of micas (muscovite and biotite) and feldspars (plagioclase and K-feldspar) that enter the melt is a key parameter determining the Rb/Sr and 87Sr/86Sr ratios of the melt. Furthermore, these two factors are not, in practice, independent. In general, nonmodal partial melting of a pelitic source results in melts following one of two paths in εNd-87Sr/86Sr ratio space. A higher temperature, fluid-absent path (Path 1) represents those partial melting reactions in which muscovite/biotite dehydration and apatite but not monazite dissolution play a significant role; the melt will have elevated Rb/Sr, 87Sr/86Sr, Sm/Nd, and εNd values. In contrast, a lower temperature, fluid-fluxed path (Path 2) represents those partial melting reactions in which muscovite/biotite dehydration plays an insignificant role and apatite but not monazite stays in the residue; the melt will have lower Rb/Sr, 87Sr/86Sr, Sm/Nd, and εNd values than its source. The master variables controlling both accessory phase dissolution (and hence the Sm-Nd system), and melting reaction (and hence the Rb-Sr systematics) are temperature and water content. The complexity in Sr-Nd isotope systematics in metasediment-derived melts, as suggested in this study, will help us to better understand the petrogenesis for those granitic plutons that have a significant crustal source component.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号