首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Understanding the temporal dynamics of seagrasses and the major influences on seagrass growth is critical for seagrass habitat conservation and administration. However, little work has been done regarding these issues in southern China. To examine inter-annual and seasonal variations of the intertidal Halophila ovalis community in southern China, we conducted quarterly sampling using the SeagrassNet methodology and assessed environmental conditions as well as direct anthropogenic impacts on the seagrass meadow from July 2008 to October 2014. Our study demonstrated strong inter-annual and seasonal dynamics of the intertidal seagrass meadow in the study area. Generally, the community performed best (highest seagrass cover, leaf area, shoot density, total biomass) in summer and worst in spring among the 4 seasons. The temporal variations in the seagrass community attributes (e.g. above-ground biomass) were significantly affected by precipitation, atmospheric visibility, and salinity, while leaf width was significantly negatively correlated with temperature, atmospheric visibility and salinity. Temperature was a major factor influencing the seagrass community (both macroalgae and seagrass), with temperature data showing an inverse relationship between seagrass and macroalgae. The above-ground: below-ground biomass ratio and leaf width of H. ovalis were the most sensitive plant parameters monitored when assessing environmental interactions. Human physical disturbances did not have a significant effect on seagrass dynamics in the study area. We concluded that long-term monitoring (like SeagrassNet) is valuable in understanding the relationship between environmental variables and seagrasses.  相似文献   

2.
A field survey was performed to examine nonstructural carbohydrate (NSC) dynamics in seagrass Thalassia hemprichii at the Xincun Bay in southern China. An indoor experiment to investigate the response of NSC in T. hemprichii to shade was conducted. Belowground tissue of T. hemprichii was the dominant site of NSC reserves, and soluble sugar was the primary storage compound. The starch content of belowground tissue was lower in high intertidal areas than in low intertidal areas, indicating that the longer air exposure in high intertidal areas resulted in less NSC synthesis and less accumulation of NSC in T. hemprichii. The lowest level of soluble sugar and its proportion to NSC in belowground tissue were observed near the cage culture area, where the nutrient concentration in water and sediment was the highest;while the highest level of that was observed near the coastal shrimp farm,where salinity was the lowest. Soluble sugar in belowground tissue showed the following trend: summer>spring>winter>autumn. This corresponded to seasonal changes in the intensity of light. Leaf sugar accumulated during the autumn-winter period, providing a carbon and energy source for flower bud formation and seed germination. Short-termshading decreased NSC accumulation. Collectively, these results suggest that nutrient enrichment, freshwater discharge and exposure to air affect NSC dynamics in T. hemprichii. Light intensity, flower bud formation, and seed germination were all found to induce seasonal variations in NSC in T. hemprichii.  相似文献   

3.
海草凋落叶的溶解有机物的释放及其生物地球化学意义   总被引:1,自引:0,他引:1  
Dissolved organic matter(DOM) represents a significant source of nutrients that supports the microbial-based food web in seagrass ecosystems. However, there is little information on how the various fractions of DOM from seagrass leaves contributed to the coastal biogeochemical cycles. To address this gap, we carried out a 30-day laboratory chamber experiment on tropical seagrasses Thalassia hemprichii and Enhalus acoroides. After 30 days of incubation, on average 22% carbon(C), 70% nitrogen(N) and 38% phosphorus(P) of these two species of seagrass leaf litter was released. The average leached dissolved organic carbon(DOC), dissolved organic nitrogen(DON) and dissolved organic phosphorus(DOP) of these two species of seagrass leaf litter accounted for 55%, 95% and 65% of the total C, N and P lost, respectively. In the absence of microbes, about 75% of the total amount of DOC, monosaccharides(MCHO), DON and DOP were quickly released via leaching from both seagrass species in the first 9 days. Subsequently, little DOM was released during the remainder of the experiment. The leaching rates of DOC, DON and DOP were approximately 110, 40 and 0.70 μmol/(g·d). Leaching rates of DOM were attributed to the nonstructural carbohydrates and other labile organic matter within the seagrass leaf. Thalassia hemprichii leached more DOC, DOP and MCHO than E. acoroides. In contrast, E. acoroides leached higher concentrations of DON than T. hemprichii, with the overall leachate also having a higher DON: DOP ratio. These results indicate that there is an overall higher amount of DOM leachate from T. hemprichii than that of E. acoroides that is available to the seagrass ecosystem. According to the logarithmic model for DOM release and the in situ leaf litter production(the Xincun Bay, South China Sea), the seagrass leaf litter of these two seagrass species could release approximately 4×10~3 mol/d DOC, 1.4×10~3 mol/d DON and 25 mol/d DOP into the seawater. In addition to providing readily available nutrients for the microbial food web, the remaining particulate organic matter(POM)from the litter would also enter microbial remineralization processes. What is not remineralized from either DOM or POM fractions has potential to contribute to the permanent carbon stocks.  相似文献   

4.
In the northern Wadden Sea, the extent of intertidal seagrass beds, their plant biomass and shoot density highly depends on local current regimes. This study deals with the role of intertidal Zostera noltii beds as nursery for mobile epibenthic macrofauna and the impact of seagrass bed characteristics on their abundance and distribution patterns. According to their exposure to the main tidal gullies, sampling sites were separated into exposed, semi-exposed and sheltered. Dominant species of crustaceans and demersal fish were studied in respect of their abundances within seagrass beds and adjacent unvegetated areas. Quantitative sampling was performed at day and night high tide using a portable drop trap. In general, species composition varied little between seagrass beds and bare sand. However, the presence of vegetation had a quantitative effect increasing individual numbers of common epifaunal species. Abundances of 0-group shore crabs (Carcinus maenas), common gobies (Pomatoschistus microps) and brown shrimps (Crangon crangon) were highest within sheltered seagrass beds. With decreasing plant density habitat preference of epibenthos changed on species level. By regulating the habitat complexity the currents regime is profoundly influencing the nursery function of intertidal seagrass beds in the Wadden Sea.  相似文献   

5.
Heavy nutrient loads in coastal waters often lead to excessive growth of microalgal and macroalgal epiphytes on seagrass leaves, with varying effects on the underlying seagrasses. This study evaluates the photosynthetic performance, epiphytic biomass and tissue nutrient content of two tropical seagrasses, Cymodocea serrulata and Thalassia hemprichii, in two intertidal areas along the Dar es Salaam coast in the Indian Ocean, a nutrient-rich region at Ocean Road (near the city centre), and a nutrient-poor region at Mjimwema (south of the city centre). Epiphyte biomass was significantly higher at the nutrient-rich site, and epiphytes were associated with reduced photosynthetic performance in both seagrass species at both sites. Likewise, nitrogen and phosphorus tissue content was higher in both species at the nutrient-rich site than at the nutrient-poor site. Epiphytic species composition on the seagrass leaves varied between seagrass species and between sites. Cymodocea serrulata had a higher number of epiphytic species at Mjimwema than at Ocean Road, whereas Thalassia hemprichii had more epiphytic species at Ocean Road than at Mjimwema. Seagrass photosynthetic performance, epiphytic biomass and nutrient content of the seagrasses were shown to be affected by nutrient concentration in the water column. Thus, for the future monitoring of the seagrass meadow, we recommend the use of combined measures such as seagrass performance, epiphytic biomass, nutrient contents and nutrient concentration levels in the water column.  相似文献   

6.
Photosynthetic characteristics of intertidal Zostera capricorni were measured under different tidal conditions in Whangapoua Harbour on the eastern Coromandel Peninsula, New Zealand, and compared with permanently submerged seagrass beds. Photosynthetic characteristics were measured using pulse amplitude modulated (PAM) fluorom‐etry and oxygen (O2) electrode techniques. Gross light saturated photosynthesis measured as oxygen exchange averaged 5.74 and 5.36 mg O2 g–1 dry weight (DW) h–1 and leaf respiration rates averaged 1.22 and 1.38 mg O2 g–1 DW h–1, for intertidal and subtidal plants respectively. Photosynthesis of both intertidal and shallow subtidal plants was light saturated at between 195 and 242 μmol photons m 2 s–1, suggestive of acclimation to a high light environment. Despite the period of exposure at low tide clearly being an important time for photosynthetic gains for intertidal plants, when water clarity was sufficiently high, maximum rates of photosynthesis were also possible when the beds were submerged. If average water clarity was at the clearer end of a range measured for this site (Kd = 0.85 m–1) then it was calculated that for intertidal seagrass beds growing at mean sea level in Whangapoua, c. 50% of above‐ground production could occur while plants were submerged.  相似文献   

7.
Seagrasses require a large amount of nutrient assimilation to support high levels of production, and thus nutrient limitation for growth often occurs in seagrass habitats. Seagrasses can take up nutrients from both the water column and sediments. However, since seagrasses inhabiting in the intertidal zones are exposed to the air during low tide, the intertidal species may exhibit significantly different carbon (C) and nitrogen (N) dynamics compared to the subtidal species. To examine C and N dynamics of the intertidal seagrass, Zostera japonica, C and N content and stable isotope ratios of above- and below-ground tissues were measured monthly at the three intertidal zones in Koje Bay on the southern coast of Korea. The C and N content and stable isotope (δ13C and δ15N) ratios of seagrass tissues exhibited significant seasonal variations. Both leaf and rhizome C content were not significantly correlated with productivity. Leaf δ13C values usually exhibited negative correlations with leaf productivity. These results of tissue C content and δ13C values suggest that photosynthesis of Z. japonica in the study site was not limited by inorganic C supply, and sufficient inorganic C was provided from the atmosphere. The tissue N content usually exhibited negative correlations with leaf productivity except at the upper intertidal zone, suggesting that Z. japonica growth was probably limited by N availability during high growing season. In the upper intertidal zone, no correlations between leaf productivity and tissue elemental content and stable isotope ratios were observed due to the severely suppressed growth caused by strong desiccation stress.  相似文献   

8.
To investigate whether or not regional–temporal patterns of seagrass habitat use by fishes existed at the Ryukyu Islands (southern Japan), visual surveys were conducted in seagrass beds and adjacent coral reefs in northern, central, and southern Ryukyu Islands, in November 2004, and May, August, and November 2005, the northern region having less extensive seagrass beds compared with the central and southern regions. During the study period, the seagrass beds were utilized primarily by 31 species, the densities of some of the latter differing significantly among regions. With the exception of Apogonidae and Holocentridae, all species were diurnal and could be divided into 6 groups based on seagrass habitat use patterns; (1) permanent residents A (10 species, e.g. Stethojulis strigiventer), juveniles and adults living in seagrass beds as well as other habitats; (2) permanent residents B (5 species, e.g. Calotomus spinidens), juveniles and adults living only or mainly in seagrass beds; (3) seasonal residents A (4 species, e.g. Cheilodipterus quinquelineatus), juveniles living in seagrass beds as well as other habitats; (4) seasonal residents B (6 species, e.g. Lethrinus atkinsoni), juveniles living only or mainly in seagrass beds; (5) transients (5 species, e.g. Parupeneus indicus), occurring in seagrass beds in the course of foraging over a variety of habitats; and (6) casual species (1 species, Acanthurus blochii), occurring only occasionally in seagrass beds. Regarding temporal differences, juvenile densities in each group were high in May and August compared with November in each region, whereas adult densities did not differ drastically in each month. For regional differences, juvenile and adult densities of permanent residents A and B were higher in the southern and central regions than in the northern region. Moreover, some seasonal residents showed possible ontogenetic habitat shift from seagrass beds to coral reefs in each region. These results indicated that seagrass habitat use patterns by fishes changed temporally and regionally and there may be habitat connectivity between seagrass beds and coral reefs via ontogenetic migration in the Ryukyu Islands.  相似文献   

9.
通过无人机飞行参数、飞行高度、潮汐条件和调查范围等试验,采用无人机对东郊椰林近岸海域海草进行航拍,利用PIX4D软件处理得到了高分辨率海草分布影像图,利用ArcGIS软件对海草分布区进行了矢量化提取,选择有代表性的区块结合实地调查进行验证,得出了试验区的海草分布特征和海草种类。结果表明:海草分布在离岸300 m范围内的珊瑚礁砰上,呈斑块状、间隔式分布特征,在试验区中海草分布面积为2 449.6 m2,占比为24.5%。实地调查到海草种类有圆叶丝粉草(Cymodocea rotundata)、单脉二药草(Halodule uninervis)、海菖蒲(Enhalus acoroides)、泰来草(Thalassia hemprichii)和卵叶喜盐草(Halophila ovalis)等5种海草,泰来草为优势种,单脉二药草和卵叶喜盐草分布在潮间带有淤泥的低潮区;圆叶丝粉草分布在低潮带至潮下带的上部,海底堆积和冲刷区的交界处;泰来草在不同水深处均有分布,分布面积最大。  相似文献   

10.
To examine the growth dynamics of eelgrass, Zostera marina, in the intertidal zone of Seomjin Estuary, Korea, we surveyed environmental factors such as water temperature, underwater irradiance, tidal exposure, and nutrient concentrations in the water column and sediment pore water in relation to the shoot density, biomass, morphological characteristics, and growth of Z. marina inhabiting the upper and lower intertidal zones. The survey was conducted monthly from January 2003 to December 2004. The water temperature of the two areas displayed seasonal fluctuations. Underwater irradiance was significantly higher in the upper intertidal zone than in the lower intertidal zone. Tidal exposure was also markedly longer in the upper intertidal zone than in the lower intertidal zone, whereas tidal exposure was highest in the spring and lowest in the summer in both areas. Water column NH4 + and sediment pore water NO3 ?+NO2 ? concentrations were significantly higher in the upper intertidal zone than the lower intertidal zone. The eelgrass shoot density, biomass, morphology, and leaf productivity were significantly higher in the lower intertidal zone than in the upper intertidal zone. Both areas displayed a clear seasonal variation depending on changes in water temperature. However, leaf turnover time was significantly shorter in the upper intertidal zone than in the lower intertidal zone, with a higher turnover rate in the upper intertidal zone. Compared to the seagrasses in the lower intertidal zone, those in the upper intertidal zone showed more effective adaptations to the stress of long tidal exposure through downsizing and increased turnover time. These results suggest that tidal exposure, coupled with desiccation stress, can be a limiting factor for seagrass growth in the intertidal zone, along with underwater irradiance, water temperature, and nutrient availability.  相似文献   

11.
The seasonal plasticity of individual Zostera noltii architectural, reproductive and elemental content features, of plant epiphyte load and of meadow biomass–density relationships was investigated along a vertical intertidal gradient at Ria Formosa lagoon, southern Portugal. The vertical variability of the seagrass environment was evident in the sediment characteristics, which showed coarser grain size, less organic matter, lower N content and higher ammonium concentration in the low intertidal than in medium and high intertidal. A clear vertical differentiation in Z. noltii morphology was observed from longer and wider leaves, longer and wider internodes and shorter roots at low intertidal, to shorter and narrow leaves, shorter and narrower internodes and longer roots at high intertidal. The leaf size was negatively related to light availability and positively related to nutrient availability whereas the root size was negatively related to nutrient availability. The lower leaf N and P content found in low intertidal plants may reflect a dilution effect of the nutrients due to higher growth rates. Lower N content of low intertidal leaves supports previous findings that the nitrate reductase activity is lower in plants from this level. The higher epiphyte load observed in Z. noltii leaves of the low intertidal may be a consequence of the lower exposure period, but also of higher hydrodynamics that increase the availability of nutrients. No evidence of the influence of the intertidal level on the flowering shoot density was found. The cyclic temporal pattern of the biomass–density relationship was much wider at low and medium intertidal than at high intertidal. At low intertidal, the decline in shoot density during fall and winter was coincident with a biomass decrease and its increase in spring and summer coincided with the biomass increase. In medium and high intertidal, the biomass and density seasonal variations were decoupled. As a result, only at low intertidal there was a significant positive relationship between biomass and density. This suggests that Z. noltii population structure along the intertidal is regulated by different factors. Light is probably the most important factor regulating the population structure in the low intertidal, whereas desiccation is probably the main factor regulating the populations in upper intertidal. Zostera noltii showed a considerable plasticity at a physiological-, plant- and population-level along the intertidal zone, indicative of the species acclimation to the steep environmental gradient of this particular ecosystem.  相似文献   

12.
The faunal communities of four intertidal habitats namely sand, mud, seagrass (Zostera noltii) and seagrass patches (mixSM) of a temperate coastal lagoon, Ria Formosa (southern Portugal), were sampled. A total of 47 species were taken in 428 bottomless drop sampler samples, with the highest number of species and the more commonly occurring species belonging to the Mollusca phylum. The dominance of these gastropod species underlines the importance of the grazing food chain in these habitats. Bittium reticulatum was the most abundant species, being especially abundant in the seagrass habitat. The most frequent and highest biomass species in the community was Carcinus maenas, a predator that makes use of the available resources and that is adapted to the highly variable intertidal environment. Pomatoschistus microps was the most abundant fish species, with highest densities in the mud habitat, which demonstrates an ability to occupy a low depth area. The seagrass habitat had the highest diversity, abundance and biomass, followed by the mixSM habitat and was different from all the others. Assemblages were highly influenced by the presence of vegetation, providing forage and refuge from predation. A well defined summer group was identified in all habitats. These results highlight the importance of seagrass beds and the idea that their decrease implies the decrease of lagoon production through the impoverishment of the trophic structure of the lagoon.  相似文献   

13.
《Marine Chemistry》1987,22(1):71-83
Chemical variables were measured in calcium-carbonate-rich sediments inhabited by the dominant tropical seagrass, Thalassia testudinum, and in adjacent seagrass-free sediments at several locations in the Bahamas Islands. Pore-water alkalinity and pCO2 were consistently greater, while pH was consistently lower in sediment-pore waters within seagrass beds. The ammonium and molybdate-reactive phosphate concentrations in sediment-pore water were variable for vegetated, compared with unvegetated, sample locations.Thalassia testudinum can generate very large amounts of organic matter within calcium-carbonate-rich sediments. However, little of the organic matter is retained in the sediment and the effect of that organic matter on pore water chemical factors appears to be surprisingly small. These observations are markedly different from those for seagrass beds in high latitude clastic sediments and in Syringodium filiforme seagrass beds near San Salvador Island, where major influences of the seagrass beds on sediment chemistry have been observed. The generally coarser grain size of the carbonate sediments may be a primary factor contributing to these differences.  相似文献   

14.
The marine angiosperms Thalassia testudinum, Syringodium filiforme, and Halodule wrightii form two of the largest reported seagrass beds along the northwest and southern coasts of Florida where they cover about 3000 square km in the Big Bend area and about 5500 square km in Florida Bay, respectively. Most of the leaf biomass in the Big Bend area and outer Florida Bay was composed of Thalassia testudinum and Syringodium filiforme which were distributed throughout the beds but which were more abundant in shallow depths. A short-leaved form of Halodule wrightii grew in monotypic stands in shallow water near the inner edges of the beds, while Halophila decipiens and a longer-leaved variety of H. wrightii grew scattered throughout the beds, in monotypic stands near the outer edges of the beds, and in deeper water outside the beds. Halophila engelmanni was observed scattered at various depths throughout the seagrass beds and in monospecific patches in deep water outside the northern bed. Ruppia maritima grew primarily in brackish water around river mouths. The cross-shelf limits of the two major seagrass beds are controlled nearshore by increased water turbidity and lower salinity around river mouths and off-shore by light penetration to depths which receive 10% or more of sea surface photosynthetically active radiation. Seagrasses form large beds only along low energy reaches of the coast. The Florida Bay seagrass bed contained about twice the short-shoot density of both Thalassia testudinum and Syringodium filiforme, for data averaged over all depths, and about four times the average short-shoot density of both species in shallow water compared with the Big Bend seagrass bed. The differences in average seagrass abundance between Florida Bay and the Big Bend area may be a consequence of the effects of greater seasonal solar radiation and water temperature fluctuations experienced by plants in the northern bed, which lies at the northern distribution limit for American Tropical seagrasses.  相似文献   

15.
《Journal of Sea Research》2009,61(4):255-263
The Banc d'Arguin, a non-estuarine area of shallows and intertidal flats off the tropical Saharan coast of Mauritania, is characterised by extensive intertidal and subtidal seagrass beds. We examined the characteristics of intertidal seagrass (Zostera noltii) meadows and bare areas in terms of the presence and abundance of molluscs (gastropods and bivalves). To explain observed differences between molluscan assemblages in seagrass and bare patches, some aspects of the feeding habitat (top-5 mm of the sediment) and of food (organic materials) of molluscs were examined. The novelty of this study is that phytopigments were measured and identified to assess source and level of decay (freshness) of organic material in the sediment and to study their importance as an explanatory variable for the distribution of molluscs. Over an area of 36 km2 of intertidal flats, at 12 sites, paired comparisons were made between seagrass-covered and nearby bare patches. Within seagrass meadows, dry mass of living seagrass was large and amounted to 180 ±10 g AFDM m 2 (range 75–240). Containing twice the amount of silt per unit dry sediment mass, seagrass sediments were muddier than bare areas; the relative amount of organic material was also larger. The total number of species of bivalves and gastropods amounted to 27, 14 of which were found only in seagrass areas, 4 only in bare and 9 in both types of habitat. Among the three numerically most abundant species, the bivalves Anadara senilis, Dosinia hepatica and Loripes lacteus, the first was numerically most abundant in bare and the other two in seagrass-covered areas. Bare intertidal areas had greater mean total biomass of molluscs (80.5 g AFDM m 2) than seagrass meadows (30.0 g AFDM m 2). In both habitats, the bulk of the biomass was made up by A. senilis. Excluding this species, bare mudflats contained on average only 3.1 g AFDM m 2 and seagrass meadows 6.9 g AFDM m 2. As compared to previous surveys in 1980–1986, the biomass of A. senilis had increased almost 10-fold and D. hepatica, previously found in very small numbers, had become the most numerous species. However, the total biomass excluding that of A. senilis was similar. Concentrations of phytopigments were similar to those observed at temperate mudflats, indicating that the Banc d'Arguin might not be as oligotrophic as previously thought. Per unit of dry sediment mass, smaller amounts of phytopigments were found in bare than in seagrass areas. Per unit of dry organic material, bare sediments contained most (fresh) phytopigments. This suggests that in seagrass-covered meadows the organic material is more degraded than in bare sediments. Overall, the composition of phytopigments, quite surprisingly, indicated a benthic-diatom-dominated trophic system. Multivariate statistics revealed that patterns of zoobenthic assemblages were correlated with patterns of a combination of four environmental parameters: grain size of the sediment, amount of fresh phytopigments and amounts of leaves and roots of seagrass.  相似文献   

16.
Predicting species distribution and habitat suitability is of considerable use in supporting the implementation of environmental legislation, protection and conservation of marine waters and ecosystem-based management. As other seagrasses, Zostera noltii has declined worldwide, mainly due to human pressures, such as eutrophication and habitat loss. In the case of the Basque Country (northern Spain), the species is present only in 3 out of 12 estuaries. From the literature, it is known that at least 6 of these estuaries were formerly vegetated by this seagrass. Consequently, efforts to monitor and restore (potential) habitats have been enhanced. Therefore, we aim: (i) to determine the main environmental variables explaining Zostera noltii distribution, within the Basque estuaries based upon the Oka estuary; (ii) to model habitat suitability for this species, as a wider applicable management-decision tool for seagrass restoration; and (iii) to assess the applicability and predicted accuracy of the model by using internal and external validation methods. For this purpose, Ecological Niche Factor Analysis (ENFA) has been used to model habitat suitability, based upon topographical variables, obtained from bathymetric Light Detection And Ranging (LiDAR); sediment characteristics variables; and hydrodynamic variables. The results obtained from the ecological factors of the ENFA (Marginality: 1.00; Specialization: 2.59) indicate that the species habitat differs considerably from the mean environmental conditions over the study area; likewise, that the species is restrictive in the selection of the range of conditions within which it dwells. The main environmental variables relating to the species distribution, in order of importance, are: mean grain size; redox potential; intertidal height; sediment sorting; slope of intertidal flat; percentage of gravels; and percentage of organic matter content. The model has a high predicted accuracy (Boyce index: 0.92). Model validation using an independent dataset in the Bidasoa estuary has shown the applicability but also the limitations in extrapolating the habitat suitability model to select suitable transplantation areas in other estuaries with similar morphological and biogeographical characteristics. ENFA-technique, applied with an accurate selection of environmental predictors, could be a promising tool for predicting seagrass habitat suitability which could assist on seagrass conservation and restoration programs worldwide.  相似文献   

17.
An intertidal Zostera marina landscape in Torbay, Devon, UK, was sampled to investigate the relationship between patch size, diversity and infaunal assemblage composition with the intention of defining a minimum Zostera patch size where the infaunal seagrass assemblage becomes distinct from the bare sand assemblage. All Zostera patches were found to support a higher level of biodiversity than the surrounding bare sand. However, the size of the Zostera patch had no impact on the level of diversity; it was just the presence or absence of seagrass that made a difference. The sediment and seagrass variables were not significantly different across the range of Zostera patch sizes, indicating that the environment characteristics were homogeneous within the Zostera patches at the patch scale. Multivariate analysis revealed that assemblage composition did vary between the patch types, although the opportunistic polychaete Capitella capitata was present in all patch types and was the most abundant species overall. The presence of opportunistic species and the homogeneity of the Zostera patch variables may be due to the location of this intertidal seagrass bed, which is relatively exposed compared to the locations of other seagrass beds along the south coast of Devon, resulting in a more dynamic and disturbed environment. Nevertheless, our results demonstrate that even small patches of seagrass comprising a few plants support a higher abundance and diversity of infaunal invertebrates than bare sand, indicating that Zostera patches have conservation value whatever their size.  相似文献   

18.
The influence of seagrass beds on intertidal infaunal communities has been widely studied, with vegetated areas typically having higher diversity and abundances than adjacent bare sand patches. Such “seagrass–sand” comparisons, however, do not reflect the gradient of seagrass cover that may exist across large landscapes. We studied the large-scale distribution of intertidal macrozoobenthos over approximately 10,000 ha of sandflat on Farewell Spit, New Zealand. The benthic fauna, sediment composition and surface cover of the seagrass Zostera muelleri were studied at 192 sites evenly spaced along 30 transects covering the length of the 30 km spit. Most sites had Zostera present, generally at low densities (1–25% surface cover). Overall, invertebrate taxon diversity increased with Zostera cover, from a median of 4 taxa at sites with no Zostera to 23 at sites with high Zostera cover. Multivariate analyses of 37 frequently occurring taxa (of the 91 recognised) indicated that there was a site gradient of taxon abundances that reflected seagrass cover, with 23 taxa increasing as Zostera cover increased. Only three taxa tended to be found more where Zostera was scarce. Seventeen taxa were identified as being significant indicators of Zostera cover; in all cases abundances peaked with high Zostera scores. Cluster analysis revealed a number of major groupings. One group was associated with low Zostera; two were strongly associated with high Zostera cover; a fourth was probably distinguished by low tidal elevation and proximity to channels. On the Farewell Spit tidal flats, large-scale patterns of abundance seem to be largely structured by the presence and density of Zostera.  相似文献   

19.
海草床是三大典型的近海海洋生态系统之一,具有极高的生态服务功能。然而,截至2015年我国近海海草资源分布现状尚不明晰,严重制约了我国海草床保护与修复工作的开展。2015~2021年,笔者通过实地调查,借助船只走航、声呐探测、遥感等技术手段,重点对我国近海海草资源的分布面积、种类及主要威胁进行了全面普查,并据此提出我国海草床管理与可持续利用对策。结果表明,我国近海海域海草床面积共为26 495.69hm2,可划分为:温带海域海草分布区和热带-亚热带海域海草分布区;我国现有海草4科9属16种。其中,温带海域海草床面积为17 095.01 hm2,主要分布在辽宁、河北、天津和山东沿海,分布有2科3属5种,以鳗草(Zosteramarina)和日本鳗草(Z.japonica)为优势种,其中唐山乐亭-曹妃甸海草床面积达9 025.56 hm2,是我国面积最大的海草床;热带-亚热带海域海草床面积为9 400.68 hm2,主要分布在福建、广东、广西和海南沿海,分布有4科8属12种,以泰来草(Thalassia hemprichii)、海菖蒲(Enhalus acoroides...  相似文献   

20.
海草床具有重要的生态系统服务功能,可以为海洋生物提供栖息地和食物来源,同时还具有重要的碳储存功能,海草床“蓝碳”功能日益受到学术界的重视,据研究全球每年海草床的碳埋藏量高达(2.7~4.4)×107 MgC。近年来,由于人类活动的影响,世界范围内海草床衰退严重,导致海草床沉积物有机碳储量降低。本文综述了全球海草床沉积物有机碳的来源、组分、储量以及指示作用;从物理、化学和生物三方面讨论了影响海草床碳储量的环境因素。最后提出了未来主要研究方向,主要包括加强海草床碳通量普查,分析全球气候变化背景下海草床沉积物有机碳的变化机制,明确海草床碳储量流失速率,研究海岸带工程对海草床沉积物有机碳的影响。评估海草床沉积物有机碳储量及变化机制可以为全球海洋蓝碳研究提供科学依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号