首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An integrated mass balance and modelling approach for analysis of estuarine nutrient fluxes is demonstrated in the Swan River Estuary, a microtidal system with strong hydrological dependence on seasonal river inflows. Mass balance components included estimation of gauged and ungauged inputs to the estuary and losses to the ocean (outflow and tidal exchange). Modelling components included estimation of atmospheric (N fixation, denitrification) and sediment–water column nutrient exchanges. Gross and net denitrification derived using two independent methods were significantly correlated (r2 = 0.49, p < 0.01) with net rates averaging 40% of gross. Annual nitrogen (N) and phosphorus (P) loads from major tributaries were linearly correlated with annual freshwater discharge and were 3-fold higher in wet years than in dry years. Urban drains and groundwater contributed, on average, 26% of N inputs and 19% of P inputs, with higher relative contributions in years of low river discharge. Overall, ungauged inputs accounted for almost 35% of total nitrogen loads. For N, elevated loading in wet years was accompanied by large increases in outflow (7x) and tidal flushing (2x) losses and resulted in overall lower retention efficiency (31%) relative to dry years (70%). For P, tidal flushing losses were similar in wet and dry years, while outflow losses (4-fold higher) were comparable in magnitude to increases in loading. As a result, P retention within the estuary was not substantially affected by inter-annual variation in water and P loading (ca. 50% in all years). Sediment nutrient stores increased in most years (remineralisation efficiency ca. 50%), but sediment nutrient releases were significant and in some circumstances were a net source of nutrients to the water column.  相似文献   

2.
Direct deposition of atmospheric nitrogen to shallow coastal embayments is usually estimated, since insufficient field measurements are available. Using Waquoit Bay (Cape Cod, MA. USA) as a case study, and a recent review of literature, we determined reasonable bounds on wet and dry inputs of inorganic and organic N. Since precipitation and wind vary daily, we explored the potential of episodic events to stimulate phytoplankton blooms. Many coastal waterbodies like Waquoit Bay are small relative to their watersheds. Nevertheless, direct deposition of NH(3), NO(3)(-), and HNO(3) is significant in the loading budget. For Waquoit Bay, direct deposition was calculated to be 7-15.5 kg total N ha(-1)yr(-1), representing 70-150% of the atmospheric N reported to reach the bay via the watershed, and 20-45% of the total N reaching the bay from all land-based sources. Episodic events were estimated to deliver up to 65 mg N m(-2)day(-1), representing a phytoplankton stock of 12.3 mg Chl m(-2), an amount unlikely to stimulate dense blooms in shallow coastal waters in the northeastern United States.  相似文献   

3.
Atmospheric nitrogen deposition to the Mullica River-Great Bay Estuary   总被引:2,自引:0,他引:2  
Measurements of nitrate and ammonium in precipitation and associated with aerosols were conducted at Rutgers University Marine Field Station in Tuckerton, New Jersey from March 2004 to March 2005 to characterize atmospheric nitrogen deposition to the Mullica River-Great Bay Estuary. The arithmetic means of nitrate and ammonium concentrations for precipitation samples were 2.3mgL(-1) and 0.42mgL(-1), respectively. Nitrate and ammonium concentrations in aerosol samples averaged 3.7microgm(-3) and 1.6microgm(-3), respectively. Wet deposition rates appeared to vary with season; the highest rate of inorganic nitrogen deposition (nitrate+ammonium) occurred in the spring with an average value of 1.33kg-Nha(-2)month(-1). On an annual basis, the total (wet and dry) direct atmospheric deposition fluxes into the Mullica River-Great Bay Estuary were 7.08kg-Nha(-2)year(-1) for nitrate and 4.44kg-Nha(-2)year(-1) for ammonium. The total atmospheric inorganic nitrogen directly deposited to the Mullica River-Great Bay Estuary was estimated to be 4.79x10(4)kg-Nyear(-1), and the total atmospheric inorganic nitrogen deposited to the Mullica River watershed was estimated to be 1.69x10(6)kg-Nyear(-1). Only a fraction of the nitrogen deposited on the watershed will actually reach the estuary; most of the nitrogen will be retained in the watershed due to utilization and denitrification during transport. The amount of N reaching the Mullica River-Great Bay Estuary indirectly is estimated to be 5.07x10(4)kg-Nyear(-1), approximately 97% is retained within the watershed. This atmospheric nitrogen deposition may stimulate phytoplankton productivity in the Mullica River-Great Bay ecosystem.  相似文献   

4.
Human encroachment on the coastal zone has led to concern about the impact of anthropogenic nitrogen (N) on estuarine and continental shelf waters. Western North Atlantic watershed budgets suggest that the export of human-derived N from estuaries to shelf waters off the east coast of the US may be significant; however, models based on water inputs and estimates of upwelling of deepwater nutrients to surface waters of the mid-Atlantic bight indicate that estuarine N may be a relatively minor component of the overall shelf N budget. Stable N isotope ratios could provide a means to assess the relative input of anthropogenic N to shelf waters, particularly since dissolved N from human sources has elevated δ15N values (range: 7–30‰). We collected particulate material from surface shelf waters off the US east coast from 2000 to 2005 at near-shore sample sites proximal to the mouth of six estuaries and corresponding sites farther offshore. Near-shore (mean 33.7 km from estuary mouth) δ15N values ranged from 5.5 to 7.7‰ Offshore values (mean 92.4 km from estuary mouth) were consistently lower than near-shore sites (average 4.7 ± 1.0‰ versus 6.8 ± 1.1‰), suggesting different N sources to near and offshore stations. Near-shore regions are often more productive, as mean monthly chlorophyll-a concentrations from the sea-viewing wide field-of-view sensor (SeaWiFS) were significantly higher at near-shore sites near the mouth of three of the six estuaries. A mass balance using a concentration-dependent mixing model with chlorophyll-a concentrations as a surrogate for dissolved inorganic nitrogen can account for all of the nitrogen at near-shore sites south of Cape Cod with estuarine nitrogen estimated to contribute 45–85% of the nitrogen to the near-shore surface particulate material. Our results support the hypothesis that estuarine nitrogen is influencing continental shelf ecosystems, and also provide preliminary evidence of the spatial extent of its influence on shelf waters in the mid-Atlantic bight.  相似文献   

5.
The nitrogen inputs from atmospheric deposition and bottom water entrainment to the surface layer were modelled in the summer period (May–September) over a 11-year period (1989–1999) and compared to investigate the significance of these fluxes for generating blooms in the Kattegat. In the summer periods the average atmospheric deposition was 2.81 mg N m−2 d−1 compared to average entrainment fluxes of 5.42 mg N m−2 d−1, 1.21 mg N m−2 d−1 and 1.15 mg N m−2 d−1 for the northern, central and southern part of the Kattegat, respectively. Atmospheric nitrogen deposition alone could not sustain biomass increases associated with observed blooms and entrainment fluxes dominated the high nitrogen inputs to the surface layer. The potential for a bloom through growth was typically obtained after several days of high nitrogen inputs from entrainment in the frontal area of the northern Kattegat and to some extent from atmospheric deposition. The modelled nitrogen input in this area could account directly for 30% of the observed blooms in the Northern sub-basin, and through advective transport 24% and 19% of the observed blooms in the central and southern Kattegat. The direct nitrogen inputs through atmospheric deposition and entrainment to the central and southern sub-basins were small and could not be linked to any bloom observation.  相似文献   

6.
Sediment cores were taken at seven sites along the mangrove-bound Guaratuba Bay estuary (southern Brazil), with the purpose of assessing conditions controlling Hg deposition along a horizontal estuarine sediment gradient. The data suggest contrasting depositional patterns for Hg and Mn in this relatively pristine setting. Total Hg contents of bulk sediments ranged from 12 to 36 ng/g along the estuary, the highest values being found in muddier organic-rich sediments of the upper estuary (the corresponding mud gradient is 12 to 42 wt.%, and the organic matter gradient 4 to 10 wt.%). Thus, the deposition of fine sediments relatively enriched in mercury occurs primarily in closer proximity to the freshwater source. The data also indicate a reverse gradient in reactive Mn contents, ranging from 29 to 81 μg/g, and increasing seaward. This implies that reactive Mn is mobilized from fine-grained reducing mangrove forest sediments in the upper estuary, and deposited downstream in sandier, oxygen-rich nearshore sediments. These results suggest that mangrove-surrounded estuaries may act as barriers to mercury transport to coastal waters, but as a source of manganese. The present findings also imply that reactive Mn may be used as an indication of Hg depositional patterns in other similar coastal sedimentary settings.  相似文献   

7.
Seagrasses provide important ecological services that directly or indirectly benefit human well-being and the environment. Excess nitrogen inputs are a major cause of eelgrass loss in the marine environment. Here we describe the results of a study aimed at quantifying the extent of eelgrass as a function of predicted watershed-derived nitrogen loading for small-to-medium-sized shallow estuaries in New England. Findings confirm that reduced extent of eelgrass corresponds to increased loading of nitrogen to this class of estuary. At lower levels of nitrogen loading (≤50 Kg ha−1 yr−1), eelgrass extent is variable and is likely controlled by other ecosystem factors unrelated to water quality. At higher loading rates, eelgrass coverage decreases markedly, with essentially no eelgrass at loading levels ≥100 Kg ha−1 yr−1.  相似文献   

8.
Wet atmospheric deposition of dissolved N, P and Si species is studied in well-mixed coastal ecosystem to evaluate its potential to stimulate photosynthetic activities in nutrient-depleted conditions. Our results show that, during spring, seawater is greatly depleted in major nutrients: Dissolved Inorganic Nitrogen (DIN), Dissolved Inorganic Phosphorus (DIP) and Silicic acid (Si), in parallel with an increase of phytoplanktonic biomass. In spring (March–May) and summer (June–September), wet atmospheric deposition is the predominant source (>60%, relative to riverine contribution) for nitrates and ammonium inputs to this N-limited coastal ecosystem. During winter (October–February), riverine inputs of DIN predominate (>80%) and are annually the most important source of DIP (>90%). This situation allows us to calculate the possibility for a significant contribution to primary production in May 2003, from atmospheric deposition (total input for DIN ≈300 kg km−2 month−1). Based on usual Redfield ratios and assuming that all of the atmospheric-derived N (AD-N) in rainwater is bioavailable for phytoplankton growth, we can estimate new production due to AD-N of 950 mg C m−2 month−1, during this period of depletion in the water column. During the same episode (May 2003), photosynthetic activity rate, considered as gross primary production, was estimated to approximately 30 300 mg C m−2 month−1. Calculation indicates that new photosynthetic activity due to wet atmospheric inputs of nitrogen could be up to 3%.  相似文献   

9.
Nitrogen loadings to coastal waters have increased over the last century, resulting in deterioration in water quality. In this study we investigated the distributions and seasonality of dissolved organic nitrogen (DON), and its relationship to total dissolved nitrogen (TDN), for two anthropogenically influenced estuarine systems in southwest England. Concentrations of DON in both estuaries were generally < 80 μM. DON showed non-conservative distributions, resulting from external and internal inputs and in situ reactivity. DON contributed 38 ± 22% (range 4–79%, Yealm) and 36 ± 17% (range 4–84%, Plym) to the TDN pool, with lower values generally observed in the fresher samples relative to the more saline samples. DON was a larger fraction of the TDN pool during the summer and autumn relative to winter and spring, indicating the influence of bacterioplankton release on nitrogen cycling in the estuaries. Ammonification and nitrification were observed in the estuaries, processes which were reproduced in incubation experiments using bioreactors. The bioreactor experiments showed that 12% h− 1 of the DON flux from the River Plym may be available to bacteria, indicating significant removal of DON during the residence time of the water in the estuary (a few days). The bioavailable nature of the DON means that this N fraction significantly adds to the eutrophication burden of the receiving coastal waters, and therefore cannot be ignored in environmental assessments.  相似文献   

10.
Atmospheric deposition fluxes of soluble nutrients (N, P, Si, Fe, Co, Zn) to the tropical North Atlantic were determined during cruise M55 of the German SOLAS programme. Nutrient fluxes were highest in the east of the section along 10°N, owing to the proximity of source regions in West Africa and Europe, and lowest in the west, for both dry and wet deposition modes. In common with other recent studies, atmospheric P and Si inputs during M55 were strongly depleted relative to the stoichiometry of phytoplankton Fe, N, P and Si requirements. Atmospheric N inputs were equivalent to 0.1–4.7% of observed primary productivity during the cruise. Atmospheric nutrient supply was also compared to observed nitrogen fixation rates during M55. While atmospheric Fe supply may have been sufficient to support N fixation (depending on the relationship between our simple Fe leaching experiment and aerosol Fe dissolution in seawater), atmospheric P supply was well below the required rate. The stable nitrogen isotope composition of nitrate–N in aerosol and rain was also determined. Results of a simple model indicate that atmospheric deposition and nitrogen fixation introduce similar amounts of isotopically light nitrogen into surface waters of the study region. This implies that nitrogen isotope-based methods would overestimate nitrogen fixation here by a factor of 2, if atmospheric inputs were not taken into account.  相似文献   

11.
Coastal eutrophication, manifested as hypoxia and anoxia, is a global problem. Only a few empirical models, however, exist to predict bottom oxygen concentration and percentage saturation from nutrient load or morphometry in coastal waters, which are successfully used to predict phytoplankton biomass both in lakes and in estuaries. Furthermore, hardly any empirical models exist to predict bottom oxygen from land-use. A data set was compiled for 19 estuaries in the northern Baltic Sea, which included oxygen concentration and percentage saturation, water chemistry, estuary morphometry, and land-use characteristics. In regression analyses, bottom oxygen was predicted both as a function of the percentage of watershed under agriculture and of mean depth. These models accounted for ca. 55% of the variation in oxygen. Additionally, oxygen was linked to fetch (diameter of the area in the direction of the prevailing wind), which accounted for 30% of the variation in oxygen. This suggests that shallow Finnish estuaries are wind-sensitive. In ‘pits’ (sub-thermocline waters of deep basins), near-bottom total nitrogen strongly correlated with oxygen percentage saturation (R2=0.81). Neither chlorophyll a, total phosphorus nor nutrient loading explained oxygen variation in entire estuaries or in ‘pits’, probably mainly due to annual sedimentation/sediment–water flux dynamics. On the basis of the results of cross-validation, the models have general applicability among Finnish estuaries.  相似文献   

12.
Measurements of nitrate and ammonium in precipitation and associated with aerosols were conducted at Rutgers University Marine Field Station in Tuckerton, New Jersey from March 2004 to March 2005 to characterize atmospheric nitrogen deposition to the Mullica River-Great Bay Estuary. The arithmetic means of nitrate and ammonium concentrations for precipitation samples were 2.3 mg L−1 and 0.42 mg L−1, respectively. Nitrate and ammonium concentrations in aerosol samples averaged 3.7 μg m−3 and 1.6 μg m−3, respectively. Wet deposition rates appeared to vary with season; the highest rate of inorganic nitrogen deposition (nitrate + ammonium) occurred in the spring with an average value of 1.33 kg-N ha−2 month−1. On an annual basis, the total (wet and dry) direct atmospheric deposition fluxes into the Mullica River-Great Bay Estuary were 7.08 kg-N ha−2 year−1 for nitrate and 4.44 kg-N ha−2 year−1 for ammonium. The total atmospheric inorganic nitrogen directly deposited to the Mullica River-Great Bay Estuary was estimated to be 4.79 × 104 kg-N year−1, and the total atmospheric inorganic nitrogen deposited to the Mullica River watershed was estimated to be 1.69 × 106 kg-N year−1. Only a fraction of the nitrogen deposited on the watershed will actually reach the estuary; most of the nitrogen will be retained in the watershed due to utilization and denitrification during transport. The amount of N reaching the Mullica River-Great Bay Estuary indirectly is estimated to be 5.07 × 104 kg-N year−1, approximately 97% is retained within the watershed. This atmospheric nitrogen deposition may stimulate phytoplankton productivity in the Mullica River-Great Bay ecosystem.  相似文献   

13.
Dissolved and particulate concentrations of silver in Tokyo Bay estuarine waters and Japanese rivers were determined in this study. The dissolved silver concentrations in the surface water of Tokyo Bay range from 5.9 to 15.1 pmol kg−1, which is comparable to those in the surface water of the Japan Sea, but two or three times higher than those in the surface water of the open ocean. However, elevated concentrations of dissolved silver are not found in Tokyo Bay compared with those in other highly urbanized estuaries, such as San Francisco Bay (20∼243 pmol kg−1). In the Tokyo Bay estuary, silver typically exhibits non-conservative mixing behavior, which is a common feature in the other estuaries reported previously. Dissolved silver concentrations decrease with salinity from the rivers to the mouth of Tokyo Bay. Silver is efficiently scavenged by suspended particulates, as evidenced by the high conditional distribution coefficients for silver throughout the estuary (log Kd > 5.0 ± 0.6). The silver fluxes into Tokyo Bay via inflowing rivers and atmospheric deposition were estimated as 83 kg y−1 and 15 kg y−1, respectively. A simple budget calculation shows that the silver supplied from rivers and atmosphere must be rapidly scavenged within the Tokyo Bay estuary.  相似文献   

14.
Biomass and primary productivity of picophytoplankton (PP; phytoplankton <3 μm) and larger phytoplankton (>3 μm) were determined during an annual cycle along the salinity gradient in North Carolina’s Neuse River Estuary (NRE), a eutrophic, microtidal estuary. The PP were a major component of total phytoplankton biomass and productivity, contributing ∼35–44% of the total chlorophyll a (Chl a) and 42–55% of the total primary productivity. Chl a and productivity of PP decreased from the upper to lower estuary, although the PP contribution relative to larger phytoplankton remained nearly constant. Significant PP growth occurred in the spring, but PP productivity and biomass were maximal in summer. PP productivity and biomass were positively correlated with temperature and dissolved inorganic phosphorus concentrations, which were maximal in summer due to release from sediments. Biomass and productivity of PP and >3 μm phytoplankton were also positively correlated, suggesting that growth conditions favoring the onset of blooms of larger phytoplankton species will similarly affect PP. High PP productivity and biomass in the NRE support the notion that PP play an important role in the production and eutrophication potentials of this estuary. High PP productivity and biomass have been noted in several other temperate estuaries, all sharing a common feature with the NRE—long residence time. These findings challenge the assumption that PP relative importance should be minimal in eutrophic systems.  相似文献   

15.
河口富营养化与流域氮、磷营养物的输入直接相关,制定河口营养物基准,可用于控制河口及其近岸海域富营养化,为环境管理的科学决策提供依据。大辽河是渤海最大的入海河流之一,河口污染较为严重;本文采用频数分布法、非参数分析法和实验室模拟压力响应关系法探讨大辽河口及近岸海域营养物基准的推导,最终得到大辽河口总氮(TN)、总磷(TP)及叶绿素a(Chl-a)推荐基准值分别为1.008 mg/L,0.067 mg/L和1.175 mg/m3,以期为大辽河口及其近岸海域富营养化评估和营养物标准制定提供科学依据。  相似文献   

16.
Tropical estuaries are under increasing pressure worldwide from human impacts, but are poorly studied compared with temperate systems. This study examined a tropical macrotidal estuary, Darwin Harbour, in northern Australia, using a combination of direct measurements and literature values to determine the main sources of primary production and the sources of nutrients supporting growth. The main source of primary production was calculated to be the extensive area of fringing mangroves and resulted in a net autotrophic system (PG:R = 2.1). Much of the carbon in the mangrove forests appears to be retained within the forests or respired, as the water column was also net autotrophic despite the carbon inputs. Phytoplankton were the second largest primary producer on a whole-of-harbour basis, with low biomass constrained by light and nutrient availability. The phytoplankton were likely to be nitrogen (N) limited, based on low N:phosphorus (P) ratios, low dissolved bioavailable N concentrations (ammonium (NH4+), nitrate (NO3), urea), and evidence that phytoplankton growth in bioassays was stimulated by NH4+ addition. The largest new source of N to the system was from the ocean due to higher N concentrations in the incoming tides than the outgoing tides. Atmospheric inputs via N fixation on the intertidal mudflats and subtidal sediments were substantially lower. The rivers feeding into the harbour and sewage were minor N inputs. Nitrogen demand by primary producers was high relative to available N inputs, suggesting that N recycling within the water column and mangrove forests must be important processes. Darwin Harbour is adjacent to the rapidly growing urban area of Darwin city, but overall there is no evidence of anthropogenic nutrient inputs having substantial effects on primary production in Darwin Harbour.  相似文献   

17.
Wilson Inlet is a ‘bar-built’ estuary, open to the ocean only when a sandbar has been breached after river flow. estimates are presented of phosphorus and nitrogen loadings from rivers, losses to the ocean, and amounts present in estuarine components during a particular year. Following bar opening, a volume of water equivalent to 35% of estuarine volume at the time was lost, providing a major loss of dissolved nutrients from the estuary. While the bar was open (51 days) water was displaced through river flow, but there was little tidal exchange. There was net retention of phosphorus (about 60% of river input) and some loss of nitrogen (less than 15%).Much of the nutrient held in the estuary was in surface sediments, but concentrations have shown little change with time and are similar to other southwestern estuaries. In contrast there have been massive increases in the biomass of Ruppia megacarpa Mason in recent years; this constitutes more than 90% of plant biomass. The nutrient bank in this plant is large compared to the water column, and amounts recycled through plant material greatly exceeded riverine loading in the year of the study. Tissue N concentrations were relatively high and constant, tissue P relatively low and seasonally variable, suggesting P limitation of plant biomass.Estimates of nutrient loading from streams showed relatively higher nutrient inputs from catchments cleared for agriculture. These are in higher rainfall areas, have high drainage densities, large proportions of sandy soils and are subjected to phosphatic fertilizer application.  相似文献   

18.
The effects of atmospheric nitrogen input on biological production in the Japan Sea have been investigated using a coupled physical-ecosystem model. Comparison between the cases with and without nitrogen deposition shows a relatively large effect on primary production in the southern Japan Sea during summer to autumn, when nitrogen deposition is high and nutrient is depleted in the surface layer. The atmospheric nitrogen deposition supports > 10% of the annual export production in the nearshore region along the Japanese coast. The importance of atmospheric input as a new nutrient will grow steadily with increasing deposition into the Japan Sea.  相似文献   

19.
In a number of regions of the world, enhanced flows of nitrogen (N) and phosphorus (P) from land to sea are of major concern because of the observable deterioration in the quality of many nearshore marine waters. Estuaries receive N and P from river and other runoff, from waste discharges, from the atmosphere and ocean and from exchange with coastal groundwaters (which in all likelihood results in a net input to the estuary). For rivers that do not discharge directly onto the continental shelf, seaward fluxes of N and P will be modified by within-estuary transformations of reactive species, the burial of particulate N and P in sediments (sub/intertidal, saltmarsh, mangrove) and the loss of gaseous N and P species by bacterial reduction.Driven by a desire to understand the effects of changing N and P loads on water quality, and to gain insights into the true modification of their fluxes within estuaries, much effort has been expended on providing quantitative estimates of the sources and sinks of these constituents. Yet, accurate and precise estimates on a global scale remain elusive. Riverine inputs of total N and P are calculated to be 35–64 and 22 Mt a−1, respectively. These inputs are dominated by particulate species, and because of this, are likely to be imprecise as overall sediment fluxes are disproportionately influenced by infrequent, poorly sampled, high flow events. Direct aeolian inputs of N to estuaries (P inputs are minor), at a minimum of 1–4 Mt a−1, are small but significant, although again good estimates are hampered by the apparent importance of infrequent, and thus under-sampled, deposition events. Indirect atmospheric inputs via deposition onto and runoff from catchments may be highly significant, at least in environments bounding the North Atlantic Ocean. Groundwater inputs are generally unknown, but, for N, may be 5–10 Mt a−1 (no data on P). Information on the global inputs of N and P from waste discharges and mariculture do not appear to be available. Denitrification, estimated to beca . 33 Mt a−1, may account for 52–94% of the currently estimated total N inputs; in contrast, the loss of P via venting of gaseous phosphine is unknown. The burial of N and P in sediments is about 7% and 30% of their total inputs, respectively. Nevertheless, reliable information on the modifying role of estuarine sediments appears far from complete.Globally, the inputs of N and P to the marine environment from all sources are expected to increase over the next few decades. The resulting effects of these increases on the marine environment, including any influences due to estuarine processing, may be partly assessed through the use of dynamic transport and transformation estuarine models for N and P. A further important development in this respect will be the linking of complementary models (e.g. catchment/river/estuarine/coastal zone) and their coupling to strategic large scale observations.  相似文献   

20.
珠江磨刀门河口亚潮频率水位的控制论研究   总被引:3,自引:0,他引:3  
本文应用现代控制论研究河口非潮汐海平面变化及其与影响要素的关系。两年连续的水位及水文气象要素资料表明,在0.01—0.50cpd的频带上水位有相当高能的波动,这些波动的能量主要直接或间接来自风应力、河流径流以及河口外的海平面波动。本文应用1982年时间序列辨识了五个二阶的MISO CAR模型,系统输出是河口亚潮频率海平面;系统输入是河流人注流量、风应力和气压。模型检验后对1983年亚潮频率海平面进行一步和多步后报,符合良好。系统仿真定量地估计了各控制因素对水位的相对重要性。频域和时域分析都表明河口水位系统具有振荡特性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号