首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Turbidity and sediment transport in a muddy sub-estuary   总被引:2,自引:0,他引:2  
Sub-estuaries, i.e. tidal creeks and also larger estuaries that branch off the stem of their main estuary, are commonplace in many estuarine systems. Their physical behaviour is affected not only by tributary inflows, winds and tides, but also by the properties and behaviour of their main estuary. Measurements extending over more than an annual cycle are presented for the Tavy Estuary, a sub-estuary of the Tamar Estuary, UK. Generally, waves are small in the Tavy because of the short wind fetch. A several-hour period of up-estuary winds, blowing at speeds of between 7 and 10 m s−1, generates waves with significant wave heights of 0.25 m and a wave periodicity of 1.7 s that are capable of eroding the bed over the shallow, ca. 1.5 m-deep mudflats. Waves also influence sedimentation within and near salt marsh areas. An estuarine turbidity maximum (ETM) occurs in the Tavy's main channel, close to the limit of salt intrusion at HW. Suspended particulate matter (SPM) concentrations typically are less than 40 mg l−1 at HW, although concentrations can exceed 80 mg l−1 when tides and winds are strong. Flood-tide SPM inputs to the Tavy from the Tamar are greater during high runoff events in the River Tamar and also at spring tides, when the Tamar has a high-concentration ETM. Higher SPM concentrations are experienced on the mudflats following initial inundation. Without wave resuspension, this is followed by a rapid decrease in SPM for most of the tide, indicating that the mudflats are depositional at those times. SPM concentrations on the mudflats again increase sharply prior to uncovering. Peak ebb tidal speeds at 0.15 m above the mudflat bed can exceed 0.26 m s−1 at spring tides and 0.4 m s−1 following high runoff events, which are sufficient to cause resuspension. Time-series measurements of sediment bed levels show strong seasonal variability. Higher and lower freshwater flows are associated with estimated, monthly-mean sediment transport that is directed out of, or into, the upper sub-estuary, respectively. Seasonal sediment transfers between the estuary and its sub-estuary are discussed.  相似文献   

2.
《Journal of Sea Research》1999,41(1-2):87-95
In situ instruments, particularly the instrument INSSEV (in situ settling velocity) have given new information on the sizes, settling velocities and effective densities of individual flocs within the spectrum of distribution. The low-density macroflocs (diameter >∼150 μm) contain a mixture of organic and inorganic constituents that become separated when the flocs are disrupted to form microflocs. Representation of the floc characteristics in terms of fractals reveals a range of fractal dimensions representing the distributions varying between 1 and 3, instead of the ideal value of 2. Measurements in estuarine turbidity maxima and on intertidal mudflats show that the fractal dimension is less than 2 in situations where turbulent shearing causes disruption of the flocs. At the same time increasing suspended sediment concentration tends to increase the fractal dimension. Measurements of size using an in situ Malvern sizer show that the floc size distribution is also affected by both turbulent energy dissipation and by concentration. Complementary laboratory studies suggest that, at a constant concentration, flocculation is enhanced by low shear, but that disruption occurs at higher shear. These experiments confirm the relationship between fractal dimension, shear stress and concentration.  相似文献   

3.
In order to understand the hydrodynamic parameters that control the fluvial sediment dynamics on an intertidal mudflat located in a sheltered zone in the upper part (fluvial part) of the macrotidal Seine estuary (France), a two-year field study of high-frequency field measurements was carried out. The bed-level evolution of the mudflat surface was measured from the semi-diurnal period to annual time scales using a high-resolution altimeter. The data showed that the sedimentary patterns on the mudflat were mainly controlled by river flows and tides. During high river flows in winter, sedimentation dominated; suspended particulate matter concentrations were higher, submersion was constant and at semi-diurnal scale, sedimentation duration was more important than erosion due to an asymmetrical tide. By contrast during low river flows in summer, erosion dominated mainly as a result of immersion/emersion of tidal flats during semi-diurnal cycle. From this annual sedimentation–erosion cycle we identify a temporary storage of 10–30% of the fine-grained (<63 μm) river-borne particles on mudflats in the upper section of the fluvial Seine estuary during high river flows.River-related sediment fluxes were estimated from the measurement of fine-grained sedimentation zones in the fluvial part of the estuary. The erosion/sedimentation processes were perennial, and the amounts of contributing sediments were directly related to the solid river load. Our results indicate that mudflats in the fluvial part of the Seine estuary play an important role in the downstream transfer of fine-grained suspended particulate matter (SPM) towards the turbidity maximum and the Rouen docks particularly during low river flows, when roughly 30–50% of the SPM originates from the eroded intertidal flats.  相似文献   

4.
In the Bach Dang–Cam Estuary, northern Vietnam, mechanisms governing cohesive sediment aggregation were investigated in situ in 2008–2009. As part of the Red River delta, this estuary exhibits a marked contrast in hydrological conditions between the monsoon and dry seasons. The impact on flocculation processes was assessed by means of surveys of water discharge, suspended particulate matter concentration and floc size distributions (FSDs) conducted during a tidal cycle at three selected sites along the estuary. A method was developed for calculating the relative volume concentration for the modes of various size classes from FSDs provided by the LISST 100X (Sequoia Scientific Inc.). It was found that all FSDs comprised four modes identified as particles/flocculi, fine and coarse microflocs, and macroflocs. Under the influence of the instantaneous turbulent kinetic energy, their proportions varied but without significant modification of their median diameters. In particular, when the turbulence level corresponded to a Kolmogorov microscale of less than ∼235 μm, a major breakup of flocs resulted in the formation of particles/flocculi and fine microflocs. Fluctuations in turbulence level were governed by seasonal variations in freshwater discharge and by the tidal cycle. During the wet season, strong freshwater input induced a high turbulent energy level that tended to generate sediment transfer from the coarser size classes (macroflocs, coarse microflocs) to finer ones (particles/flocculi and fine microflocs), and to promote a transport of sediment seawards. During the dry season, the influence of tides predominated. The turbulent energy level was then only episodically sufficiently high to generate transfer of sediment between floc size classes. At low turbulent energy, modifications in the proportions of floc size classes were due to differential settling. Tidal pumping produced a net upstream transport of sediment. Associated with the settling of sediment trapped in a near-bed layer at low turbulent energy, this causes the silting up of the waterways leading to the harbour of Haiphong.  相似文献   

5.
长江口是典型的高浊度河口,长江口及其邻近海域悬浮颗粒物(suspended particulate matter,SPM)浓度跨度大,泥沙过程活跃、复杂。2015年7月9-20日(洪季)和2016年3月7-19日(枯季),使用OBS和LISST分别测定了该区域99个和89个站位的SPM浊度、光衰减系数、总体积浓度、平均粒径和粒径谱等参数;同时通过现场过滤测定了各站位表、中、底3层的SPM质量浓度以及典型站位SPM中颗粒有机碳(particulate organic carbon,POC)的δ13C、颗粒氮(particulate nitrogen,PN)的δ15N以及POC/PN摩尔比值。结果表明,浊度、光衰减系数、总体积浓度等3个参数均与SPM质量浓度显示出了显著的正相关关系。研究区域SPM平均粒径一般表层大于底层、枯季大于洪季;长江淡水端元输出的SPM粒径枯季也明显大于洪季。具有相似粒径谱特征的SPM可以通过测定δ13C和δ15N值来进一步区分其来源和组成。SPM质量浓度和总体积浓度等参数结合还可以计算SPM有效密度,用以了解研究区域SPM的沉降过程。结果表明两个季节SPM有效密度和粒径之间显示出了显著的负相关关系,说明枯季长江输出的SPM由于粒径大、密度小、沉降速度低,加之强烈的垂直混合和口门拦门沙附近的再悬浮,随着环流可能到达研究区域北部的最东端;而洪季长江输出的SPM由于粒径小、密度大、沉降速度高,在口门附近快速沉降。  相似文献   

6.
Results are presented from a series of settling column experiments investigating temporal variations in the flocculation characteristics of purely cohesive (kaolin clay) sediment suspensions and cohesive (kaolin) and non-cohesive (fine sand) sediment fraction mixtures. Experimental runs were conducted under controlled hydrodynamic conditions generated by a rigid array of in-phase oscillating grids. The results indicated that rapid initial floc aggregation occurred under low turbulent shear rates, with peak maximal and root-mean-square (r.m.s.) floc sizes (∼ 400 μm and ∼ 200 μm, respectively) attained after relatively short time periods, before reducing with time. By contrast, lower aggregation rates and smaller floc sizes were observed under higher shear conditions, with flocs retaining suspended in the settling column for longer time scales due to the increased turbulence. The mud input concentration displayed some correlation with maximal and r.m.s. floc sizes at higher shear rates but no correlation was apparent at low shear rates. This observed floc behaviour may be attributed to the differences in concentration gradients at high and low shear rates that affect both floc settling rate and time required for flocs to attain equilibrium size. The addition of the fine sand fraction to the kaolin clay suspension reduced both the initial floc formation (i.e. aggregation) rate and the maximal and r.m.s. floc sizes attained throughout the experiments. The reduction in maximal floc sizes appeared to be enhanced by an increase in the ratio of fine sand to kaolin clay content within the mixture.  相似文献   

7.
Fine cohesive, suspended sediments appear in all estuarine environments in a predominately flocculated state. The transport and deposition of these flocs is influenced by their in-situ and primary particle size distribution. Especially the size of the inorganic particles influences the density and hence the settling velocity of the flocculated material. To describe both the changes in primary particle size of suspended particulate matter as well as the variability of floc sizes over time and space, the data of In-Situ Particle-Size Distributions (ISPSDs), Primary Particle Size Distributions (PPSDs) and Suspended Sediment Concentrations (SSCs) were collected. For this, Laser In-Situ Scattering and Transmissiometry (LISST) measurements as well as the water samples were collected in the German Elbe and Weser estuaries, covering seasonal variability of the SSC.The data of the ISPSDs show that the inorganic and organic Suspended Particulate Matter (SPM), as found in the Elbe and Weser estuaries, mostly appears in a flocculated state. The substrate for organic matter is mainly imported from the seaside and transported into the estuaries as indicated by an upstream decrease of the amount of fine particles. In winter, when the freshwater discharge is high, different PPSDs are found in the case of the Elbe estuary in the Turbidity Maximum Zone (TMZ) as well as in the landward and in the seaward sections close to the TMZ. In summer, the distance between the seaward and the landward section is too low to obtain an individual PPSD within the Elbe TMZ.A missing correlation between the PPSD and ISPSD shows that the inorganic constituents do not have an influence on the in-situ floc size. Although flocs aggregate and disaggregate over a tidal cycle and with changing SSC, they do not change their PPSD. The microflocs are therefore strong enough to withstand further breakage into their inorganic constituents.  相似文献   

8.
9.
Particle size of suspended matter in estuaries   总被引:1,自引:0,他引:1  
D. Eisma 《Geo-Marine Letters》1991,11(3-4):147-153
Suspended matter usually flocculates into fragile flocs that break up during sampling and analysis. Coulter counter and pipette size analysis are therefore an indication of floc strength. Grain-size distributions (after removal of organic matter) give an indication of the relative amount of grains transported as flocs (as opposed to being transported as single particles).In situ size distributions of suspended matter (flocs) in the Scheldt and Rhine estuaries and the Gironde, as well as results from the Zaire River estuary, indicated that salt flocculation does not appear to be of importance for the formation ofin situ flocs. Also there is no clear relation with particle concentration. In estuaries probably no equilibrium between floc size and concentration is reached because of the rapid variations in turbulence and bottom shear. In the Zaire estuary a decrease in turbulence in the surface water results in flocs of the same size as differential settling over a depth of more than 100 meters.  相似文献   

10.
An automated instrument (SEDVEL—Sedimentation Velocity) was developed to directly measure the mass-concentration and the mass-distribution of settling velocities of suspended particulate matter (SPM) in situ. This instrument consists of an underwater balance, which directly measures the variation in time of the immersed weight of particulate matter (PM) as it settles on a plate located at the bottom of a settling tube, under quiescent conditions. SEDVEL operates underwater and samples in situ for deployment periods of a few days. SEDVEL produced consistent and reproducible results when tested both in the laboratory and in the field under SPM dry-concentrations of 5 to 200 mg l− 1. Errors in the estimates of maximum dry-concentrations from SEDVEL measurements were less than 30% in 69% of the cycles analysed in the laboratory. The corresponding figure for in situ measurements was 50%. These errors are likely related to uncertainties in the calculation of the dry-density of flocs and in the definition of the zero position (ZP) of the SEDVEL balance. The slow settling particles/flocs (Ws < 1 mm s− 1) represented 32–98% of the total mass of SPM at two sites of deployment in Cleveland Bay (Australia). Distinct settling behaviours were observed between the two sites and among different tidal stages associated with differences in the floc population; the aggregation of which probably varied as a function of the bottom grain size, shear stress, resuspension, advection and organic content of SPM.  相似文献   

11.
In coastal environments, fine-grain sediments often aggregate into large and porous flocs. ElectroMagnetic Current Meters (EMCM) and Laser In Situ Scattering and Transmissometry (LISST-ST) have been deployed within a Spartina alterniflora marsh of the Luoyuan Bay in Fujian Province, China, to measure the current velocity, the floc size and the settling velocity between 15 and 22 January 2008. During the observations, the near-bed water was collected in order to obtain the suspended sediment concentration (SSC) and constituent grain size. Data show that: (1) the nearbed current velocities vary from 0.1 to 5.6 cm/s in the central Spartina alterniflora marsh and 0.1–12.5 cm/s at the edge; (2) the SSCs vary from 47 to 188 mg/dm 3 . The mean grain size of constituent grains varies from 7.0 to 9.6 μm, and the mean floc sizes (MFS) vary from 30.4 to 69.4 μm. The relationship between the mean floc size and settling velocity can be described as: w s =ad b , in which w s is the floc settling velocity (mm/s), a and b are coefficients. The floc settling velocity varies from 0.17 to 0.32 mm/s, with a mean value of 0.26 mm/s, and the floc settling velocity during the flood tide is higher than that during the ebb tide. The current velocity and the SSC are the main factors controlling the flocculation processes and the floc settling velocity.  相似文献   

12.
Suspended particulate matter (SPM) collected at regular stations from the Mandovi and Zuari estuaries indicates that the peaks of high SPM coincide with peaks of high rainfall and low salinity and also with peaks of moderate/low rainfall coupled with high salinity during the monsoon. The estuarine turbidity maximum (ETM) is a characteristic feature, it occurs in the channel accompanying spring tide during the monsoon and pre-monsoon, and shifts to the bay on neap tide during post-monsoon. ETM remains at the same position in the Mandovi River, both during the monsoon and pre-monsoon, whereas in Zuari it stretched upstream during monsoon and migrates seaward of the channel during pre-monsoon. The ETM coincides with the freshwater–seawater interface during the monsoon and is formed by the interaction between tidal currents and river flows. The ETM during pre-monsoon is associated with high salinities and is generated by tidal and wind-induced currents. The turbidity maximum on neap tide during post-monsoon may be due to the erosion and resuspension of sediments from the emergent tidal flats and transport of these turbid waters into the bay. Funneling effect of the narrowing bay in the Zuari estuary and associated physical processes effectively enhance the magnitude of the currents and transports sediments to the channel. SPM retention percentage indicates that the estuarine channel is prone to siltation.  相似文献   

13.
635 samples of suspended particulate matter (SPM), collected in the St. Lawrence river and estuary during periods of high and low river flow from a series of individual and anchor stations on a transect traversing the turbidity maximum zone, as well as two sediment box cores, were analyzed for Al, Si, Ca, Mg, Fe and Mn.An abrupt change in elemental composition occurs when traversing the front at the landward edge of the turbidity maximum. As the SPM concentration increases across the front from 20–200 mg l?1, the Ca/Al and Mg/Al ratios of the SPM increase and the Si/Al, Fe/Al and Mn/Al ratios decrease. The almost 50% decrease of the Mn/Al ratio is not related to changes in salinity. Within the turbidity maximum the tidal-averaged Si/Al, Ca/Al, Mg/Al and Fe/Al ratios of the SPM do not differ significantly from the landward to the seaward end of the turbidity zone, but on one tidal station the ratios of Si, Ca and Fe to Al are significantly lower at high river flow than at low flow. The Mn/Al ratio is insensitive to the extreme variations of either salinity (0.6–30‰) or SPM concentrations (10–480 mg l?1) within the turbidity zone. A tendency for higher Mn/Al ratios to be associated with near-bottom SPM, observed in the center of the turbidity zone during the low river flow period, is well developed in the lower reaches of the zone.Diagenetic mobilization within the rare fine-grained bottom sediments of the turbidity maximum is responsible for changes in Mn and Fe content of particulate matter, and early settling of coarse-grained components and size sorting within the zone are responsible for other compositional changes. Local sources, desorption and precipitation are apparently of secondary importance. The depletion of both Mn and Fe in the SPM and sediment of the upper estuary implies a net seaward escape of diagenetically mobilized metal.  相似文献   

14.
Rare earth elements (REEs) in the suspended particulate matter (SPM) of the Mandovi estuary indicated that the mean total-REEs (∑REE) and light REE to heavy REE ratios are lower than that of the average suspended sediment in World Rivers and Post-Archean average Australian shale. High ∑REE were associated with high SPM/low salinity and also with high SPM/high salinity. Although the ∑REE broadly agree with SPM levels at each station, their seasonal distributions along transect are different. SPM increased seaward in the estuary both during the monsoon and pre-monsoon, but consistently low at all stations during the post-monsoon. The mean ∑REE decreased marginally seaward and was <25% at sea-end station than at river-end station. Spatial variations in ∑REE are maximum (64%) during the pre-monsoon. Strong to moderate correlation of ∑REE with Al, Fe and Mn in all seasons indicates adsorption and co-precipitation of REEs with aluminosilicate phases and Fe, Mn-oxyhydroxides. The ratio of mean ∑REE in sediment/SPM is low during the monsoon (1.27), followed by pre-monsoon (1.5) and post-monsoon (1.62). The middle REE- and heavy REE-enriched patterns with positive Ce and Eu anomalies are characteristic at every station and season, both in SPM and sediment. They also exhibit tetrad effect with distinct third and fourth tetrads. Fe-Mn ore dust is the most dominant source for REEs. However, the seasonal changes in the supply of detrital silicates, Fe-Mn ore dust and particulates resuspended from bottom sediments diluted the overall effect of salinity on fractionation and distribution of REEs in the estuary.  相似文献   

15.
伶仃洋河口泥沙絮凝特征及影响因素研究   总被引:1,自引:1,他引:0  
田枫  欧素英  杨昊  刘锋 《海洋学报》2017,39(3):55-67
泥沙絮凝对河口细颗粒泥沙运动过程起着极其重要的作用。本文通过LISST-100激光粒度仪等仪器实测伶仃洋河口2013年洪季悬浮泥沙絮凝体现场粒径及水动力、泥沙条件,结合实验室悬沙粒径分析,研究大小潮期间伶仃洋河口泥沙絮凝特征,探讨紊动剪切强度、含沙量、盐度分层及波浪等因素对伶仃洋河口泥沙絮凝的影响。结果表明:伶仃洋河口水体中现场粒径平均值为148.53 μm,大于实验室悬沙分散粒径36.74 μm,河口絮凝现象明显;沉速与有效密度、粒径呈正相关,絮团平均有效密度为153.49 kg/m3,平均沉速达1.13 mm/s;小潮时絮团平均粒径大于大潮,垂向上表底层絮团粒径小、中层大,中底层絮团沉速大于表层。伶仃洋河口水动力、泥沙条件是影响其泥沙絮凝的重要因素,低剪切强度(小于5 s-1)、低含沙量(小于50 mg/L)及高体积浓度有利于细颗粒泥沙之间的相互碰撞,促进絮凝作用;当剪切强度与颗粒间碰撞强度高于絮团所能承受的强度时,絮团易破碎分解成小絮团或更细的泥沙颗粒;伶仃洋河口盐度层化引起的泥沙捕获现象增大中层泥沙体积浓度,有利于中层絮凝体的发育;观测期相对较大的波浪增强水体紊动,增大了水体细颗粒泥沙的碰撞几率,表层絮团粒径随波高峰值的出现而增大。  相似文献   

16.
长江口悬浮体粒度特征及其季节性差异   总被引:9,自引:1,他引:9       下载免费PDF全文
1998年11月和1999年5月长江口悬浮体样品的激光粒度仪分析结果表明,长江口悬浮体粒度较细,分选较差,偏态和峰态偏小,粒度组成以粉砂为主;粘土含量次之,基本不含砂或砂含量很小,由陆向海平均粒径有由粗到细的变化趋势。粒度分布呈典型的非正态分布,存在“双峰”和“三峰”两种形式,表层样品以“双峰”分布为主,底层“三峰”或“双峰”并存。标准偏差-粒度曲线上多峰出现,反映了长江口悬浮体组成的复杂性。长江口悬浮体粒度特征有较大的季节变化。悬浮体粒度变化的影响因素包括泥沙来源、底质再悬浮、生物作用和絮凝作用,粒度特征的季节差异是这些因素综合作用的结果。  相似文献   

17.
Zooplankton assemblages were studied from January 2007 to January 2008 along the salinity gradient of the Charente estuary (France). A Lagrangian survey was performed monthly at five sampling stations defined by salinity (freshwater, 0.5, 5, 15 and 25) in order to collect zooplankton and measure the main environmental parameters (concentrations of suspended particulate matter, particulate organic carbon, chlorophyll a and phaeopigments). A combination of multivariate cluster analysis, species indicator index and canonical correspondence analysis was used to relate the spatio-temporal patterns of the zooplankton assemblages with environmental drivers. The estuary was divided into three different zones by means of environmental parameters while four zooplankton assemblages were identified along the salinity gradient. The Charente estuary appeared as one of the most turbid systems in Europe, with suspended particulate matter (SPM) concentration reaching 3.5 g l−1 in the Maximum Turbidity Zone (MTZ). Algal heterotrophy and microphytobenthos resuspension from the wide mudflats could be responsible for the relatively high chlorophyll a concentrations measured within this MTZ. Salinity and SPM affected significantly the spatial distribution of zooplankton species while temperature and river flow seemed to control their temporal variations. From a zooplanktonic viewpoint, the highly turbid Charente estuary seemed to match an “ecotone–ecocline” model: the succession of species assemblages along the salinity gradient matched the concept of ecocline while the MTZ, which is a stressful narrow area, could be considered as an ecotone. Although such ecoclinal characteristics seemed to be a general feature of estuarine biocenoses, the ecotone could be more system-specific and biological compartment-specific.  相似文献   

18.
《Journal of Sea Research》1999,41(1-2):109-118
Settling velocities of suspended fine-grained sediment in estuaries vary over a range of several orders in magnitude. Variations in the suspended sediment concentration are often put forward as the principal cause. However, comparison of settling velocities from a number of estuaries shows that even in the case of the same suspended sediment concentration, large variations in the settling velocities can occur of up to two orders in magnitude. From measurements in the Ems estuary we found that even within a single estuary such large variations can occur. Field measurements and complementary laboratory experiments demonstrate that `other factors' can affect the settling velocity in the same order as the assumed effects of the suspended sediment concentration. To address these `other factors', which include physical–chemical and biological effects, the concept of `flocculation ability' is introduced, as a measure of the effectiveness of the collisions between suspended particles for floc growth. On the basis of the results from the Ems estuary, it is hypothesised that variations in the flocculation ability of the suspended fine-grained sediments are at the root of the large differences in settling properties of suspended fine-grained sediment in estuaries.  相似文献   

19.
Hindered settling velocity of cohesive/non-cohesive sediment mixtures   总被引:1,自引:0,他引:1  
New methods are proposed for predicting the hindered settling conditions encountered by concentrated suspensions containing mixtures of sand particles and mud flocs. These methods, based on two-fraction formulations, are developed by consideration of the settling characteristics of monodisperse and polydisperse solid particle suspensions applied to cohesive/non-cohesive mixtures of mud flocs and sand particles. The behaviour of these predictive methods is evaluated over a wide range of mixture conditions and compared with existing formulations, with their parametric dependence on the relative volumetric concentrations and floc/particle sizes for the mud and sand constituents established. The results indicate that consideration of the full return flow effects generated by both fractions provides the best modelling framework for predicting the hindered settling conditions over a wide range of sand–mud mixtures.  相似文献   

20.
《Marine Geology》2004,203(1-2):83-94
A study in Disenchantment Bay, Alaska, demonstrates that fine sediment beneath a meltwater plume is flocculated and that floc sizes and fraction of mass bound within flocs exhibit a pronounced increase with depth rather than down fjord. This spatial pattern of variability likely is due to the longer depositional timescale of flocs compared to their horizontal advection timescale within the meltwater plume. The flux of mass within flocs also increases with depth. These observations have implications for sedimentation models as sedimentation rates estimated from surface waters underestimate those at depth, and could result in the inaccurate prediction of the position of suspension depocenters. The results also may explain the behavior of fine sediment in more complex environments where floc properties are difficult to observe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号