首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Larvae of estuarine organisms continually face possible export from the parent estuary. Retention of larvae of the estuarine crab Rhithropanopeus harrisii was investigated in the upper Newport River estuary, North Carolina. All of the developmental stages occurred in the same area of the estuary with similar horizontal distributions, and the concentrations of intermediate and late stages were not greatly reduced from those of the first larval stage. This was strong evidence for the continuous retention of larvae in the upper estuary.To determine mechanisms by which retention might be effected, field studies of the vertical distributions and migrations of these larvae were made. The four zoeal stages had similar but complex vertical migration patterns, which varied from study to study. These migrations centered on the depth of no net flow, reducing longitudinal transport during development. Cross-spectral analysis of the larval migrations and the environmental cycles of light, salinity and current speed revealed that each of these external cycles affected larval depth. Megalopae of R. harrisii also migrated vertically, but they were present in much lower concentrations than the zoeal stages, an indication of a change to benthic existence in this final larval form.  相似文献   

2.
A two-dimensional hydrodynamic and particle tracking model was used to estimate the dispersion and retention of barnacle larvae from their possible spawning sites in a tropical monsoon-influenced estuarine system (central west coast of India). Validation of the hydrodynamic simulations yielded a good match with field measurements. The pattern of larval dispersal in the region varied with the winds and currents. The seasonal changes in abundance could be attributed to physical forcing and weather conditions. The extent of barnacle larval dispersal from spawning sites varied from 10 to 78 km for different sites and seasons. During a 24-h cycle, the larval abundance showed one to two peaks in the estuarine area. The increased larval abundance is favored by the flood currents, pushing the larvae into the estuary. Physical forcing in the region helps in transport of the larvae from their spawning sites hugging to the coast and contributing to the population within the estuary. Field observations and numerical experiments suggest the occurrence of higher larval abundance in the estuary during post-monsoon. The dispersal pattern indicated that the barnacle population present in the estuary is well mixed, and with a seasonally changing pattern.  相似文献   

3.
Although Macrobrachium petersi has nine larval stages, only stage I and a minimal number of stage II M. petersi larvae were caught in the Keiskamma estuary. Stage I larvae undergo a vertical migration at night which is markedly influenced by salinity, especially under stratified conditions. Larvae remain in the water column on the ebb tide, a behavioural pattern which effectively carried them to favourable salinities for growth and development. Stage I larvae show an association with salt front regions. The sudden decline in larval abundance from stage I to stage II downstream from the front suggests a change from a pelagic to an epibenthic existence. Later larval stages failed to appear in the plankton. However, post-larvae were caught in the estuary and a juvenile migration from the estuary to freshwater was monitored.  相似文献   

4.
Whitemouth croaker (Micropogonias furnieri) larvae obtained and hydrographic data collected in the Rio de la Plata estuary (35°S–56°W) between 1987 and 2000 were used to explore the early life stages spatial and temporal distribution patterns and their relation to oceanographic features. The spatial distribution, restricted to a band in the inner part of the estuary, coincided with the bottom salinity front and the maximum turbidity zone (MTZ, turbidity front). Larvae were present during the warmest months (October through May) within a range of 14–24.5 °C temperature and 0.9–33 salinity. A vertically stratified sampling performed in the region where the largest abundance was found (December 2005 and March 2006) was used to test the hypothesis that larvae retention occurs in the bottom salinity front.The vertically stratified sampling showed larvae throughout the water column with high predominance in the river–estuary transition zone. A positive correlation between abundance and the bottom salinity horizontal gradient was found. The size analysis showed that the largest individuals (>10 mm SL), probably undergoing the settlement process, inhabited near the bottom and that the smallest (<10 mm SL) were present in the whole water column. Length distribution along the front showed no trend.Results support the estuarine retention hypothesis of previous studies on whitemouth croaker gravid females, eggs distribution and outcomes from a numerical simulation model. Retention in the salinity front/MTZ would allow larvae to benefit from food accumulation in the region, the high turbidity level provide shelter against predators and retention in the estuary secure closeness to the main nursery ground.  相似文献   

5.
Several flatfishes spawn in oceanic waters and pelagic larvae are transported inshore to settle in the nursery areas, usually estuaries, where they remain during their juvenile life. Nursery areas appear as extremely important habitats, not only for juveniles but also for the earlier planktonic larval fish. Yet, the majority of nursery studies tend to focus only on one development stage, missing an integrative approach of the entire early life that fishes spent within a nursery ground. Thus, the present study assessed the influence of environmental parameters on the dynamics of the larval and juvenile flatfishes, throughout their nursery life in the Lima Estuary. Between April 2002 and April 2004, fortnightly subsurface ichthyoplankton samples were collected and juveniles were collected from October 2003 until September 2005. Larval assemblages comprised nine flatfish species, while only six were observed among the juvenile assemblages. Solea senegalensis and Platichthys flesus were the most abundant species of both fractions of the Lima Estuary flatfishes. Larval flatfish assemblages varied seasonally, without relevant differences between lower and middle estuary. Platichthys flesus dominated the spring samples and summer and autumn periods were characterized by an increase of overall abundance and diversity of larval flatfishes, mainly S. senegalensis, associated with temperature increase and reduced river flow. On the contrary, during the winter abundance sharply decreased, as a consequence of higher river run-off that might compromised the immigration of incompetent marine larvae. Juvenile flatfishes were more abundant in the middle and upper areas of the estuary, but the species richness was higher near the river mouth. Sediment type, distance from the river mouth, salinity, temperature and dissolved oxygen were identified as the main environmental factors structuring the juvenile flatfish assemblages. Juveniles were spatially discrete, with the most abundant species S. senegalensis and P. flesus associated with the middle and upper estuary, while the remaining species were associated with the lower estuarine areas. The larval fraction exhibited distinct dynamics from the juvenile estuarine flatfish community. Larval flatfishes showed a strong seasonal structure mainly regulated by biological features as the spawning season and also by seasonal variations of water characteristics. On the other hand, juvenile flatfishes were markedly controlled by site specific characteristics such as sediments structure, distance from the river mouth and salinity regime. The present study emphasized the idea that the environmental control varies throughout the ontogenetic development, stressing the importance of integrating all the early life of a species in flatfish nursery studies.  相似文献   

6.
Alongshelf transport in the southern Middle Atlantic Bight is forced by buoyancy-driven currents originating in three large estuaries along the bight. These currents are strongest in the coastal ocean near the southern terminus of each estuary, while the analogous region on the northern side is characterized by weak subtidal flow. We used a combination of field observations and numerical modeling to test the hypothesis that these regions of weak subtidal flow are coastal null zones that serve as retention areas for larvae. The field study consisted of a four-day, shipboard investigation of the distribution of blue crab larvae (Callinectes sapidus) near the mouth of Delaware Bay (39°N, 75°W) in late summer, 2004. Hydrographic surveys of the study site were conducted with a hull-mounted, surface-measuring system. Results showed a sharp boundary between the null zone and the buoyancy-driven current to the south. Blue crab larvae were collected in surface plankton tows along a 30-km transect that encompassed these two areas. Stations with higher densities of larvae were clustered in the null zone during both ebb and flood tides. A numerical model was used to examine the physical mechanisms responsible for the observed distribution. Model results agreed with the field survey and showed that simulated larvae are aggregated in the null zone. The simulations also demonstrated that larvae spawned within the null zone have a much greater probability of settling in juvenile nursery habitat within the bay. The close agreement between field and model results provides consistent support for the hypothesis that coastal null zones associated with the buoyancy-driven circulation of large estuaries may allow retention of larvae in the vicinity of the natal spawning population.  相似文献   

7.
Although the recruitment of larvae and juveniles of marine fishes into estuaries has been well documented, little is known about the factors governing the immigration of estuary-associated marine fishes into estuaries. Fishes have a well-developed sense of smell and it has been suggested by several workers that olfactory cues of freshwater or estuarine origin serve as stimuli, attracting larvae and juveniles of estuary-associated species into estuaries. Attraction of postflexion Rhabdosargus holubi larvae to estuary and river water from the Kowie estuarine system, South Africa, was measured using a rectangular choice chamber. In experiments, conducted during peak recruitment periods, larvae selected estuary and river water with a significantly higher frequency than sea water. This study, the first to assess the possible role of olfaction in the recruitment process of an estuary-associated marine fish species, demonstrates that larvae are able to recognise water from different origins, probably based on odour.  相似文献   

8.
English sole, Parophrys vetulus, spawn in shelf waters off the west coast of North America and early development occurs in coastal waters. Near metamorphosis, however, larvae recruit to nearshore and estuarine nursery areas, an uncommon life-history feature for a species in this region. Recruitment of larval P. vetulus to Yaquina Bay, Oregon, was sampled with moored nets on a weekly basis. Recruitment began during night flood tides in late February and was characterized by three peaks during the season. Planktonic recruitment continued into June, whereas benthic juveniles began to emigrate from the estuary in late May.The data suggest that two developmental stages of recruits immigrated to Yaquina Bay. The first are newly transforming larvae which enter the bay earliest within each peak of recruitment; peaks of abundance are related to onshore Ekman transport. This transport also brings larvae to shallow areas along the open coast where they settle. These transforming stages are still capable of pelagic swimming activity and continue to recruit to the estuary, typically swimming deeper in the water column than the early stages. Estuarine factors, particularly bottom salinity at the end of ebb tide, are most strongly correlated with recruitment of these stages. It seems that tidal stream transport is the primary mechanism used by English sole to recruit to the estuary, but the mechanism of locating the estuary and timing of entry is relatively complex.  相似文献   

9.
In this paper we describe results of a study designed to test the hypothesis that coastal regions with weak subtidal flow (i.e., coastal null zones) may serve as retention areas for estuarine larval forms. Our investigation assessed the distribution of 3 taxa of crab larvae (Callinectes sapidus, Uca spp., and Hexapanopeus angustifrons) within a 200-km2 region encompassing the mouth of Delaware Bay (ca. 39° N, 75° W). Previous studies had shown that larvae of C. sapidus and Uca spp. are exported to the coastal ocean, while larvae of H. angustifrons are retained within the estuary. In the present investigation, we conducted simultaneous plankton tows at 3 stations during peak spawning season. Samples were collected from a depth of 1 m every 30 min throughout a complete tidal cycle. One station was located 15 km within the bay and was subjected to strong flow at tidal frequency. A second station was located within a southward-flowing coastal current near the southern terminus of the bay at Cape Henlopen. A final station was located in a coastal area of weak subtidal flow near Cape May at the northern terminus of the bay. Results provide a unique synoptic view of larval distributions in 3 distinct hydrographic regimes in the mouth of a major estuary. The coastal-current station was characterized by low concentrations of newly hatched C. sapidus and Uca zoeae, while the null-zone station had high densities of both early and advanced larval stages of these two taxa. In contrast, the station located within the bay had few C. sapidus or Uca zoeae and was dominated by both early and advanced stages of the mud crab H. angustifrons. These data provide clear evidence for the retention of exported larval forms in a coastal null zone associated with the circulation of a large estuary and thus are consistent with our hypothesis.  相似文献   

10.
The composition of the larval fish assemblage at the mouth of the Kosi Estuary, KwaZulu-Natal, was investigated. Fish larvae were collected from a sample site adjacent to a rocky reef within the estuary, 200 m upstream from the mouth, on six occasions between January 1988 and March 1989. A total of 2 418 fish larvae, representing 60 families and 154 taxa, was collected. The catch was dominated by the families Myctophidae (13,8%), Gobiidae (10,1%), Tripterygiidae (8,2%), Engraulidae (6,4%), Blenniidae (4,7%), Labridae (4,4%), Pempheridae (4,4%), Apogonidae (3,7%), Sparidae (3,6%) and Schindleriidae (2,6%). The most abundant larval species were the engraulid Stolephorus holodon and the tripterygiid Euneapterygius clarkae. The larval assemblage in the estuary reflected the nearshore coral reef fish community and was determined by oceanic and tidal conditions. Larval densities were significantly greater (p < 0,05) on flood tides than on ebb tides. Most larvae (50%) were reef-associated, estuarine-associated species contributing 28% of the total taxa. The presence of oceanic taxa, in particular myctophids, was attributed to shoreward intrusions of Agulhas Current surface water. The Kosi Estuary possibly plays an important role as a retention area and the associated reef functions as a settlement site for recruiting reef fish.  相似文献   

11.
《Journal of Sea Research》2011,65(4):473-486
One of the present concerns of fish biologists involves defining and identifying nursery habitats in the context of conservation and resource management strategies. Fish nursery studies usually report upon nursery occupation during the latter juvenile stages, despite the fact that recruitment to nurseries can start early in life, during the larval phase. Here we investigated the use of a temperate estuarine nursery area, the Lima estuary (NW Portugal), by initial development stages of flatfish species before and after metamorphosis, integrating the larval and juvenile phases. The Lima estuarine flatfish community comprised twelve taxa, seven of which were present as pelagic larvae, six as juveniles and three as adults. There was a general trend of increasing spring–summer abundance of both larvae and juveniles, followed by a sharp winter decrease, mainly of larval flatfishes. The Lima estuary was used by Solea senegalensis, Platichthys flesus and Solea solea as a nursery area, with direct settlement for the two first species. In contrast, indirect settlement was suggested for S. solea, with metamorphosis occurring outside the estuarine area. Estuarine recruitment of S. senegalensis varied between years, with young larvae occurring in the estuary throughout a prolonged period that lasted 6–9 months, corroborating the protracted spawning season. P. flesus, the second most abundant species, exhibited a typical spring estuarine recruitment, without inter-annual variations. Developed larvae arrived in the estuary during spring, whereas the 0-group juveniles emerged in the following summer period. The present study contributes new insight to our understanding of the economically important S. senegalensis, and highlights the importance of integrating the planktonic larval phase into traditional flatfish nursery studies.  相似文献   

12.
The larvae of two carangid fishes, silver trevally (Pseudocaranx dentex) and yellowtail scad (Trachurus novaezelandiae), were compared among coastal water masses and the East Australian Current (EAC). Samples followed a north to south gradient including a southern region of upwelling, generated as the EAC separated from the coast. Mean larval carangid densities were greater in the mixed layer (10-30 m) than the surface, but there was no difference between inshore and offshore stations or along latitudinal gradients. Overall, P. dentex recent larval growth over two days pre-capture was faster than T. novaezelandiae, and faster at inshore, coastal stations than in the EAC. Integrated larval growth rate (mm d−1) was usually faster at inshore stations for both species. T. novaezelandiae were enriched in both nitrogen (??15N) and carbon (??13C) stable isotopes relative to P. dentex. Larvae of both species captured within the upwelling region were enriched in ??15N and depleted in ??13C relative to other sites. Recent larval growth had a significant positive relationship with fluorescence (as a proxy of chlorophyll a biomass), and integrated larval growth rate had a significant positive relationship with fluorescence and larval isotope (??15N) composition. Recent and integrated growth of larval T. novaezelandiae and P. dentex was enhanced by EAC separation and upwelling, and also in coastal water; stimulated by food availability, and potentially through exploitation of a different trophic niche.  相似文献   

13.
Results of a three-year survey of the occurrence of Callinectes sapidus larvae in the mouth of Delaware Bay indicated that stage I zoea larvae were most abundant insurface water as compared to mid-depths and near bottom. The major peak in abundance of stage I zoea larvae occurred in early August with a secondary peak in early September. Peaks in abundance of megalopae occurred five weeks after the respective peaks in zoeal abundance. Zoea stages II–VIII were not collected in the bay mouth. Results of sampling every 3 h over consecutive tidal cycles showed that stage I zoea larvae were most common in the water column on ebbing tidal currents. Megalopae were most common in the water column on flooding tidal currents, suggesting a tidally related, vertical migration. It was concluded that stage I zoea larvae are flushed from the estuary and undergo development on the continental shelf. Megalopae are then transported back to inshore waters by a combination of winds and currents and invade the estuary by means of migration into the water column on flooding tidal currents and migration to the bottom on ebbing tidal currents.  相似文献   

14.
The effect of environmental variables on the vertical structure of larval fish assemblages in a tropical coastal lagoon was analyzed. Ichthyoplankton samples were collected from the near-bottom and surface strata near the mouth of a subtropical lagoon during contrasting seasonal conditions of temperature, photoperiod, light intensity, and tidal heights. During summer, larval fish assemblages had high species richness (R) and were dominated by tropical species. During winter, assemblages had lower R values and were dominated by subtropical and temperate species. Vertical distribution patterns of the taxa were determined by the interaction of environmental variables and behavior of each species to maintain their position in a stratum in the water column, or to achieve vertical migrations induced by environmental stimuli that, in this case, were thermal gradient, column water stratification, and intensity of light. Depth position and vertical migration of fish larvae, coupled with the flood and ebb tide conditions, played an important role in their retention and displacement toward the lagoon. Fish larvae with distribution restricted to the inner part of the inlet, such as Achirus mazatlanus, Etropus sp., and several gobies, were more abundant in the near-bottom stratum during the ebb tide, allowing them to avoid exportation, whereas those that could spawn outside, but depended on the inlet as a nursery area, were more abundant near the surface during flood tide, such as Abudefduf troschelii and Stegastes rectifraenum.  相似文献   

15.
Patterns of vertical distribution in marine invertebrate larvae interact with coastal hydrodynamics to determine cross-shore distributions, dispersal ranges, and scales of connectivity among populations. We present observations on the vertical distribution of barnacle larvae from southern California, collected from 3 depth intervals every 2 h and over a 48-h period at a fixed nearshore station. Larvae were identified to species and stage of development, and their vertical distributions were tested for day/night and between-stage differences within each species, as well as for correlations with environmental variability. Stage-specific patterns of vertical distribution were distinct and consistent across species. Nauplii were most abundant near the surface at all times, and were numerically dominated by Chthamalus spp. (78% of Nn = 1835). Cyprids were substantially less abundant than nauplii in our samples (Nc = 146) and corresponded mostly to the subtidal barnacle Balanus nubilus (84%). Despite the lower counts and different species composition, our data suggest that cyprids remain within the mid-depth and bottom layers, and that changes in their mean depth of distribution (MDD) may track changes in pycnocline depth. Temporal changes in nauplii MDD were not correlated with water-column variability, wind forcing, or tidal height. The apparent vertical segregation of nauplii and cyprids may be related to previously documented differences in the cross-shore distribution of these stages.  相似文献   

16.
Fish larvae and hydrographic data collected in the Gulf of California (GC) in December 2002 are used to describe larval fish assemblages (LFAs) and to explore their relationships with environmental variables (temperature, salinity, dissolved oxygen, fluorescence maximum, ?? and superficial chlorophyll a). The Bray–Curtis dissimilarity index defined three LFAs, distributed in areas with distinctly different environmental conditions. The affinity of most of the species with the environmental characteristics of their areas of distribution could be interpreted as an indication that spawning occurred inside those areas. Particle tracking in current fields from a 3D numerical model and connectivity matrices are used to assess larval retention in the LFA areas. The technique is well suited for seas like the GC that have well-defined circulation patterns. On time scales around 30 days, retention (from 56% to 73% of the particles) occurred (1) for the North LFA in the Upper GC, (2) for the Channel-Center LFA in the anticyclone over the Northern GC and in Ballenas Channel, and (3) for the South LFA in the eddy over San Pedro Mártir basin and in the shallow zone off the peninsula. Therefore, the Lagrangian analysis revealed that the observed LFAs have a permanency long enough to allow fish larvae to remain in a favorable environment until they develop motility. The main particle export path (less than 26% of the particles) was from the North to the South LFA, following the anticyclonic main flow and coinciding with the gradient in species number and larval abundance.  相似文献   

17.
The objectives of this study were to (1) investigate whether the availability of suitable zooplankton prey limits the distribution of the coastal larval areas of pike (Esox lucius) in two archipelago areas of the northern Baltic Sea and (2) compare the availability of zooplankton prey in spring between different types of coastal littoral habitat. According to the results, reed belt habitats formed by Phragmites australis constitute hot spots for zooplankton prey in the coastal ecosystem. During the spring, reed-covered shores of the inner archipelago maintained more than 10 times higher densities of copepods and cladocerans, the preferred prey for larval pike, compared to the other studied shores. Temperature conditions were also most favourable in the reed belt habitat. Thus, the reed belts of the inner and middle archipelago were shown to form the best habitat for larval pike in the coastal area of the northern Baltic Sea, and this was also the only habitat where pike larvae were found. Our results suggest that the poor survival and recruitment of pike in the outer archipelago, however, cannot exclusively be explained by sub-optimal feeding conditions of the larvae. There are also other important factors, presumably connected to the exposure to the open sea, that affect the distribution of the pike larvae. Our results, however, highlight the importance of sheltered coastal reed belt shores as reproduction habitat for spring-spawning fish in the northern Baltic Sea. Further, this study disproves the assumption that the seaweed bladder wrack (Fucus vesiculosus) forms a reproduction habitat for pike in the coastal area.  相似文献   

18.
The hydrography and distributions of cod larvae on Georges Bank were surveyed during two research cruises in April and May 1993 in order to relate larval drift between cruises to the vernal intensification of the frontal component of the residual circulation. We observed the transport of two patches of cod larvae. One patch, which had maximum larval cod densities of 45 larvae 100 m−3 in April, appeared to have been advected south about 75 km between surveys, while the other, which had maximum larval cod densities of 20 larvae 100 m−3 in April, appeared to have been advected north-northeast about 25 km. Maximum larval densities in each patch sampled during the second cruise in May were 15 and 18 larvae 100 m−3, respectively, and mean growth in total length for larvae in the two patches was approximately 5.5 mm and 4.5 mm, respectively, between the two cruises. During the April cruise there was a large volume of anomalous cold, fresh water, of Scotian Shelf origin, which occupied much of the eastern third of Georges Bank. During May, relatively cold, fresh water appeared in a band from the Northeast Peak along the Southern Flank, between Georges Bank water on the top of the Bank, and upper Slope Water offshore. The distribution of cold, fresh water suggests its participation in the general clockwise circulation around the Bank. The transport of cod larvae comprising the first patch appeared to become organized within, and move along, the frontal boundary established by the Scotian Shelf-like water mass, while larvae in the second patch, which we assumed to have moved to the north, may have been transported northward in an on-Bank flow of warmer and saltier upper Slope Water, which may have originated from a Gulf Stream Ring. Based upon observed transport of the first patch of larvae in relation to the frontal boundary, we present a conceptual model of frontal mixing currents on Georges Bank, where current velocities may reach 5 cm s−1 at the depth of the pycnocline. We suggest that this frontal component of the residual circulation, which is in addition to that resulting from tidal rectification, may be important in the transport of fish larvae, and that interannual variability in the degree of intrusion of extrinsic water masses may contribute to variable larval cod drift patterns, to variable larval cod retention on the Bank, and ultimately, to variable larval fish recruitment to the early juvenile stage.  相似文献   

19.
The Lima estuary (NW Portugal) is at the end of an international watershed, whose potential role as a spawning and nursery habitat for local fish populations has not been previously examined. To address this knowledge gap, fortnightly plankton surveys were conducted between April 2002 and April 2004. A total of 12,903 larvae, belonging to 20 families and 50 taxa were collected, with a mean abundance of 8 individuals per 100 m3. Gobiidae was the most abundant family comprising 71% of the total catch, followed by Clupeidae with 12% of the total. The top six abundant taxa (Pomatoschistus spp., Sardina pilchardus, Ammodytes tobianus, unidentified Clupeidae, Symphodus melops and Solea senegalensis) represented 91% of the total catch. Fish larvae showed a seasonal trend with abundances increasing during spring and summer. Diversity was generally low (H = 0.65) with high dominance of very few taxa. Near the ocean, the larval fish assemblage was more diverse due to the presence of marine species. In the lower estuary Channel zone, abundance was lower than in the two upstream salt marsh zones (North and South zones) and no statistical differences in abundance or diversity values were found within the latter zones. ANOSIM results demonstrated seasonal differences in the species composition, mainly during the second winter period which was typified by a pelagic species A. tobianus. The community in the Channel zone was more diverse in comparison with the other zones, which were highly dominated by the most abundant species. The spatial and temporal trends of the most abundant species were typical for Iberian estuaries, with the exception of the low abundance of anchovy larvae and the unusually high numbers and frequency of S. pilchardus, usually mentioned as accidental in estuarine systems. Overall results suggest that the Lima estuary larval fish assemblage has a strong seasonality and affinity to the salt marsh zones. It seems that spawning seasonality controlled the presence of temporary estuarine residents, while environmental aspects controlled the general abundance trend of the resident species.  相似文献   

20.
To describe the larval and juvenile fish fauna and to evaluate the relative contribution of the ocean and the estuary as settlement areas for benthic species, we compared the composition and abundance of larval fish supply to that of recently settled juvenile fishes in both ocean and an adjacent estuary habitats in southern New Jersey. The study was conducted from May to November 1992 in the Great Bay–Little Egg Harbor estuary (<1–8 m sampling depth) and on the adjacent inner continental shelf in the vicinity of Beach Haven Ridge (8–16 m). During the study more larvae nearing settlement (postflexion) were captured in the estuary than in the ocean. Settlement occurred earlier in the estuary than in the ocean perhaps under the influence of earlier, seasonal warming of estuarine waters. There appeared to be two spatial patterns of settlement in the study area based on the dominant species (n = 17) represented by a sufficient number of individuals (n  25 individuals). There were species that primarily settle in the estuary, as represented by both estuarine residents (n = 3) and transients (n = 4), and those that settle in both the estuary and the ocean (n = 10). However, there were no species whose larvae were present in the estuary yet settle in the ocean. The fact that many of the species settle in both the estuary and the ocean indicates an overlap between these habitats because, at least for some species, these habitats may function in the same way. Further resolution of fish settlement patterns, and its influence on recruitment will need to rely on synoptic comparisons between estuaries and the ocean over multiple years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号