首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Large Zostera marina meadows (covering 13.6 km2) existed in the Nakdong River estuary on the south coast of Korea until the mid-1980s, but these Z. marina beds nearly disappeared due to reclamation of adjacent mud flats for the construction of a port and industrial complex during the late 1980s. Partial recovery of Z. marina meadows occurred recently, and Z. marina coverage of about 0.3 km2 was observed in this estuary. In this study, shoot morphology, density, biomass, productivity, and tissue nutrient content were measured to evaluate the current status of the Z. marina meadows by comparing these data to those for persistent seagrass meadows in similar geographical areas. Additionally, we examined the ecological roles of Z. marina in this estuary after recovery from the large-scale disturbance. Shoot density (151 shoots m−2) and total biomass (141 g DW m−2) in the estuary were similar to those reported from other Z. marina meadows in Korea. Annual leaf production (1726 g DW m−2 y−1) was higher than generally observed for Z. marina in other geographical areas. These results imply that the existing Z. marina meadows in this estuary have adjusted to local environmental conditions that changed after large-scale reclamation. Estimated annual whole plant carbon (C) and nitrogen (N) incorporations based on shoot production and tissue C and N content were 810.0 g C m−2 y−1 and 59.7 g N m−2 y−1, respectively. These values were equivalent to 2.4 × 105 kg C y−1 and 1.8 × 104 kg N y−1 for all Z. marina beds in the Nakdong River estuary. This high C and N incorporation into Z. marina tissues suggests that existing Z. marina meadows play important roles in C and N cycles in this estuary. Although the currently existing Z. marina beds in this estuary are persisting and play an important ecological role, anthropogenic factors that cause seagrass declines still affect the estuary. Thus, effective management and monitoring of Z. marina beds and environmental factors are critical to protecting and conserving this invaluable component of the Nakdong River estuary.  相似文献   

2.
Mangrove trees may allocate >50% of their biomass to roots. Dead roots often form peat, which can make mangroves significant carbon sinks and allow them to raise the soil surface and thus survive rising sea levels. Understanding mangrove root production and decomposition is hence of theoretical and applied importance. The current work explored the effects of species, site, and root size and root nutrients on decomposition. Decomposition of fine (≤3 mm diameter) and coarse (>3 mm diameter, up to a maximum of ∼9 mm) roots from three mangrove species, Avicennia marina, Bruguiera gymnorrhiza and Ceriops tagal was measured over 12 months at 6 sites along a tidal gradient in Gazi Bay, Kenya. C:N and P:N ratios in fresh and decomposed roots were measured, and the effects on decomposition of root size and age, of mixing roots from A. marina and C. tagal, of enriching B. gymnorrhiza roots with N and P and of artefacts caused by bagging roots were recorded. There were significant differences between species, with 76, 47 and 44 % mean dry weight lost after one year for A. marina, B. gymnorrhiza and C. tagal respectively, and between sites, with generally slower decomposition at dryer, high tidal areas. N enriched B. gymnorrhiza roots decomposed significantly faster than un-enriched controls; there was no effect of P enrichment. Mixing A. marina and C. tagal roots caused significantly enhanced decomposition in C. tagal. These results suggest that N availability was an important determinant of decomposition, since differences between species reflected the initial C: N ratios. The relatively slow decomposition rates recorded concur with other studies, and may overestimate natural rates, since larger (10–20 mm diameter), more mature and un-bagged roots all showed significantly slower rates.  相似文献   

3.
This study shows results on litterfall dynamics and decay in mangrove stands of Avicennia germinans distributed along a latitudinal gradient (three forest sites) in the Gulf of California, in order to assess whether internal sources could support the observed mangrove ecosystem organic deficit in this arid tropic. Total mean annual litterfall production increased southward (712.6 ± 53.3, 1501.3 ± 145.1 and 1506.2 ± 280.5 g DW m−2 y−1, in the Yaqui, Mayo and Fuerte areas respectively), leaves being the main component of litter in all locations during the entire year, followed by fruits. The wet season (June–September) showed the highest litterfall rates through fruits. The temporal trend of litterfall production was significantly explained through mean air temperature (R2 = 68%) whilst total annual litter production in the entire region showed a statistically significant relationship with total soil phosphorus, salinity, total nitrogen, organic matter and tree height (R2 = 0.67). Throughout 117 days of the decomposition experiment, the litter lost 50% of its original dry weight in 5.8 days (average decay rate of 0.032 ± 0.04 g DW d−1) and there were not significant differences in the remaining mass after 6 days. The percentage of both C and P released from the litter correlated significantly with the ratio of tidal inundated days to total experiment days (R2 = 0.62, p = 0.03 and R2 = 0.67, p = 0.02, respectively); however, the frequency of tidal inundation only showed a significant increase in C release from Avicennia litter after 6 and above 48 days of decomposition. Whereas the total C content of litter bags decreased linearly over the decomposition to (% Total C = 5.52 − 0.46 days, R2 = 0.81, p = 0.0005), N content displayed an irregular pattern with a significant increase of decay between 48 and 76 days from the beginning of the experiment. The pattern for relative P content of litter revealed reductions of up to 99% of the original (%tot-P = −9.77 to 1.004 days, R2 = 0.72, p = 0.01) although most of the P reduction occurred between 17 and 34 days after the experiment started. Soil N and P contents, which exhibited significant differences in the course of the decomposition experiment, appeared to show significant differences between sampling sites, although they were not related to tidal influence, nor by leaf and nutrient leaching. In a global basis, C/N litter ratios decreased linearly (C/N = 32.86 − 0.1006 days, R2 = 0.62, p = 0.02), showing a strong and significant correlation with meteorological variables (R2 = 0.99, p = 0.01). C/P ratios of litter increased through an exponential function (C/P = 119.35e0.04day, R2 = 0.89, p < 0.001). Changes in the remaining percentage of litter mass during the experiment were significantly correlated with soil C/N ratio (R2 = 0.56, p = 0.03) as well as with the soil C/P ratio (R2 = 0.98, p < 0.001). Our results of litter decomposition dynamics in this mangrove support the fact of null net primary productivity of the arid mangrove wetlands: fast litter decomposition compensates the ecosystem organic deficit in order to sustain the mangrove productivity. Litter decomposition plays a key role in the ecosystem metabolism in mangroves of arid tropics.  相似文献   

4.
Dissolved inorganic carbon (DIC) and ancillary data were obtained during the dry and rainy seasons in the waters surrounding two 10-year-old forested mangrove sites (Tam Giang and Kiên Vàng) located in the Ca Mau Province (South-West Vietnam). During both seasons, the spatial variations of partial pressure of CO2 (pCO2) were marked, with values ranging from 704 ppm to 11481 ppm during the dry season, and from 1209 ppm to 8136 ppm during the rainy season. During both seasons, DIC, pCO2, total alkalinity (TAlk) and oxygen saturation levels (%O2) were correlated with salinity in the mangrove creeks suggesting that a combination of lower water volume and longer residence time (leading to an increase in salinity due to evaporation) enhanced the enrichment in DIC, pCO2 and TAlk, and an impoverishment in O2. The low O2 and high DIC and pCO2 values suggest that heterotrophic processes in the water column and sediments controlled these variables. The latter processes were meaningful since the high DIC and TAlk values in the creek waters were related to some extent to the influx of pore waters, consistent with previous observations. This was confirmed by the stochiometric relationship between TAlk and DIC that shows that anaerobic processes control these variables, although this approach did not allow identifying unambiguously the dominant diagenetic carbon degradation pathway. During the rainy season, dilution led to significant decreases of salinity, TAlk and DIC in both mangrove creeks and adjacent main channels. In the Kiên Vàng mangrove creeks a distinct increase of pCO2 and decrease of %O2 were observed. The increase of TSM suggested enhanced inputs of organic matter probably from land surrounding the mangrove creeks, that could have led to higher benthic and water column heterotrophy. However, the flushing of water enriched in dissolved CO2 originating from soil respiration and impoverished in O2 could also have explained to some extent the patterns observed during the rainy season. Seasonal variations of pCO2 were more pronounced in the Kiên Vàng mangrove creeks than in the Tam Giang mangrove creeks. The air–water CO2 fluxes were 5 times higher during the rainy season than during the dry season in the Kiên Vàng mangrove creeks. In the Tam Giang mangrove creeks, the air–water CO2 fluxes were similar during both seasons. The air–water CO2 fluxes ranged from 27.1 mmol C m−2 d−1 to 141.5 mmol C m−2 d−1 during the dry season, and from 81.3 mmol m−2 d−1 to 154.7 mmol m−2 d−1 during the rainy season. These values are within the range of values previously reported in other mangrove creeks and confirm that the emission of CO2 from waters surrounding mangrove forests are meaningful for the carbon budgets of mangrove forests.  相似文献   

5.
Using an integrated approach including satellite imagery analysis, field measurements, and numerical modeling, we investigated the damage to mangroves caused by the 2004 Indian Ocean tsunami at Pakarang Cape in Pang Nga Province, Thailand. Comparing pre- and post-tsunami satellite imagery of the study area, we found that approximately 70% of the mangrove forest was destroyed by the tsunami. Based on field observations, we found that the survival rate of mangroves increased with increasing stem diameter. Specifically, we found that 72% of Rhizophora trees with a 25–30 cm stem diameter survived the tsunami impact, whereas only 19% with a 15–20 cm stem diameter survived. We simulated the 2004 Indian Ocean tsunami using the nonlinear shallow-water wave theory to reproduce the tsunami inundation flow and investigated the bending moment acting on the mangrove trees. Results of the numerical model showed that the tsunami inundated areas along the mangrove creeks, and its current velocity reached 5.0 m s−1. Based on the field measurements and numerical results, we proposed a fragility function for mangroves, which is the relationship between the probability of damage and the bending stress caused by the maximum bending moment. We refined the numerical model to include the damage probability of mangrove forests using the obtained fragility function to investigate the tsunami reduction effect of mangrove forest. Under simple numerical conditions related to the mangrove forest, ground level, and incident wave, the model showed that a mangrove forest of Rhizophora sp. with a density of 0.2 trees m−2 and a stem diameter of 15 cm in a 400 m wide area can reduce the tsunami inundation depth by 30% when the incident wave is assumed to have a 3.0 m inundation depth and a wave period of 30 min at the shoreline. However, 50% of the mangrove forest is destroyed by a 4.5 m tsunami inundation depth, and most of the mangrove forest is destroyed by a tsunami inundation depth greater than 6 m. The reduction effect of tsunami inundation depth decreased when the tsunami inundation depth exceeded 3 m, and was mostly lost when the tsunami inundation depth exceeded 6 m.  相似文献   

6.
7.
A cross-system analysis of bulk sediment composition, total organic carbon (TOC), atomic C/N ratio, and carbon isotope composition (δ13C) in 82 surface sediment samples from natural and planted mangrove forests, bank and bottom of tidal creeks, tidal flat, and the subtidal habitat was conducted to examine the roles of mangroves in sedimentation and organic carbon (OC) accumulation processes, and to characterize sources of sedimentary OC of the mangrove ecosystem of Xuan Thuy National Park, Vietnam. Sediment grain sizes varied widely from 5.4 to 170.2 μm (mean 71.5 μm), with the fine sediment grain size fraction (< 63 μm) ranging from 11 to 99.3% (mean 72.5%). Bulk sediment composition suggested that mangroves play an important role in trapping fine sediments from river outflows and tidal water by the mechanisms of tidal current attenuation by vegetation and the ability of fine roots to bind sediments. The TOC content ranged from 0.08 to 2.18% (mean 0.78%), and was higher within mangrove forests compared to those of banks and bottoms of tidal creeks, tidal flat, and subtidal sediments. The sedimentary δ13C ranged from − 27.7 to − 20.4‰ (mean − 24.1‰), and mirrored the trend observed in TOC variation. The TOC and δ13C relationship showed that the factors of microbial remineralization and OC sources controlled the TOC pool of mangrove sediments. The comparison of δ13C and C/N ratio of sedimentary OC with those of mangrove and marine phytoplankton sources indicated that the sedimentary OC within mangrove forests and the subtidal habitat was mainly composed of mangrove and marine phytoplankton sources, respectively. The application of a simple mixing model showed that the mangrove contribution to sedimentary OC decreased as follows: natural mangrove forest > planted mangrove forest > tidal flat > creek bank > creek bottom > subtidal habitat.  相似文献   

8.
Pteropods in Southern Ocean ecosystems   总被引:1,自引:0,他引:1  
To date, little research has been carried out on pelagic gastropod molluscs (pteropods) in Southern Ocean ecosystems. However, recent predictions are that, due to acidification resulting from a business as usual approach to CO2 emissions (IS92a), Southern Ocean surface waters may begin to become uninhabitable for aragonite shelled thecosome pteropods by 2050. To gain insight into the potential impact that this would have on Southern Ocean ecosystems, we have here synthesized available data on pteropod distributions and densities, assessed current knowledge of pteropod ecology, and highlighted knowledge gaps and directions for future research on this zooplankton group.Six species of pteropod are typical of the Southern Ocean south of the Sub-Tropical Convergence, including the four Thecosomes Limacina helicina antarctica, Limacina retroversa australis, Clio pyramidata, and Clio piatkowskii, and two Gymnosomes Clione limacina antarctica and Spongiobranchaea australis. Limacina retroversa australis dominated pteropod densities north of the Polar Front (PF), averaging 60 ind m−3 (max = 800 ind m−3) and 11% of total zooplankton at the Prince Edward Islands. South of the PF L. helicina antarctica predominated, averaging 165 ind m−3 (max = 2681 ind m−3) and up to >35% of total zooplankton at South Georgia, and up to 1397 ind m−3 and 63% of total zooplankton in the Ross Sea. Combined pteropods contributed <5% to total zooplankton in the Lazarev Sea, but 15% (max = 93%) to macrozooplankton in the East Antarctic. In addition to regional density distributions we have synthesized data on vertical distributions, seasonal cycles, and inter-annual density variation.Trophically, gymnosome are specialist predators on thecosomes, while thecosomes are considered predominantly herbivorous, capturing food with a mucous web. The ingestion rates of L. retroversa australis are in the upper range for sub-Antarctic mesozooplankton (31.2-4196.9 ng pig ind−1 d−1), while those of L. helicina antarctica and C. pyramidata are in the upper range for all Southern Ocean zooplankton, in the latter species reaching 27,757 ng pig ind−1 d−1 and >40% of community grazing impact. Further research is required to quantify diet selectivity, the effect of phytoplankton composition on growth and reproductive success, and the role of carnivory in thecosomes.Life histories are a significant knowledge gap for Southern Ocean pteropods, a single study having been completed for L. retroversa australis, making population studies a priority for this group. Pteropods appear to be important in biogeochemical cycling, thecosome shells contributing >50% to carbonate flux in the deep ocean south of the PF. Pteropods may also contribute significantly to organic carbon flux through the production of fast sinking faecal pellets and mucous flocs, and rapid sinking of dead animals ballasted by their aragonite shells. Quantification of these contributions requires data on mucous web production rates, egestion rates, assimilation efficiencies, metabolic rates, and faecal pellet morphology for application to sediment trap studies.Based on the available data, pteropods are regionally significant components of the Southern Ocean pelagic ecosystem. However, there is an urgent need for focused research on this group in order to quantify how a decline in pteropod densities may impact on Southern Ocean ecosystems.  相似文献   

9.
The role of coastal lagoons and estuaries as sources or sinks of inorganic carbon in upwelling areas has not been fully understood. During the months of May–July, 2005, we studied the dissolved inorganic carbon system in a coastal lagoon of northwestern Mexico during the strongest period of upwelling events. Along the bay, different scenarios were observed for the distributions of pH, dissolved inorganic carbon (DIC) and apparent oxygen utilization (AOU) as a result of different combinations of upwelling intensity and tidal amplitude. DIC concentrations in the outer part of the bay were controlled by mixing processes. At the inner part of the bay DIC was as low as 1800 μmol kg−1, most likely due to high water residence times and seagrass CO2 uptake. It is estimated that 85% of San Quintín Bay, at the oceanic end, acted as a source of CO2 to the atmosphere due to the inflow of CO2-rich upwelled waters from the neighboring ocean with high positive fluxes higher than 30 mmol C m−2 d−1. In contrast, there was a net uptake of CO2 and HCO3 by the seagrass bed Zostera marina in the inner part of the bay, so the pCO2 in this zone was below the equilibrium value and slightly negative CO2 fluxes of −6 mmol C m−2 d−1. Our positive NEP and ΔDIC values indicate that Bahía San Quintín was a net autotrophic system during the upwelling season during 2005.  相似文献   

10.
Faunal communities at the deep-sea floor mainly rely on the downward transport of particulate organic material for energy, which can come in many forms, ranging from phytodetritus to whale carcasses. Recently, studies have shown that the deep-sea floor may also be subsidized by fluxes of gelatinous material to the benthos. The deep-sea scyphozoan medusa Periphylla periphylla is common in many deep-sea fjords in Norway and recent investigations in Lurefjorden in western Norway suggest that the biomass of this jellyfish currently exceeds 50000 t here. To quantify the presence of dead P. periphylla jellyfish falls (hereafter termed jelly-falls) at the deep seafloor and the standing stock of carbon (C) and nitrogen (N) deposited on the seafloor by this species, we made photographic transects of the seafloor, using a ‘Yo-Yo’ camera system during an opportunistic sampling campaign in March 2011. Of 218 seafloor photographs taken, jelly-falls were present in five, which resulted in a total jelly-fall abundance of 1×10-2 jelly-falls m−2 over the entire area surveyed. Summed over the entire area of seafloor photographed, 1×10-2 jelly-falls m−2 was equivalent to a C- and N-biomass of 13 mg C m−2 and 2 mg N m−2. The contribution of each jelly-fall to the C- and N-amount of the sediment in the immediate vicinity of each fall (i.e. to sediment in each 3.02 m2 image in which jelly-falls were observed) was estimated to be 568±84 mg C m−2 and 88±13 mg N m−2. The only megafaunal taxon observed around or on top of the jelly-falls was caridean shrimp (14±5 individuals jelly-fall−1), and shrimp abundance was significantly greater in photographs in which a jelly-fall was found (14±5 individuals image−1) compared to photographs in which no jelly-falls were observed (1.4±0.7 individuals image−1). These observations indicate that jelly-falls in this fjord can enhance the sedimentary C- and N-amount at the deep-sea floor and may provide nutrition to benthic and demersal faunas in this environment. However, organic enrichment from the jelly-falls found in this single sampling event and associated disturbance was highly localized.  相似文献   

11.
A survey within the French National Programme of Ecotoxicology was carried out in 2002, 2003 and 2004 to study the response of Nereis diversicolor populations (Polychaeta, Nereididae) to the impact of pollution in the Authie estuary (non-contaminated site) and in the Seine estuary (contaminated site). In the period studied, the density varied from 672 ind. m−2 to 3584 ind. m−2 in the Authie estuary and from 80 ind. m−2 to 920 ind. m−2 in the Seine estuary. Biomass varied from 3.94 g m−2 (dry weight) in February 2004 to 38.0 g m−2 in August 2003 in the Authie estuary and from 3.4 g m−2 in February 2002 to 0.6 g m−2 in February 2004 in the Seine estuary. Density and biomass of the populations of N. diversicolor were consistently lower in the Seine estuary than in the Authie estuary. Size frequency histograms permit the analysis of the cohorts as well as the elaboration of the growth curves. For the individuals from the Authie estuary, the relation between dry weight (DW) and length L3 (prostomium, peristomium and chaetiger 1) was DW = 4.2205 L32.9832. For those from the Seine estuary, the relation between dry weight and L3 was DW = 0.4697e1.7209L3. The individuals of N. diversicolor should belong to eight cohorts in Authie estuary (two cohorts each year) instead of six cohorts for those from the Seine estuary. These differences can be attributed to the effect of pollution on the population of N. diversicolor.  相似文献   

12.
We estimated primary and bacterial production, mineral nutrients, suspended chlorophyll a (Chl), particulate organic carbon (POC) and nitrogen (PON), abundance of planktonic organisms, mesozooplankton fecal pellet production, and the vertical flux of organic particles of the central Arctic Ocean (Amundsen basin, 89-88° N) during a 3 week quasi-Lagrangian ice drift experiment at the peak of the productive season (August 2001). A visual estimate of ≈15% ice-free surface, plus numerous melt ponds on ice sheets, supported a planktonic particulate primary production of 50-150 mg C m−2 d−1 (mean 93 mg C m−2 d−1, n = 7), mostly confined to the upper 10 m of the nutrient replete water column. The surface mixed layer was separated from the rest of the water column by a strong halocline at 20 m depth. Phototrophic biomass was low, generally 0.03-0.3 mg Chl m−3 in the upper 20 m and <0.02 mg Chl m−3 below, dominated by various flagellates, dinoflagellates and diatoms. Bacterial abundance (typically 3.7-5.3 × 105, mean 4.1 × 105 cells ml−1 in the upper 20 m and 1.3-3.7 × 105, mean 1.9 × 105 cells ml−1 below) and Chl concentrations were closely correlated (r = 0.75). Mineral nutrients (3 μmol NO3 l−1, 0.45 μmol PO4 l−1, 4-5 μmol SiO4 l−1) were probably not limiting the primary production in the upper layer. Suspended POC concentration was ∼30-105 (mean 53) mg C m−3 and PON ∼5.4-14.9 (mean 8.2) mg N m−3 with no clear vertical trend. The vertical flux of POC in the upper 30-100 m water column was ∼37-92 (mean 55) mg C m−2 d−1 without clear decrease with depth, and was quite similar at the six investigated stations. The mesozooplankton biomass (≈2 g DW m−2, mostly in the upper 50 m water column) was dominated by adult females of the large calanoid copepods Calanus hyperboreus and Calanus glacialis (≈1.6 g DW m−2). The grazing of these copepods (estimated via fecal pellet production rates) was ≈15 mg C m−2 d−1, being on the order of 3% and 20% of the expected food-saturated ingestion rates of C. hyperboreus and C. glacialis, respectively. The stage structure of these copepods, dominated by adult females, and their unsatisfied grazing capacity during peak productive period suggest allochthonous origin of these species from productive shelf areas, supported by their long life span and the prevailing surface currents in the Arctic Ocean. We propose that the grazing capacity of the expatriated mesozooplankton population would match the potential seasonal increase of primary production in the future decreased ice perspective, diminishing the likelihood of algal blooms.  相似文献   

13.
Although such ecosystems are fragile, this study shows that the anthropogenic damages inflicted on the mangrove forests of West Africa can be reversed over a relatively short time period if environmental conditions are favorable. The mangrove ecosystem of the microtidal Somone Estuary, Senegal, has undergone extreme changes during the last century. The area occupied by mangrove forest was estimated with a diachronic study by GIS for the period 1946-2006. Between 1946 and 1978, 85% of the area was progressively replaced by unvegetated mudflats in the intertidal zones and by barren area in the supratidal zones. Until 1990, this was mainly a result of traditional wood harvesting. The impact was exacerbated by the closing off of the estuary to the sea (1967-1969 and 1987) and by an extended drought (1970 onwards), which resulted in a lack of renewal of water, hypersalinization and acidification. The main factors controlling mangrove evolution in the Somone ecosystem, however, are anthropogenic. Until 1990, traditional wood cutting (for wood and oyster harvesting) was practiced by the local population. Between 1978 and 1989, a small area occupied by the mangroves was stabilized. Since 1992, a modification of mangrove logging and a new reforestation policy resulted in an exponential increase of mangrove area progressively replacing intertidal mudflats. Such success in the restoration of the ecosystem reforestation is supported by favorable environmental conditions: tidal flooding, groundwater influence, rainfall during the wet season, low net accretion rate of about 0.2-0.3 cm year−1, and a ban on the cutting of mangrove wood. The rate of mangrove loss from 1946 to 1978 was 44,000 m2 year−1, but this has been offset by restoration efforts resulting in an increase in mangrove area from 1992 to 2006 of 63,000 m2 year−1.  相似文献   

14.
Carbon and nitrogen stable isotope composition of a range of organisms collected from two intermittently connected floodplain pools in the Ross River estuary were analysed to assess the extent to which carbon fixed by terrestrial wetland producers is incorporated into adjacent aquatic food webs. The two pools differed in surrounding vegetation with one surrounded by mangroves and the other by the salt couch Sporobolus virginicus. At both pools, animals showed differences in δ13C, indicating differences in sources of carbon. Since δ13C values of C3 mangroves (−29.7 to −26.3‰) were very different from those of the C4 salt couch (−16.3 to −15.4‰), it was possible to determine the importance of terrestrial wetland producers by comparing isotope values of consumers between sites, in a species by species approach. Most animal species collected showed lower δ13C at the mangrove pool than at the Sporobolus pool, which indicates a greater incorporation of mangrove carbon at the mangrove pool. However, the animals’ isotopic shifts were also similar to that shown by epiphytes, and hence the differences in animal δ13C could also be a result of a dependence on these producers. The IsoSource model was useful to clarify this question, indicating that mangrove and salt marsh material was a crucial contributor to the diet of several fish and invertebrate species at both sites, indicating that carbon of terrestrial origin is incorporated in the estuarine food web.  相似文献   

15.
Nutrient concentrations, primary productivity, and nitrogen uptake rates were measured in coastal waters of the Mid-Atlantic Bight over a two-year period that included measurements from all four seasons. In order to assess carbon productivity and nitrogen demand within the context of the physical environment, the region was divided into three distinct hydrographic regimes: the Chesapeake and Delaware Bay outflow plumes (PL), the southern Mid-Atlantic shelf influenced by the Gulf Stream (SS), and the mid-shelf area to the north of the Chesapeake Bay mouth (MS). Annual areal rates of total nitrogen (N) uptake were similar across all regions (10.9 ± 2.1 mol N m−2 y−1). However, annual areal rates of net primary productivity were higher in the outflow plume region (43 mol C m−2 y−1), than along the Mid-Atlantic shelf and in areas influenced by the Gulf Stream (41 and 34 mol C m−2 y−1, respectively). Rates of net primary productivity were not well correlated with Chl a concentrations and were uncoupled with net N uptake rates. Seasonally averaged annual areal rates of net primary productivity for the Mid-Atlantic Bight measured in this study were higher than those calculated in previous decades and provide important validation information for biogeochemical models and satellite remote sensing algorithms developed for the region.  相似文献   

16.
Interlinked mangrove–seagrass ecosystems are characteristic features of many tropical coastal areas, where they act as feeding and nursery grounds for a variety of fishes and invertebrates. The autotrophic carbon sources supporting fisheries in Gazi bay (Kenya) were studied in three sites, two located in the tidal creeks flowing through extensive mangrove forests, another site located in the subtidal seagrass meadows, approximately 2.5 km away from the forest. Carbon and nitrogen stable isotope composition of 42 fish species, 2 crustacean species and a range of potential primary food sources (e.g., mangroves, seagrasses and epiphytes, macroalgae) were analysed. There was considerable overlap in the δ13C signatures between fish (−16.1 ± 2.1‰), seagrasses (−15.1 ± 3.0‰), seagrass epiphytes (−13.6 ± 3.3‰), and macroalgae (−20.4 ± 3.1‰). Nevertheless, the signatures for most primary producers were sufficiently distinct to indicate that the dominant carbon sources for fish were mainly derived from the seagrass and their associated epiphytic community, and possibly macroalgae. Mangrove-derived organic matter contributes only marginally to the overall fish food web. Carbon supporting these fish communities was derived directly through grazing by herbivorous and some omnivorous fishes, or indirectly through the benthic food web. Fishes from the mangrove creeks had distinctly lower δ13C signatures (−16.8 ± 2.0‰) compared to those collected in the adjacent seagrass beds (−14.7 ± 1.7‰). This indicated that these habitats were used as distinct sheltering and feeding zones for the fishes collected, with minimal degree of exchange within the fish communities despite their regular movement pattern.  相似文献   

17.
Turbidity and sediment transport in a muddy sub-estuary   总被引:2,自引:0,他引:2  
Sub-estuaries, i.e. tidal creeks and also larger estuaries that branch off the stem of their main estuary, are commonplace in many estuarine systems. Their physical behaviour is affected not only by tributary inflows, winds and tides, but also by the properties and behaviour of their main estuary. Measurements extending over more than an annual cycle are presented for the Tavy Estuary, a sub-estuary of the Tamar Estuary, UK. Generally, waves are small in the Tavy because of the short wind fetch. A several-hour period of up-estuary winds, blowing at speeds of between 7 and 10 m s−1, generates waves with significant wave heights of 0.25 m and a wave periodicity of 1.7 s that are capable of eroding the bed over the shallow, ca. 1.5 m-deep mudflats. Waves also influence sedimentation within and near salt marsh areas. An estuarine turbidity maximum (ETM) occurs in the Tavy's main channel, close to the limit of salt intrusion at HW. Suspended particulate matter (SPM) concentrations typically are less than 40 mg l−1 at HW, although concentrations can exceed 80 mg l−1 when tides and winds are strong. Flood-tide SPM inputs to the Tavy from the Tamar are greater during high runoff events in the River Tamar and also at spring tides, when the Tamar has a high-concentration ETM. Higher SPM concentrations are experienced on the mudflats following initial inundation. Without wave resuspension, this is followed by a rapid decrease in SPM for most of the tide, indicating that the mudflats are depositional at those times. SPM concentrations on the mudflats again increase sharply prior to uncovering. Peak ebb tidal speeds at 0.15 m above the mudflat bed can exceed 0.26 m s−1 at spring tides and 0.4 m s−1 following high runoff events, which are sufficient to cause resuspension. Time-series measurements of sediment bed levels show strong seasonal variability. Higher and lower freshwater flows are associated with estimated, monthly-mean sediment transport that is directed out of, or into, the upper sub-estuary, respectively. Seasonal sediment transfers between the estuary and its sub-estuary are discussed.  相似文献   

18.
Vodyanitskii mud volcano is located at a depth of about 2070 m in the Sorokin Trough, Black sea. It is a 500-m wide and 20-m high cone surrounded by a depression, which is typical of many mud volcanoes in the Black Sea. 75 kHz sidescan sonar show different generations of mud flows that include mud breccia, authigenic carbonates, and gas hydrates that were sampled by gravity coring. The fluids that flow through or erupt with the mud are enriched in chloride (up to ∼650 mmol L−1 at ∼150-cm sediment depth) suggesting a deep source, which is similar to the fluids of the close-by Dvurechenskii mud volcano. Direct observation with the remotely operated vehicle Quest revealed gas bubbles emanating at two distinct sites at the crest of the mud volcano, which confirms earlier observations of bubble-induced hydroacoustic anomalies in echosounder records. The sediments at the main bubble emission site show a thermal anomaly with temperatures at ∼60 cm sediment depth that were 0.9 °C warmer than the bottom water. Chemical and isotopic analyses of the emanated gas revealed that it consisted primarily of methane (99.8%) and was of microbial origin (δD-CH4 = −170.8‰ (SMOW), δ13C-CH4 = −61.0‰ (V-PDB), δ13C-C2H6 = −44.0‰ (V-PDB)). The gas flux was estimated using the video observations of the ROV. Assuming that the flux is constant with time, about 0.9 ± 0.5 × 106 mol of methane is released every year. This value is of the same order-of-magnitude as reported fluxes of dissolved methane released with pore water at other mud volcanoes. This suggests that bubble emanation is a significant pathway transporting methane from the sediments into the water column.  相似文献   

19.
The cycling and oxidation pathways of organic carbon were investigated at a single shallow water estuarine site in Trinity Bay, Texas, the uppermost lobe of Galveston Bay, during November 2000. Radio-isotopes were used to estimate sediment mixing and accumulation rates, and benthic chamber and pore water measurements were used to determine sediment-water exchange fluxes of oxygen, nutrients and metals, and infer carbon oxidation rates. Using 7Be and 234ThXS, the sediment-mixing coefficient (Db) was 4.3 ± 1.8 cm2 y−1, a value that lies at the lower limit for marine environments, indicating that mixing was not important in these sediments at this time. Sediment accumulation rates (Sa), estimated using 137Cs and 210PbXS, were 0.16 ± 0.02 g cm−2 y−1. The supply rate of organic carbon to the sediment-water interface was 30 ± 3.9 mmol C m−2 d−1, of which ∼10% or 2.9 ± 0.44 mmol C m−2 d−1was lost from the system through burial below the 1-cm thick surface mixed layer. Measured fluxes of O2 were 26 ± 3.8 mmol m−2 d−1 and equated to a carbon oxidation rate of 20 ± 3.3 mmol C m−2 d−1, which is an upper limit due to the potential for oxidation of additional reduced species. Using organic carbon gradients in the surface mixed layer, carbon oxidation was estimated at 2.6 ± 1.1 mmol C m−2 d−1. Independent estimates made using pore water concentration gradients of ammonium and C:N stoichiometry, equaled 2.8 ± 0.46 mmol C m−2 d−1. The flux of DOC out of the sediments (DOCefflux) was 5.6 ± 1.3 mmol C m−2 d−1. In general, while mass balance was achieved indicating the sediments were at steady state during this time, changes in environmental conditions within the bay and the surrounding area, mean this conclusion might not always hold. These results show that the majority of carbon oxidation occurred at the sediment-water interface, via O2 reduction. This likely results from the high frequency of sediment resuspension events combined with the shallow sediment mixing zone, leaving anaerobic oxidants responsible for only ∼10–15% of the carbon oxidized in these sediments.  相似文献   

20.
The annual total and organic mercury bioaccumulation pattern of Scrobicularia plana and Hediste diversicolor was assessed to evaluate the potential mercury transfer from contaminated sediments to estuarine food webs. S. plana was found to accumulate more total and organic mercury than H. diversicolor, up to 0.79 mg kg−1 and 0.15 mg kg−1 (wet weight) respectively, with a maximum annual uptake of 0.21 mg kg−1 y−1, while for methylmercury the annual accumulation was similar between species and never exceeded 0.045 mg kg−1 y−1. The higher organic mercury fraction in H. diversicolor is related to the omnivorous diet of this species. Both species increase methylmercury exposure by burrowing activities and uptake in anoxic, methylmercury rich sediment layers. Integration with the annual biological production of each species revealed mercury incorporation rates that reached 28 μg m−2 y−1, and to extract as much as 11.5 g Hg y−1 (of which 95% associated with S. plana) in the 0.4 km2 of the most contaminated area, that can be transferred to higher trophic levels. S. plana is therefore an essential vector in the mercury biomagnification processes, through uptake from contaminated sediments and, by predation, to transfer it to economically important and exploited estuarine species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号