首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The behavior and budget of Mn, Cd and Cu in the Gironde estuary were investigated through data from both the water column (WC) and sediment depth profiles. In the estuarine freshwater reaches, Mn and Cd removal from and Cu addition to the dissolved phase occurs with a magnitude equivalent to 10%, 30% and 25% of their respective annual fluvial gross dissolved input, respectively. In the saline estuary, diffusive benthic outflow is the main source of dissolved Mn (74% of the total gross dissolved input within the estuary) to the WC. In contrast, Cd (96%) and Cu (89%) are mainly released into the dissolved phase of the WC from fluvial, estuarine and dredging-related particles through complexation (Cd) and organic carbon mineralization (Cu). Anthropogenic activities (sediment dredging) induce pore water inputs, particulate sulfide oxidation and sediment resuspension, significantly contributing to the metal budget of the WC. The related amounts of metals released could be equivalent to 20–50% (Cd) and up to 70% (Cu) of their respective net dissolved addition. Mass balances suggest that a large part of the metals previously released into the dissolved phase from processes within the estuary are removed by suspended particles due to (co-)precipitation of Fe/Mn (oxy)hydroxides and scavenging on autochthonous organic matter. On an annual basis, the Gironde estuary acts as a net sink of dissolved Mn, removing 60% of the dissolved fluvial inputs, and as a net source of dissolved Cd and Cu, contributing ∼ 85% and 20–45% to the dissolved Cd and Cu fluxes to the ocean.  相似文献   

2.
The chemical forms and distribution of dissolved arsenic species in the estuary of the River Beaulieu (Hampshire, U.K.) are reported. ‘Inorganic arsenic (V)’ in both the marine and riverine estuary inputs are in true solution, passing through ultrafiltration membranes having a nominal molecular weight cut-off of 500 daltons. Extensive removal of dissolved ‘inorganic arsenic (V)’ is apparent from the distribution of arsenic in the estuary, with laboratory mixing experiments indicating that removal is favoured in the low salinity region. ‘Inorganic arsenic (III)’ and methylated arsenic species account for up to 41% and 70% of the dissolved arsenic, respectively, but are only found during the warmer months when water temperatures exceed ca. 12°C.  相似文献   

3.
Biomass and primary productivity of picophytoplankton (PP; phytoplankton <3 μm) and larger phytoplankton (>3 μm) were determined during an annual cycle along the salinity gradient in North Carolina’s Neuse River Estuary (NRE), a eutrophic, microtidal estuary. The PP were a major component of total phytoplankton biomass and productivity, contributing ∼35–44% of the total chlorophyll a (Chl a) and 42–55% of the total primary productivity. Chl a and productivity of PP decreased from the upper to lower estuary, although the PP contribution relative to larger phytoplankton remained nearly constant. Significant PP growth occurred in the spring, but PP productivity and biomass were maximal in summer. PP productivity and biomass were positively correlated with temperature and dissolved inorganic phosphorus concentrations, which were maximal in summer due to release from sediments. Biomass and productivity of PP and >3 μm phytoplankton were also positively correlated, suggesting that growth conditions favoring the onset of blooms of larger phytoplankton species will similarly affect PP. High PP productivity and biomass in the NRE support the notion that PP play an important role in the production and eutrophication potentials of this estuary. High PP productivity and biomass have been noted in several other temperate estuaries, all sharing a common feature with the NRE—long residence time. These findings challenge the assumption that PP relative importance should be minimal in eutrophic systems.  相似文献   

4.
This one-year survey conducted in the macrotidal estuary of Penzé (Brittany, Western part of the Channel, France) was aimed at examining the variations of the various dissolved and particulate copper species. Ten field stations along the whole freshwater–seawater mixing zone were sampled each month. Different biogeochemical parameters (SPM, chl-a, pH and DOC) were also measured. The levels in total dissolved and total particulate copper ranged from 1.8 to 9.5 nM and from 5 to 98 μg g−1, respectively; such amounts are indicative of a pollution-free system. Extractable C18 copper (non-polar hydrophobic organic copper species), in winter and spring, accounted for 30–40% of the total dissolved copper. In summer, this contribution rapidly rose to 60% in the salinity range 20–30; over the same period of time, total particulate copper decreased. The change in dissolved copper speciation and the lowering of particulate copper concentrations were attributed to the release of strong organic ligands by phytoplankton. Our field data evidenced a highly variable behaviour for the various copper species over the seasonal cycle, and then led us to identify the following mechanisms: (i) metal desorption from organic river-flown particles (winter and spring), (ii) metal desorption from resuspended sediment in the upstream section (summer), (iii) competition between particles, non-extractable C18 organic ligands and phytoplankton-released extractable C18 organic ligands to complex copper in the downstream section (summer), and (iv) removal of non-extractable C18 organic copper by adsorption (autumn). Dissolved copper species fluxes were assessed: most of metal inputs to the estuary (60–74%) corresponded to non-extractable C18 organic copper. Winter and spring metal output fluxes were mainly constituted of non-extractable C18 organic complexes; on the other hand, extractable C18 organic complexes were predominant in summer and autumn output fluxes.  相似文献   

5.
The larval fish assemblage was investigated in the shallow, nearshore region of a proposed marine protected area in eastern Algoa Bay, temperate South Africa, prior to proclamation. Sampling was conducted at six sites along two different depth contours at ∼5 m and ∼15 m to assess shore association. Larvae were collected by means of stepped oblique bongo net tows deployed off a ski-boat, twice per season for 2 years between 2005 and 2007. In total, 6045 larval fishes were collected representing 32 families and 78 species. The Gobiidae, Cynoglossidae, Clupeidae, Engraulidae and Sparidae were the dominant fish families. Catches varied significantly among seasons peaking in spring with a mean of ∼200 larvae/100 m3. Mean overall larval density was higher along the deeper contour, at ∼15 m (40 larvae/100 m3). The preflexion stage of development dominated catches at the ∼5 m (80%) and ∼15 m (73%) depth contours. Body lengths of Argyrosomus thorpei, Caffrogobius gilchristi, Diplodus capensis, Heteromycteris capensis and Solea turbynei, all estuary associated species, were larger at the shallow sites nearer to shore. Larvae of coastal species that produce benthic eggs dominated catches (75%) in the shallow sites (∼5 m) but were less abundant (32%) farther from shore at the deeper (∼15 m) sites. All developmental stages of D. capensis, Engraulis capensis, H. capensis, Sardinops sagax and two Pomadasys species were found in the study area. It appears that some species use the shallow nearshore as a nursery area.  相似文献   

6.
Anomalously high precipitation and river discharge during the spring of 2005 caused considerable freshening and depletion of dissolved inorganic carbon (DIC) in surface waters along the coastal Gulf of Maine. Surface pCO2 and total alkalinity (TA) were monitored by repeated underway sampling of a cross-shelf transect in the western Gulf of Maine (GOM) during 2004–05 to examine how riverine fluxes, mixing, and subsequent biological activity exert control on surface DIC in this region. Most of the variability in surface DIC concentration was attributable to mixing of low DIC river water with higher DIC, saline GOM waters, but net biological uptake of DIC was significant especially during the spring and summer seasons. The extent and persistence of the coastal freshwater intrusion exerted considerable influence on net carbon dynamics. Integrated over the 10-m surface layer of our study region (∼5 × 104 km2), net biological DIC uptake was 0.48 × 108 mol C during April–July of 2004 compared to 1.33 × 108 mol C during April–July of 2005. We found the temporal signature and magnitude of DIC cycling to be different in adjacent plume-influenced and non-plume regions. Extreme events such as the freshwater anomaly observed in 2005 will affect mean estimates of coastal carbon fluxes, thus budgets based on short time series of observations may be skewed and should be viewed with caution.  相似文献   

7.
To examine the influence of river discharge on plankton metabolic balance in a monsoon driven tropical estuary, daily variations in physico-chemical and nutrients characteristics were studied over a period of 15 months (September 2007 to November 2008) at a fixed location (Yanam) in the Godavari estuary, India. River discharge was at its peak during July to September with a sharp decrease in the middle of December and complete cessation thereafter. Significant amount of dissolved inorganic nitrogen (DIN, of 22–26 μmol l−1) and dissolved inorganic phosphate (DIP, of 3–4 μmol l−1) along with suspended materials (0.2–0.5 g l−1) were found at the study region during the peak discharge period. A net heterotrophy with low gross primary production (GPP) occurred during the peak discharge period. The Chlorophyll a (Chl a) varied between 4 and 18 mg m−3 that reached maximum levels when river discharge and suspended loads decreased by >75% compared to that during peak period. High productivity was sustained for about one and half months during October to November when net community production (NCP) turned from net heterotrophy to autotrophy in the photic zone. Rapid decrease in nutrients (DIN and DIP by ∼15 and 1.4 μmol l−1, respectively) was observed during the peak Chl a period of two weeks. Chl a in the post monsoon (October–November) was negatively related to river discharge. Another peak in Chl a in January to February was associated with higher nutrient concentrations and high DIN:DIP ratios suggest possible external supply of nitrogen into the system. The mean photic zone productivity to respiration ratio (P:R) was 2.38 ± 0.24 for the entire study period (September 2007–November 2008). Nevertheless, the ratio of GPP to the entire water column respiration was only 0.14 ± 0.02 revealing that primary production was not enough to support water column heterotrophic activity. The excess carbon demand by the heterotrophs could be met from the allochthonous inputs of mainly terrestrial origin. Assuming that the entire phytoplankton produced organic material was utilized, the additional terrestrial organic carbon supported the total bacterial activity (97–99%) during peak discharge period and 40–75% during dry period. Therefore, large amount of terrestrial organic carbon is getting decomposed in the Godavari estuarine system.  相似文献   

8.
Fluxes of dissolved forms of iron and manganese across the sediment–water interface were studied in situ in the Gulf of Finland and the Vistula Lagoon (Baltic Sea), and in the Golubaya Bay (Black Sea) from 2001 to 2005. Fluxes were measured using chamber incubations, and sediment cores were collected and sliced to assess the porewater and solid phase metal distribution at different depths. Measured and calculated benthic fluxes of manganese and iron were directed out of sediment for all sites and were found to vary between 70–4450 and 5–1000 µmole m− 2 day− 1 for manganese and iron, respectively. The behavior of the studied metals at various redox conditions in the near-bottom water and in the sediment was the main focus in this study. Our results show the importance of bottom water redox conditions for iron fluxes. We measured no fluxes at oxic conditions, intermediate fluxes at anoxic conditions (up to 200 μmole m− 2 day− 1) and high fluxes at suboxic conditions (up to 1000 μmole m− 2 day− 1). Total dissolved iron fluxes were generally dominated by iron(II). Contribution of iron(III) to the total iron flux did not exceed 20%. Obtained fluxes of manganese at all studied regions showed a linear correlation (r2 = 0.97) to its concentration in the porewater of the top sediment layer (0–5 mm) and did not depend on dissolved oxygen concentrations of bottom water. Organically complexed iron and manganese were in most cases not involved in the benthic exchange processes.  相似文献   

9.
Understanding trace metal behaviour in estuarine environments requires sampling strategies and analytical methods adapted to strong physical and geochemical gradients. In this study, we present a specific sampling strategy covering a wide range of hydrological conditions during nine cruises in 2003–2007 to characterise the behaviour of three dissolved metals (uranium, vanadium and molybdenum) in surface and bottom water along the salinity gradient of the highly turbid macrotidal Gironde Estuary using a solid–liquid extraction. Uranium behaved conservatively whatever the water discharges observed. The slight dissolved U depletion compared to the theoretical dilution line between the fluvial and marine end-members occasionally observed in the low salinity range (0–3) was attributed to the mixing of different water bodies of the Gironde tributaries. In contrast, dissolved V behaviour was largely influenced by the hydrological conditions, showing increasingly pronounced addition with decreasing freshwater discharges, (i.e. increasing residence times of water and particles in the estuary). This addition of dissolved V in the low- to mid-salinity range was attributed to desorption processes observed in the Maximum Turbidity Zone (MTZ). The distribution of dissolved Mo concentrations along the salinity gradient was highly variable. Apparent conservative, and non-conservative behaviours were observed and were related to the concomitance of desorption from SPM, inputs from sediments for additive distribution and biological uptake and removal into sediments for subtractive distribution. Based on the whole database (2003–2007), annual net fluxes to the coastal ocean were estimated for dissolved U (15.5–16.6 t yr−1) and V (31.3–36.7 t yr−1).  相似文献   

10.
Measurements of total dissolved arsenic (As(III+V)) and antimony (Sb(III+V) and their simple methylated species are presented for samples collected from three vertical profiles and along three surface transects in the Chatham Rise region, east of New Zealand. As(III+V) concentrations showed a slight increase with depth (16–17 nM at 25 m to 20 nM at 100 m) whereas Sb(III+V) concentrations were conservative with depth (1.02–1.12 nM). Along the three surface water transects, As(III+V) and Sb(III+V) concentrations showed little variation, with average concentrations of 18±2 and 0.99±0.05 nM, respectively. Inorganic arsenic was not correlated with orthophosphate (r2=0.01). Monomethyl- and dimethyl-arsenic (MMAs, DMAs) concentrations (0.04–0.01 and 0.65–0.07 nM, respectively) decreased with depth, suggesting surface water production by biota and degradation at depth. Along the Chatham Rise transect, DMAs concentrations increased on the Rise (0.65 nM maximum) compared to waters north and south of the Rise (∼0.22 nM). Fluctuation in MMAs concentrations were also seen for water samples collected on the Chatham Rise. Monomethyl-, dimethyl- and trimethyl-antimony (MMSb, DMSb, TMSb) species were detected in water samples collected along all the three surface water transects suggesting surface water production by biota. Concentrations of MMSb, DMSb and TMSb in water samples were fairly constant along all the three surface transects (0.06–0.07, 0.015–0.025 and 0.005–0.015 nM, respectively), showing no significant enrichment on the Chatham Rise. These arsenic and antimony results support the current global view that inorganic As and Sb are conservative and the methyl species are of biological origin.  相似文献   

11.
The spatial and temporal patterns in the hyperbenthic community structure (>500 μm) in the warm temperate, permanently open Kariega Estuary situated along the south-eastern coastline of South Africa was investigated monthly over a period of twelve months. Data were collected using a modified hyperbenthic sledge at six stations along the length of the estuary. Physico-chemical data indicate the presence of a constant reverse salinity gradient, with highest salinities measured in the upper reaches and lowest at the mouth of the estuary. Strong seasonal patterns in temperature, dissolved oxygen and total chlorophyll-a (chl-a) concentration were evident. Total average hyperbenthic densities ranged between 0.4 and 166 ind.m−3 in the lower net and between 0.2 and 225 ind.m−3 in the upper net. Hyperbenthic biomass values ranged between 0.02 and 11.9 mg.dry weight.m−3 in the lower net and between 0.02 and 17.4 mg.dry weight.m−3 in the upper net. Both the lower and upper nets were numerically dominated by decapods (mainly brachyuran crab zoea) with the exception of June and July 2008 when mysids (mainly Mesopodopsis wooldridgei) dominated, comprising up to 72.4 ± 58.14% of the total abundance in the lower net. A redundancy analysis (RDA) indicated that 99.2% of the variance in the hyperbenthic community structure could be explained by the first two canonical axes. Axis one, which accounted for 96.8% of the total variation detected in the ordination plot was highly correlated with sedimentary organic content and to a lesser extent the chl-a concentration within the Kariega Estuary. The correlations with the second canonical axis (2.4%) were less obvious, however, salinity and seston concentration were weakly correlated with this axis.  相似文献   

12.
Dissolved Cd (CdD) concentrations along the salinity gradient were measured in surface water of the Gironde Estuary during 15 cruises (2001–2007), covering a wide range of contrasting situations in terms of hydrology, turbidity and season. During all situations dissolved Cd concentrations displayed maximum values in the mid-salinity range, reflecting Cd addition by chloride-induced desorption and complexation. The daily net CdD fluxes from the Gironde Estuary to the coastal ocean were estimated using Boyle's method. Extrapolating CdD concentrations in the high salinity range to the freshwater end member using a theoretical dilution line produced 15 theoretical Cd concentrations (CdD0), each representative of one distinct situation. The obtained CdD0 concentrations were relatively similar (201 ± 28 ng L−1) when freshwater discharge Q was >500 m3 s−1 (508 ≤ Q ≤ 2600 m3 s−1), but were highly variable (340 ± 80 ng L−1; 247–490 ng L−1) for low discharge situations (169 ≤ Q ≤ 368 m3 s−1). The respective daily CdD net fluxes were 5–39 kg day−1, mainly depending on freshwater discharge. As this observation invalidates the existing method of estimating annual CdD net fluxes, we proposed an empirical model, using representative CdD0 values and daily freshwater discharges for the 2001–2007 period. Subsequent integration produced reliable CdD net flux estimates for the Gironde Estuary at the annual timescale that ranged between 3.8–5.0 t a−1 in 2005 and 6.0–7.2 t a−1 in 2004, depending on freshwater discharge. Comparing CdD net fluxes with the incoming CdD fluxes suggested that the annual net CdD addition in the Gironde Estuary ranged from 3.5 to 6.7 t a−1, without any clear temporal trend during the past seven years. The annual CdD net fluxes did not show a clearly decreasing trend in spite of an overall decrease by a factor 6 in Cd gross fluxes during the past decade. Furthermore, in six years out of seven (except 2003), the annual CdD net fluxes even exceeded river borne total (dissolved + particulate) gross Cd fluxes into the estuary. These observations were attributed to progressive Cd desorption from both suspended particles and bottom sediment during various sedimentation–resuspension cycles induced by tidal currents and/or continuous dredging (navigation channel) and diverse intra-estuarine sources (wet deposition, urban sources, and agriculture). Provided that gross fluxes remain stable over time, dissolved Cd exportation from the Gironde Estuary to the coastal ocean may remain at the present level for the coming decade and the estuarine sedimentary Cd stock is forecast to decrease slowly.  相似文献   

13.
Comprehensive bimonthly field surveys were carried out from September 2000 to June 2002 to study the seasonal dynamics and the inter-annual variability of dissolved inorganic nitrogen (DIN; nitrate, nitrite and ammonium) and dissolved inorganic phosphorus (DIP) in a subtropical mountain river system, the Danshuei tributary, the largest urbanized estuarine system in Taiwan. The headwaters were found to be well aerated, saturated with oxygen, with low ambient DIN (<9 μM) and DIP (<0.2 μM) concentration. As the river flows through the city of Taipei, the river becomes hypoxic because re-aeration rates cannot keep up with elevated oxygen consumption, and the concentrations of DIP (7.53 μM) and DIN (390 μM) increase drastically. Conservative mixing was mostly observed for silicate while DIP and DIN mostly showed non-conservative removal characteristics. Silicate originates from weathering and erosion of bedrocks in the watershed, whereas nitrogen- and phosphorus-bearing nutrients come mainly from urban discharges. Ammonium is the predominant dissolved nitrogenous species, ranging from 10 to 1000 μM. The nutrient chemistry is complex and dynamic due to anthropogenic perturbations and reactions in the tidally mixed zone of strong redox gradients. On average, the annual loading rates of dissolved phosphate and dissolved inorganic nitrogen from the Danshuei River to the ocean are 0.1 and 3.2 Gmol/year, respectively, which represent 0.1% and 0.2% of the world's total river discharge of dissolved inorganic nitrogen and phosphate.  相似文献   

14.
The role of coastal lagoons and estuaries as sources or sinks of inorganic carbon in upwelling areas has not been fully understood. During the months of May–July, 2005, we studied the dissolved inorganic carbon system in a coastal lagoon of northwestern Mexico during the strongest period of upwelling events. Along the bay, different scenarios were observed for the distributions of pH, dissolved inorganic carbon (DIC) and apparent oxygen utilization (AOU) as a result of different combinations of upwelling intensity and tidal amplitude. DIC concentrations in the outer part of the bay were controlled by mixing processes. At the inner part of the bay DIC was as low as 1800 μmol kg−1, most likely due to high water residence times and seagrass CO2 uptake. It is estimated that 85% of San Quintín Bay, at the oceanic end, acted as a source of CO2 to the atmosphere due to the inflow of CO2-rich upwelled waters from the neighboring ocean with high positive fluxes higher than 30 mmol C m−2 d−1. In contrast, there was a net uptake of CO2 and HCO3 by the seagrass bed Zostera marina in the inner part of the bay, so the pCO2 in this zone was below the equilibrium value and slightly negative CO2 fluxes of −6 mmol C m−2 d−1. Our positive NEP and ΔDIC values indicate that Bahía San Quintín was a net autotrophic system during the upwelling season during 2005.  相似文献   

15.
Land/ocean boundaries constitute complex systems with active physical and biogeochemical processes that affect the global carbon cycle. An example of such a system is the mesotidal lagoon named Ria de Aveiro (Portugal, 40°38′N, 08°45′W), which is connected to the Atlantic Ocean by a single channel, 350 m wide. The objective of this study was to estimate the seasonal and inter-tidal variability of organic carbon fluxes between the coastal lagoon and the Ocean, and to assess the contribution of the organic carbon fractions (i.e. dissolved organic carbon (DOC) and particulate organic carbon (POC)) to the export of organic carbon to the Ria de Aveiro plume zone. The organic carbon fractions fluxes were estimated as the product of the appropriate fractional organic carbon concentrations and the water fluxes calculated by a two-dimensional vertically integrated hydrodynamic model (2DH). Results showed that the higher exchanges of DOC and POC fractions at the system cross-section occurred during spring tides but only resulted in a net export of organic carbon in winter, totalling 85 t per tidal cycle. Derived from the winter and summer campaigns, the annual carbon mass balance estimated corresponded to a net export of organic carbon (7957 = 6585 t yr−1 POC + 1372 t yr−1 DOC). On the basis of the spring tidal drainage area, it corresponds to an annual flux of 79 g m−2 of POC and 17 g m−2 of DOC out of the estuary.  相似文献   

16.
To describe the larval and juvenile fish fauna and to evaluate the relative contribution of the ocean and the estuary as settlement areas for benthic species, we compared the composition and abundance of larval fish supply to that of recently settled juvenile fishes in both ocean and an adjacent estuary habitats in southern New Jersey. The study was conducted from May to November 1992 in the Great Bay–Little Egg Harbor estuary (<1–8 m sampling depth) and on the adjacent inner continental shelf in the vicinity of Beach Haven Ridge (8–16 m). During the study more larvae nearing settlement (postflexion) were captured in the estuary than in the ocean. Settlement occurred earlier in the estuary than in the ocean perhaps under the influence of earlier, seasonal warming of estuarine waters. There appeared to be two spatial patterns of settlement in the study area based on the dominant species (n = 17) represented by a sufficient number of individuals (n  25 individuals). There were species that primarily settle in the estuary, as represented by both estuarine residents (n = 3) and transients (n = 4), and those that settle in both the estuary and the ocean (n = 10). However, there were no species whose larvae were present in the estuary yet settle in the ocean. The fact that many of the species settle in both the estuary and the ocean indicates an overlap between these habitats because, at least for some species, these habitats may function in the same way. Further resolution of fish settlement patterns, and its influence on recruitment will need to rely on synoptic comparisons between estuaries and the ocean over multiple years.  相似文献   

17.
We examined the carbonate system, mainly the partial pressure of CO2 (pCO2), dissolved inorganic carbon (DIC) and total alkalinity (TAlk) in the Changjiang (Yangtze) River Estuary based on four field surveys conducted in Sep.–Oct. 2005, Dec. 2005, Jan. 2006 and Apr. 2006. Together with our reported pCO2 data collected in Aug.–Sep. 2003, this study provides, for the first time, a full seasonal coverage with regards to CO2 outgassing fluxes in this world major river–estuarine system. Surface pCO2 ranged 650–1440 μatm in the upper reach of the Changjiang River Estuary, 1000–4600 μatm in the Huangpujiang River, an urbanized and major tributary of the Changjiang downstream which was characterized by a very high respiration rate, and 200–1000 μatm in the estuarine mixing zone. Both DIC and TAlk overall behaved conservatively during the estuarine mixing, and the seasonal coverage of these carbonate parameters allowed us to estimate the annual DIC export flux from the Changjiang River as ∼ 1.54 × 1012 mol. The highly polluted Huangpujiang River appeared to have a significant impact on DIC, TAlk and pCO2 in the lower reaches of the inner estuary. CO2 emission flux from the main stream of the Changjiang Estuary was at a low level of 15.5–34.2 mol m− 2 yr− 1. Including the Huangpujiang River and the adjacent Shanghai inland waters, CO2 degassing flux from the Changjiang Estuary may have represented only 2.0%–4.6% of the DIC exported from the Changjiang River into the East China Sea.  相似文献   

18.
A program of long-term observation of suspended solids (TSS), particulate organic carbon (POC) and cadmium transported into the Gironde estuary (France) by its major tributaries has been carried out between 1990 and 1999. This decade included contrasting hydrologic cycles and appears representative of a much longer period (1959–1999). The Garonne and the Dordogne river systems are the main tributaries of the Gironde estuary and derive their waters from drainage basins with different geological, industrial and agricultural features. To better understand their respective contributions, they have been observed separately and compared. Water and TSS fluxes of the Garonne River show greater temporal variations and discharge is more related to the hydrology of the drainage basin (e.g. wet/dry years, local flood events etc.). As POC and particulate Cd concentrations in suspended matter are much less variable than turbidity, their fluxes are mainly controlled by the TSS transport. A major part of annual fluxes of TSS and associated pollutants may occur within few flood days (depending on various parameters, e.g. intensity, duration, season, etc.), and also the succession of dry and wet years has an important influence on annual fluxes. The presented data allow calculating fluvial inputs into the Gironde as the sum of fluxes transported by its major tributaries, the Garonne and the Dordogne river systems. Mean annual fluxes into the Gironde observed in 1990–1999 are about 34×109 m3 year−1 for river water, 3.24×106 t year−1 for suspended solids (TSS) and 9.88×109 mol year−1 for particulate organic carbon (POC). Generally, these fluxes are dominated by the contributions of the Garonne River. However, in dry years, the mean contribution of the Dordogne river system (including Dronne and Isle rivers) to the POC input into the estuary exceeded that of the Garonne. This reflects significant differences in vegetation and soil due to natural properties and land management of the basins. Mean Cd fluxes into the estuary are about 110×103 mol year−1 of which 19.6×103 mol year−1 are transported in the dissolved and 90.8×103 mol year−1 in the particulate phases, respectively. In 1991 (dry year), the net (dissolved) Cd flux towards the ocean exceeded the gross fluvial input of total Cd, suggesting the release of Cd from an important stock in the maximum turbidity zone (MTZ) or the fluid mud of the Gironde estuary.  相似文献   

19.
An integrated mass balance and modelling approach for analysis of estuarine nutrient fluxes is demonstrated in the Swan River Estuary, a microtidal system with strong hydrological dependence on seasonal river inflows. Mass balance components included estimation of gauged and ungauged inputs to the estuary and losses to the ocean (outflow and tidal exchange). Modelling components included estimation of atmospheric (N fixation, denitrification) and sediment–water column nutrient exchanges. Gross and net denitrification derived using two independent methods were significantly correlated (r2 = 0.49, p < 0.01) with net rates averaging 40% of gross. Annual nitrogen (N) and phosphorus (P) loads from major tributaries were linearly correlated with annual freshwater discharge and were 3-fold higher in wet years than in dry years. Urban drains and groundwater contributed, on average, 26% of N inputs and 19% of P inputs, with higher relative contributions in years of low river discharge. Overall, ungauged inputs accounted for almost 35% of total nitrogen loads. For N, elevated loading in wet years was accompanied by large increases in outflow (7x) and tidal flushing (2x) losses and resulted in overall lower retention efficiency (31%) relative to dry years (70%). For P, tidal flushing losses were similar in wet and dry years, while outflow losses (4-fold higher) were comparable in magnitude to increases in loading. As a result, P retention within the estuary was not substantially affected by inter-annual variation in water and P loading (ca. 50% in all years). Sediment nutrient stores increased in most years (remineralisation efficiency ca. 50%), but sediment nutrient releases were significant and in some circumstances were a net source of nutrients to the water column.  相似文献   

20.
We observed the origin, behavior, and flux of dissolved organic carbon (DOC), dissolved organic nitrogen (DON), colored dissolved organic matter (CDOM), and dissolved inorganic nitrogen (DIN) in the subterranean estuary of a volcanic island, Jeju, Korea. The sampling of surface seawater and coastal groundwater was conducted in Hwasun Bay, Jeju, in three sampling campaigns (October 2010, January 2011, and June 2011). We observed conservative mixing of these components in this subterranean environment for a salinity range from 0 to 32. The fresh groundwater was characterized by relatively high DON, DIN, and CDOM, while the marine groundwater showed relatively high DOC. The DON and DIN fluxes through submarine groundwater discharge (SGD) in the groundwater of Hwasun Bay were estimated to be 1.3 × 105 and 2.9 × 105 mol d 1, respectively. In the seawater of Hwasun Bay, the groundwater-origin DON was almost conservative while about 91% of the groundwater-origin DIN was removed perhaps due to biological production. The DON flux from the entire Jeju was estimated to be 7.9 × 108 mol yr 1, which is comparable to some of the world's large rivers. Thus, our study highlights that DON flux through SGD is potentially important for delivery of organic nitrogen to further offshore while DIN is readily utilized by marine plankton in near-shore waters under N-limited conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号