首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Marine macrophytes sustain valuable epiphytic biodiversity. Nonindigenous macroalgae may induce changes in composition and structure of epifaunal assemblages and therefore support different assemblages from those associated with native species. In this study, differences in faunal community structure between the introduced fucoid Sargassum muticum and the native seagrass Cymodocea nodosa were tested over a year on an intertidal shallow sandy bottom at the southern introduction front, the El Jadida coastline (NW Morocco). Epifaunal community structure consistently differed between macrophytes through seasons, with more species‐rich assemblages associated with S. muticum than C. nodosa despite comparable abundances. The significantly greater epifauna diversity on S. muticum may be related to its structural complexity. However, the species contributing most to differences in assemblages between both macrophytes, such as Steromphala umbilicalis and S. pennanti, were found on both habitats with temporally varying abundances. Some species‐specific affinities were detected (Stenosoma cf. acuminatum, Elasmopus vachoni, Chauvetia brunnea). Nitrogen, dissolved oxygen, suspended matter and temperature were identified as the best explanatory variables contributing to the observed macroepifaunal patterns. This study provides evidence that S. muticum acts as a favourable and additional habitat for epifaunal species and supports a more diverse epifaunal assemblage in this Moroccan seagrass meadow.  相似文献   

2.
Invasive species represent a serious threat to natural ecosystems through a range of negative effects on native species in the region invaded. The invasive species Sargassum muticum has invaded several temperate regions worldwide including the Galician rocky shoreline (northwestern Spain) in Western Europe. The main aim of this study was to assess if colonization by S. muticum has any effect on native algal assemblages by experimental removal of S. muticum. We predicted that in those plots where S. muticum plants were removed, the structure of native algal assemblages would differ from that in plots where S. muticum plants were untouched. In addition, we predicted that the effect of Sargassum removal would be more important than other causes of variability at the small scale investigated. Results indicated limited impact of S. muticum on native assemblages. The impact was only evident on the total number of native taxa and two understory morpho-functional groups, filamentous and foliose algae, rather than on the entire macroalgal assemblages.  相似文献   

3.
Macroalgae build biogenic habitats which give shelter and provide a suitable physical environment for a great variety of organisms. Structural complexity of algal substrates may influence the composition of their attached epifauna. The aim of this study is to test whether the taxonomic relatedness of the algal hosts and the functional groups to which they belong influence the species richness and composition of their epifaunal bryozoans. We analysed 36 algal genera from the Atlantic coast of South America between 42°S and Cape Horn. Changes in bryozoan species richness (number of species) among different algal functional groups (filamentous algae, foliose algae, corticated foliose algae, corticated macrophytes) were non-significant. The composition of the epifaunal assemblages differed significantly only between filamentous and foliose algae. Sheet-like bryozoans (i.e. encrusting, pluriserial colonies) were more frequent on foliose than on filamentous algae, while runner-like species (i.e. uniserial stolons) were characteristic epibionts on filamentous thallii. Similarity of bryozoan assemblages increased with increasing taxonomic relatedness of their hosts. As most filamentous seaweeds analysed in this study are members of the Order Ceramiales, the influence of algal taxonomic relatedness and functional groups on the composition of their bryozoan assemblages can be viewed as two different aspects of the same phenomenon.  相似文献   

4.
Small grazing motile epifaunal invertebrates play an important ecosystem role on coral reefs, influencing both the abundance and composition of macroalgal communities and acting as a key food source for a range of predatory fishes. The first aim of this study was to investigate the associations between motile epifaunal communities and four common macroalgal species (Lobophora variegata, Dictyota divaricata, Microdictyon marinum and Halimeda opuntia) on fore‐reef environments in the Exuma Cays (Bahamas, wider Caribbean). Secondly, we investigated the implications of the well documented rise of Caribbean macroalgal cover on invertebrate densities by surveying sites inside and outside the Exuma Cays Land and Sea Park (ECLSP), where increases in parrotfish grazing intensity inside the marine reserves have led to reductions in macroalgal cover. Therefore, surveys compared similar reefs with significantly different macrolagal cover. Comparisons between macroalgal species revealed a four to fivefold difference in motile epifaunal densities per unit volume of macroalgae. Post‐hoc tests revealed that this difference was significant only for Lobophora, with no difference observed among the other species. As macroalgae provide both a refuge from predation and a food source for grazing epifauna, the higher densities of epifauna observed in Lobophora may be attributed to either refuge from visual predators through morphological features (high cover of overlapping blades close to the substrate) or lack of palatability for parrotfish grazing, providing a more stable refuge. Our results revealed no significant differences in diversity, density or community structure of motile epifauna per unit volume of macroalgae between sites inside and outside the ECLSP. Since canopy height and invertivore biomass did not vary systematically across reserve boundaries, this suggests that algal cover does not affect the density of epifaunal invertebrates. However, areal cover was consistently higher for all macroalgal species at sites outside the ECLSP than those inside the reserve. Therefore, when scaled by aerial cover of macroalgae, total abundance of epifauna was twofold higher outside the ECLSP. We suggest that the increasing abundance of macroalgae on Caribbean reefs may be having dramatic effects on epifaunal invertebrate populations and potentially their ecological functions.  相似文献   

5.
Native and exotic seaweeds frequently lie on the beach and sustain part of the benthic food web. However, the role of exotic seaweeds as food sources for beach consumers has been poorly studied. We studied the temporal and spatial variability in the trophic significance of the invasive brown seaweed Sargassum muticum on sandy beaches. We measured the stable isotopes (δ13C and δ15N) in the tissues of S. muticum and of invertebrate consumers and estimated the dietary biomass proportion of S. muticum during four sampling dates at two beaches and heights on the shore. Samples were collected from eight pitfall traps placed at a distance of 2 m from each other. Detrital macroalgae and seagrasses were also collected by hand within an area of 30 cm around each pitfall trap. We measured the spatial and temporal variability in the isotope composition of the beach consumers and of S. muticum using different models of analyses of variance. We then calculated the biomass proportion of S. muticum to the animal diet with a two-isotopic mixing model. The invasive alga S. muticum seemed to be one of the main food sources for the amphipod Talitrus saltator and, to a less extent, for the isopod Tylos europaeus. The importance of S. muticum was however temporally variable and decreased during spring (in March and May), probably due to the availability of native macrophytes. The supply of invasive wrack to beach food webs thus deserves more attention if we want to understand their role in influencing food web dynamics.  相似文献   

6.
Introduced habitat-providing organisms such as epibenthic bivalves may facilitate the invasion and expansion of further non-native species which may modify the effects of the primary invader on the native system. In the sedimentary intertidal Wadden Sea (south-eastern North Sea) introduced Pacific oysters (Crassostrea gigas) have overgrown native blue mussel beds (Mytilus edulis). These oyster beds are now providing the major attachment substratum for macroalgae. Recently, oysters have expanded their distribution into the shallow subtidal zone of the Wadden Sea, and there support a rich associated species community including the Japanese seaweed Sargassum muticum, which has been presumably introduced together with the oysters. With a block designed field experiment, we explored the effects of S. muticum on the associated community of soft-bottom C. gigas beds in the shallow subtidal. Replicated oyster plots of 1 m2 were arranged with a density of 0, 7, 15 or 45 S. muticum m? 2, respectively. We found no effects of different S. muticum densities on associated epi- and endobenthic community compositions associated to the oyster plots. However, the overall coverage of sessile organisms settling on the oyster shells was significantly reduced at high S. muticum densities. The occurrence of abundant native macro-algal species such as Polysiphonia nigrescens, Antithamnion plumula and Elachista fucicola decreased with increasing S. muticum densities. Sessile invertebrates, by contrast, were only marginally affected and we found no effects of S. muticum canopy on diversity and abundance of endofauna organisms. We conclude that increasing densities of S. muticum on C. gigas beds in the shallow subtidal zone of the Wadden Sea limit the occurrence of native macroalgae which otherwise would benefit from the additional hard substratum provided by the oysters. Thus, a secondary invader may abolish the effects of the primary invader for native species by occupying the new formed niche.  相似文献   

7.
Abstract. The height of seagrass canopy was manipulated in experimental plots in meadows of the fine-leaves seagrass Cymodocea nodosa at two sites in the Mediterranean Sea, la Lagune du Brusc, Iles des Embiez near Toulon, and I'Etang de Diana on Corsica. Epifauna (small motile invertebrates associated with the seagrass canopy or sediment surface), was collected at night at both sites, and during the day at Diana only, from three treatments: full seagrass canopy, reduced canopy, and canopy removed entirely. Although epifaunal assemblages from the two sites were different, treatment modification had the same effect at both sites when analysed using multivariate ordinations. Abundance and biomass of total epifauna and of key taxa were all reduced in line with decreasing seagrass cover at both sites at night. The effects of treatment modification on epifauna during the day showed the same trend but were of greater magnitude, both for assemblages and for total abundance and biomass. At both sites and at both times, the fauna of plots from which seagrass had been cut tended to be dominated by animals of higher biomass than the fauna of plots with full canopy. Epifauna form the major dietary component of small fish inhabiting shallow, sheltered embayments. These results are therefore consistent with a model in which reduced abundance of fish associated with reduced seagrass canopy is explained by a reduction in food availability.  相似文献   

8.
This study compared seasonal growth, development and reproduction of the invasive brown macroalga Sargassum muticum in habitats with different wave exposure on the Irish west coast. Three field sites with different degrees of wave exposure were chosen for monthly observations to reflect different habitats that were characteristic of the Irish west coast. Growth and receptacle development differed considerably between sites. Growth and receptacle development was lower at the most sheltered site. Here, S. muticum showed signs of early fragmentation in April/May during the two years of investigation (2007 and 2008), whilst the population at an exposed site developed normally and plants grew to a maximum average length of 163 cm by July, with the onset of fragmentation in August. Sargassum muticum in a tide pool exhibited a similar seasonal growth cycle as plants at the exposed open shore site. Overall growth however was stunted, with plants reaching a maximum length of only 30–40 cm in July. Receptacle development was also inhibited at the sheltered site, with a maximum of only 10% of plants found to be fertile during spring and summer 2008, while plants at the exposed site and the tide pool exhibited 100% plant fertility by August. An extensive occurrence of the native epiphyte Pylaiella littoralis on S. muticum was noticed during field sampling at the sheltered study site which may have contributed to inhibited development of S. muticum observed in this area.  相似文献   

9.
The benthic faunal spectrum including bacteria, protozoans, meiofauna, wrack epifauna and macrofauna, was quantitatively surveyed on two modally reflective, moderate energy, Western Australian beaches. The more exposed beach had coarser sand, no intertidal macrofauna and a poor interstitial fauna. The less exposed beach had a large deposit of wrack totalling 161 kg m?1 dry mass concentrated on the lower shore. The amphipod Allorchestes compressa was abundant in the fresh wrack comprising most of the macrofauna. There were also fairly abundant small epifauna on the wrack. Dry biomass of macrofauna, epifauna, meiofauna, protozoans and bacteria was 0, 0, 15, 4 and 180 g m?1 on the more exposed beach and 160, 3, 112, 9 and 901 g m?1 on the less exposed beach with wrack. On the latter beach there was an inverse correlation between meiofaunal densities and the densities of protozoans and bacteria, suggesting grazing by the former on the latter. On both beaches meiofauna was concentrated in the mid- to upper beach, protozoans near the surface and bacteria in the mid- to lower beach. It is estimated that bacteria are responsible for most of the secondary production on both beaches.  相似文献   

10.
Epifaunal invertebrate species, such as amphipods and isopods, have been shown to play key but varying roles in the functioning of seagrass habitats. In this study, we characterized patterns in the poorly known epifaunal communities in eelgrass (Zostera marina) beds in San Francisco Bay as a first step in understanding the individual and collective importance of these species, while testing predictions on spatial patterns derived from previous studies in other regions. Surveys conducted at five beds across multiple time periods (April, June, August and October 2007) showed that San Francisco Bay eelgrass beds varied strongly in epifaunal community composition, total, and relative abundance, and that abundance differed markedly among time periods. In contrast to findings by others, morphologically complex flowering shoots frequently harbored greater numbers of epifauna (>2× and up to 10× more individuals) than vegetative shoots, but not different species assemblages. Similar to previous studies, several abiotic factors did not explain patterns in distribution and abundance among beds. The proportion of introduced species was very high (>90% of all individuals), a finding unique among seagrass epifaunal studies to date. Defining numerical patterns in epifaunal communities will inform related efforts to understand effects of epifaunal species and assemblages on eelgrass growth dynamics, seed production, and higher order trophic interactions over space and time.  相似文献   

11.
The aim of the present study was to evaluate whether the variability in the structure of the epiphytic assemblages of leaves and rhizomes of the Mediterranean seagrass Posidonia oceanica differed between depths at a large spatial scale. A hierarchical sampling design was used to compare epiphytic assemblages at two different depths (10 and 20 m) in terms of both species composition and abundance and patterns of spatial variability in the Tuscan Archipelago (North Western Mediterranean Sea, Italy). Results showed significant differences in the structure of assemblages on rhizomes and leaves at different depths. These differences were related to species composition and abundance; differences were not significant for total biomass, total percentage cover and percentage cover of animals and algae. Whereas the higher variability was observed among shoots in all the studied systems, patterns of spatial variability at the other spatial scales investigated differed between the two studied depths. Moreover, in the present study, analogous patterns between depths resulted for both the assemblages of leaves and rhizomes, suggesting that factors that change with depth can be responsible for the spatial variability of both the assemblages (leaves and rhizomes), and operate regardless of the microclimatic conditions and the structure of assemblages.  相似文献   

12.
The seasonal dynamics of molluscan assemblages inhabiting the algal fronds and the underlying sediment of photophilous algae were analyzed in NW Alboran Sea between July 2007 and April 2008. Molluscs were sampled using SCUBA in two different algal stands (7 km apart) dominated by the brown algae Stypocaulon scoparium, and following an inter-strata sampling protocol consisting in first sampling the algal fronds and then the underlying substratum. The studied algal stands harbored a highly biodiverse malacofauna, with 193 species identified. Assemblages on algal fronds and sediment displayed significant seasonal variations, being more apparent on the fronds, with maximum species richness, abundance and Shannon–Wiener diversity values in summer in both strata. The between-strata differences were also observed in the trophic structure of the assemblages: algal fronds were quantitatively dominated by microalgae or periphyton grazers and the sediment by detritivores and plankton and seston feeders. The high dominance of some species resulted in lower values of diversity and evenness in autumn in the sediment (e.g. Nodulus contortus and Bittium reticulatum) and in spring on the fronds (e.g. Rissoa guerinii and Musculus costulatus). The seasonal variability of the assemblages was mainly related to the population dynamics of dominant species (22 spp. displaying dominance values > 1%) (i.e. recruitment events, high mortality rates of juveniles and/or migrations among habitats). Other factors analyzed were (1) the vegetative cycle of algae, which played an important role in the abundance of some dominant epifaunal grazers, with high abundance and species richness values coinciding with high biomass of algae; and (2) the percentage of organic matter in the sediment, which was related to the abundance changes of some depositivores species. Further conservation strategies for macroalgal stands should be taken into consideration, as this type of photophilous habitat harbors rich associated faunistic communities and it is not generally considered in conservation lists of habitats to be protected.  相似文献   

13.
The distribution of species is shifting in response to recent climate change. Changes in the abundance and distributions of habitat‐forming species can have knock‐on effects on community structure, biodiversity patterns and ecological processes. We empirically examined temporal changes in the abundance of the warm‐water kelp Laminaria ochroleuca at its poleward range edge in the Western English Channel. Resurveys of historical sites indicated that the abundance of L. ochroleuca has increased significantly in recent decades. Moreover, examination of historical records suggested that L. ochroleuca has extended its distribution from sheltered coasts on to moderately wave‐exposed open coasts, where it now co‐exists and competes with the assemblage dominant Laminaria hyperborea. Proliferation of L. ochroleuca at its poleward range edge corresponds with a period of rapid warming in the Western English Channel. Preliminary comparisons between L. ochroleuca and L. hyperborea highlighted some subtle but ecologically significant differences in structure and function. In summer, the average biomass of epiphytic stipe assemblages on L. hyperborea was 86 times greater than on L. ochroleuca whereas, on average, L. ochroleuca had a greater stipe length and its blade supported 18 times as many gastropod grazers (Gibbula cineraria). Differences in summer growth rates were also recorded, with L. ochroleuca being more productive than L. hyperborea throughout July. Comprehensive seasonally replicated comparisons are needed to examine the wider implications of proliferation of L. ochroleuca at its poleward range edge, but our study suggests that local biodiversity patterns and ecological processes (e.g. timing of productivity and trophic pathways) on shallow subtidal reefs may be altered by shifts in the relative abundances of habitat‐forming kelp species.  相似文献   

14.
Spatial patterns of non-indigenous species show scale-dependent properties. Sargassum muticum is an invasive macroalga widely distributed along the Atlantic Iberian Peninsula. Despite being quite abundant from Norway to South Portugal, there is little information about its patterns of distribution, particularly at a large spatial scale (i.e. thousands of kilometres). Here, we examined the spatial variation in the invasion success of S. muticum from rockpools at multiple spatial scales using a hierarchical design. In addition, we analysed how the richness of native assemblages was related to its invasion success and how this relationship changed over different scales. Most of the variation in the invasion success was found at the smallest scales of pool and plot. Furthermore, the invasibility of native macroalgal assemblages was related to the native species richness, but causes that determined invasion success could not be separated from the effects provoked by the invader. Results suggest that small-scale (centimetres to metres) processes contribute considerably to the heterogeneity of S. muticum invasion success.  相似文献   

15.
The effect of an abundant sandy beach polychaete, Scolelepis squamata, on the colonisation of defaunated sediments by marine nematodes indicates that sandy beach fauna can be partially controlled by biological interactions within and across size groups. Experimental cores, equipped with windows allowing infaunal colonisation, were filled with defaunated sandy beach sediment containing two different treatments with and without S. squamata. These cores were inserted into microcosms filled with sediment with indigenous meiofauna collected from the field. The treatments were incubated in the laboratory at ambient temperature and salinity for 2, 7, 14 and 21 days, in order to follow the colonisation process of the defaunated sediments by the indigenous nematode fauna over time. Nematodes initially colonised both treatments, with abundances of up to 10% of the densities in the control; after 2 weeks, nematode densities in the cores without S. squamata surpassed the control densities. Nematode assemblages in both treatments were not species rich, and also differed in composition from the natural assemblages. The most successful colonising species, Enoplolaimus litoralis, was rare in the surrounding sediment, suggesting that colonisation was determined by species-specific characteristics such as body size, motility and feeding strategy. Initially the presence of macrofauna did not affect the nematode community composition, but after 2 weeks of the experiment, the presence of the polychaete seemed to facilitate the earlier establishment of non-opportunistic species.  相似文献   

16.
A study was undertaken of the patterns of spatial variability, epiphytic biomass and distribution of epiphytic fauna and flora of Posidonia oceanica. Samples were taken at four stations located approximately 4 km apart, exposed to different current conditions. Stations A and B, situated near the Oued Mimoun tidal channel with its relatively strong bi‐directional flows, were affected by high current tide. The other two stations, North Oued Mimoun (L1) and South Oued Mimoun (L2), were located further from the channel, in low current tide conditions. Sampling was conducted in the Attaya area of Kerkennah Island (Tunisia) in August 2009 at depths between 2 and 3 m, with the results indicating differences among the stations. Shoot density decreased when exposed to high levels of hydrodynamic activity generated by current tides whereas the epiphytic biomass of P. oceanica leaves decreased at sheltered stations located far from the channel. Epiphytic algae such as Heterokontophyta, Rhodophyta and Chlorophyta, and epiphytic fauna represented by Bryozoa, Hydrozoa, Annelida, Porifera and Tunicata, dominated the epiphytic assemblages and were abundant at the station most exposed to high current tide hydrodynamics. Cyanobacteria, however, were dominant in stations exposed to low current tide.  相似文献   

17.
Rudolf  Novak 《Marine Ecology》1984,5(2):143-190
Abstract. Microbial colonization on the leaves of a shoot of the mediterranean seagrass Posidonia oceanica (L.) DELILE was studied using Scanning Electron Microscopy. Methods of field ecology such as transect, random plot and stratified sampling survey were applied to the microbial niveau to gain both qualitative and quantitative information on the microbial assemblage. While macro-epiphytic growth was significantly greater on the outer leaf sides, microbial colonization density was significantly higher on the inner leaf sides, both on leaf surface and epiphyte surface. Diatoms colonized the surface of incrusting algae and epiphytic animals in significantly lower numbers than the Posidonia leaf surface and were absent on erect epiphytic algae. Bacterial densities on epiphyte surfaces even exceeded values of the corresponding leaf surfaces on algal thalli near the leaf tips and on old leaves. Diatoms reach highest mean density on mature leaves and close to the leaf tips, while bacteria reach their greatest density on the oldest leaf and closer to the leaf base. Diatom density in general increases with exposure time of plant surface, while greatest bacterial density was observed at 7–10 weeks exposure. Basal leaf parts on younger leaves were dominated by rod-shaped bacteria, while distal leaf parts and old leaves were dominated by small coccoid bacteria. Surfaces of epiphytic algae were always distinctly dominated by small coccoid bacteria, and edges of thalli attracted high microbial densities. Microbial biomass (calculated from cell volumes using standard conversion factors) amounts to 2.3 g dry weight m-2 in the Posidonia stand where the shoot was sampled. The observed patterns of epiphytic colonization are interpreted as the result of a complex, dynamically changing system of interactions both within the epiphytic community and between the epiphytic community, the host plant, and it's environment. A model of the organization of the epiphytic community on Posidonia leaves is presented. “Ultra-ecology” is a term introduced to denote a type of SEM research in the micro-environment which is analogous to in situ investigation in “macroscopic” ecological work.  相似文献   

18.
A significant expansion of offshore wind power is expected in the near future, with thousands of turbines in coastal waters, and various aspects of how this may influence the coastal ecology including disturbance effects from noise, shadows, electromagnetic fields, and changed hydrological conditions are accordingly of concern. Further, wind power plants constitute habitats for a number of organisms, and may locally alter assemblage composition and biomass of invertebrates, algae and fish. In this study, fouling assemblages on offshore wind turbines were compared to adjacent hard substrate. Influences of the structures on the seabed were also investigated. The turbines differed significantly from adjacent boulders in terms of assemblage composition of epibiota and motile invertebrates. Species number and Shannon–Wiener diversity were, also, significantly lower on the wind power plants. It was also indicated that the turbines might have affected assemblages of invertebrates and algae on adjacent boulders. Off shore wind power plant offer atypical substrates for fouling assemblages in terms of orientation, depth range, structure, and surface texture. Some potential ecological implications of the addition of these non-natural habitats for coastal ecology are discussed.  相似文献   

19.
The ecological impacts of introduced seaweeds have been relatively understudied. Current research suggests that seaweed invasions often result in alterations of native marine communities and disruptions of normal ecosystem functioning, but the effects on native communities can vary among invasive seaweed species, among habitats and over small and large spatial scales. In this study, the impacts of Sargassum muticum, a non‐native brown alga introduced into southern California, USA, several decades ago, were examined by comparing community structure in rocky inter‐tidal pools with and without the seaweed. Sargassum muticum appeared to have little impact on the native community despite measures revealing changes in the abiotic conditions of pools, with S. muticum presence reducing light penetration and ameliorating pool temperature changes during low tides. In other regions and habitat types, S. muticum presence often, but not consistently, resulted in declines in macrophyte diversity and/or abundance and increases in faunal assemblages. The lack of effects of S. muticum in this study, combined with variable impacts by S. muticum and other invasive seaweeds worldwide, suggests that predicting the effects of introduced seaweeds is problematic and warrants further research. Regardless of the effects on native communities, there is often a desire to eradicate or control the spread of non‐native seaweeds. In this study, localized S. muticum eradication attempts, including manipulations of a native canopy and herbivorous urchins, proved unsuccessful as full recovery occurred in ~9 months. While eradication efforts conducted worldwide have resulted in mixed success, there is a trend that early detection and rapid response can increase success, highlighting a need for systematic monitoring and establishment of regional rapid response plans.  相似文献   

20.
大型底上动物参与海洋生态系统中的物理、化学和生物过程,具有极高的研究价值。浙江三门湾是天然的半封闭海湾,也是海洋生物重要的栖息、觅食和育幼的场所。为探究三门湾海域物种间的资源利用情况及生态关系,在该海域进行了底拖网生物调查。根据2017年和2018年夏季在三门湾海域进行的大型底上生物研究结果,运用优势度(Y)、生态位宽度、生态位重叠、方差比率法(VR)、χ2检验、联结系数(AC)、共同出现百分率(PC)对生态位和种间联结性进行了研究。结果表明: 2017~2018年间三门湾海域共捕获大型底上动物53种,包括两年共有种,即主要底上动物22种。其中优势种3种,包括哈氏仿对虾(Mierspenaeopsis hardwickii)、中华栉孔虾虎鱼(Ctenotrypauchen chinensis)和棒锥螺(Turritella terebra),这三个物种属中生态位种;三门湾主要底上动物依据生态位宽度值划分为3组,即广生态位种、中生态位种和窄生态位种;种对间生态位重叠值总体差异性较大,其与种对的食性、栖息环境密切相关;根据总体联结性分析得主要底上动物总体呈显著正关联,群落结构较为稳定; χ2检验、联结系数(AC)和共同出现百分率(PC)表明种对间联结性较弱,趋近于相互独立。三门湾大型底上动物的群落结构比较稳定,但种对间的关联性在逐渐下降。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号