首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
After GRACE and GOCE there will still be need and room for improvement of the knowledge (1) of the static gravity field at spatial scales between 40 km and 100 km, and (2) of the time varying gravity field at scales smaller than 500 km. This is shown based on the analysis of spectral signal power of various gravity field components and on the comparison with current knowledge and expected performance of GRACE and GOCE. Both, accuracy and resolution can be improved by future dedicated gravity satellite missions. For applications in geodesy, the spectral omission error due to the limited spatial resolution of a gravity satellite mission is a limiting factor. The recommended strategy is to extend as far as possible the spatial resolution of future missions, and to improve at the same time the modelling of the very small scale components using terrestrial gravity information and topographic models.We discuss the geodetic needs in improved gravity models in the areas of precise height systems, GNSS levelling, inertial navigation and precise orbit determination. Today global height systems with a 1 cm accuracy are required for sea level and ocean circulation studies. This can be achieved by a future satellite mission with higher spatial resolution in combination with improved local and regional gravity field modelling. A similar strategy could improve the very economic method of determination of physical heights by GNSS levelling from the decimeter to the centimeter level. In inertial vehicle navigation, in particular in sub-marine, aircraft and missile guidance, any improvement of global gravity field models would help to improve reliability and the radius of operation.  相似文献   

2.
Examples from four main categories of solid-earth deformation processes are discussed for which the GOCE and GRACE satellite gravity missions will not provide a high enough spatial or temporal resolution or a sufficient accuracy. Quasi-static and episodic solid-earth deformation would benefit from a new satellite gravity mission that would provide a higher combined spatial and temporal resolution. Seismic and core periodic motions would benefit from a new satellite mission that would be able to detect gravity variations with a higher temporal resolution combined with very high accuracies.  相似文献   

3.
Precise global geoid and gravity anomaly information serves essentially three different kinds of applications in Earth sciences: gravity and geoid anomalies reflect density anomalies in oceanic and continental lithosphere and the mantle; dynamic ocean topography as derived from the combination of satellite altimetry and a global geoid model can be directly transformed into a global map of ocean surface circulation; any redistribution or exchange of mass in Earth system results in temporal gravity and geoid changes. After completion of the dedicated gravity satellite missions GRACE and GOCE a high standard of global gravity determination, both of the static and of the time varying field will be attained. Thus, it is the right time to investigate the future needs for improvements in the various fields of Earth sciences and to define the right strategy for future gravity field satellite missions.  相似文献   

4.
The importance of an accurate model of the Moon gravity field has been assessed for future navigation missions orbiting and/or landing on the Moon, in order to use our natural satellite as an intermediate base for next solar system observations and exploration as well as for lunar resources mapping and exploitation. One of the main scientific goals of MAGIA mission, whose Phase A study has been recently funded by the Italian Space Agency (ASI), is the mapping of lunar gravitational anomalies, and in particular those on the hidden side of the Moon, with an accuracy of 1 mGal RMS at lunar surface in the global solution of the gravitational field up to degree and order 80. MAGIA gravimetric experiment is performed into two phases: the first one, along which the main satellite shall perform remote sensing of the Moon surface, foresees the use of Precise Orbit Determination (POD) data available from ground tracking of the main satellite for the determination of the long wavelength components of gravitational field. Improvement in the accuracy of POD results are expected by the use of ISA, the Italian accelerometer on board the main satellite. Additional gravitational data from recent missions, like Kaguya/Selene, could be used in order to enhance the accuracy of such results. In the second phase the medium/short wavelength components of gravitational field shall be obtained through a low-to-low (GRACE-like) Satellite-to-Satellite Tracking (SST) experiment. POD data shall be acquired during the whole mission duration, while the SST data shall be available after the remote sensing phase, when the sub-satellite shall be released from the main one and both satellites shall be left in a free-fall dynamics in the gravity field of the Moon. SST range-rate data between the two satellites shall be measured through an inter-satellite link with accuracy compliant with current state of art space qualified technology. SST processing and gravitational anomalies retrieval shall benefit from a second ISA accelerometer on the sub-satellite in order to decouple lunar gravitational signal from other accelerations. Experiment performance analysis shows that the stated scientific requirements can be achieved with a low mass and low cost sub-satellite, with a SST gravimetric mission of just few months.  相似文献   

5.
The gravity field dedicated satellite missions like CHAMP, GRACE, and GOCE are supposed to map the Earth's global gravity field with unprecedented accuracy and resolution. New models of the Earth's static and time-variable gravity fields will be available every month as one of the science products from GRACE. A method for the efficient gravity field recovery is presented using in situ satellite-to-satellite observations at altitude and results on static as well as temporal gravity field recovery are shown. Considering the energy relationship between the kinetic energy of the satellite and the gravitational potential, the disturbing potential observations can be computed from the orbital state vector, using high-low GPS tracking data, low–low satellite-to-satellite GRACE measurements, and data from 3-axis accelerometers. The solution method is based on the conjugate gradient iterative approach to efficiently recover the gravity field coefficients and approximate error covariance up to degree and order 120 every month. Based on the monthly GRACE noise-only simulation, the geoid was obtained with an accuracy of a few cm and with a resolution (half wavelength) of 160 km. However, the geoid accuracy can become worse by a factor of 6–7 because of spatial aliasing. The approximate error covariance was found to be a very good accuracy measure of the estimated coefficients, geoid, and gravity anomaly. The temporal gravity field, representing the monthly mean continental water mass redistribution, was recovered in the presence of measurement noise and high frequency temporal variation. The resulting recovered temporal gravity fields have about 0.3 mm errors in terms of geoid height with a resolution of 670 km.  相似文献   

6.
A review of remote sensing methods for glacier mass balance determination   总被引:3,自引:2,他引:1  
Airborne and satellite remote sensing is the only practical approach for deriving a wide area, regional assessment of glacier mass balance. A number of remote sensing approaches are possible for inferring the mass balance from some sort of proxy estimate. Here, we review the key methods relevant, in particular to Andean glaciers, discussing their strengths and weaknesses, and data sets that could be more fully exploited. We also consider future satellite missions that will provide advances in our observational capabilities. The methods discussed include observation of elevation changes, estimation of ice flux, repeat measurement of changes in spatial extent, snowline elevation and accumulation–ablation area ratio estimation. The methods are illustrated utilising a comprehensive review of results obtained from a number of studies of South American glaciers, focusing specifically on the Patagonian Icefields. In particular, we present some new results from Glaciar Chico, Southern Patagonian Icefield, Chile, where a variety of different satellite and in-situ data have been combined to estimate mass balance using a geodetic or elevation change approach over about a 25 yr period.  相似文献   

7.
Science Requirements on Future Missions and Simulated Mission Scenarios   总被引:4,自引:0,他引:4  
The science requirements on future gravity satellite missions, following from the previous contributions of this issue, are summarized and visualized in terms of spatial scales, temporal behaviour and accuracy. This summary serves the identification of four classes of future satellite mission of potential interest: high-altitude monitoring, satellite-to-satellite tracking, gradiometry, and formation flights. Within each class several variants are defined. The gravity recovery performance of each of these ideal missions is simulated. Despite some simplifying assumptions, these error simulations result in guidelines as to which type of mission fulfils which requirements best.  相似文献   

8.
We present a mass balance model for Eurasia which is based on the calculation of accumulation from a moisture balance concept. The model is forced with 500 hPa temperatures from GCM time slices at LGM and present day. The model simulates key characteristics, such as control on the size of ice sheets through the advection of moisture, asymmetric ice sheets due to advection of moisture and orography, and the drying of ice sheets when they grow. A simulation of the Eurasian Ice Sheet through a full glacial cycle shows that the model reproduces realistic ice sheets that compare well with geomorphological data. During the Middle Weichselian and the Late Weichselian, the model picks up the trend that the Scandinavian part of the ice grows towards the south and east whilst the ice sheet covering the Barents and Kara Seas remains relatively stable. However, the model seriously underestimates the observed ice extent in the Baltic area. Uncertainties in the temperature and the wind field limit the reliability of regional modelling results.  相似文献   

9.
A summary is offered of the potential benefits of future measurements of temporal variations in gravity for the understanding of ocean dynamics. Two types of process, and corresponding amplitudes are discussed: ocean basin scale pressure changes, with a corresponding amplitude of order 1 cm of water, or 1 mm of geoid height, and changes in along-slope pressure gradient, at cross-slope length scales corresponding to topographic slopes, with a corresponding amplitude of order 1 mm of water, or a maximum of about 0.01 mm of geoid. The former is feasible with current technology and would provide unprecedented information about abyssal ocean dynamics associated with heat transport and climate. The latter would be a considerable challenge to any foreseeable technology, but would provide an exceptionally clear, quantitative window on the dynamics of abyssal ocean currents, and strong constraints on ocean models. Both options would be limited by the aliassing effect of rapid mass movements in the earth system, and it is recommended that any future mission take this error source explicitly into account at the design stage. For basin-scale oceanography this might involve a higher orbit than GRACE or GOCE, and the advantages of exact-repeat orbits and multiple missions should be considered.  相似文献   

10.
Purpose of this article is to demonstrate the effect of background geophysical corrections on a follow-on gravity mission. We investigate the quality of two effects, tides and atmospheric pressure variations, which both act as a surface load on the lithosphere. In both cases direct gravitational attraction of the mass variations and the secondary potential caused by the deformation of the lithosphere are sensed by a gravity mission. In order to assess the current situation we have simulated GRACE range-rate errors which are caused by differences in present day tide and atmospheric pressure correction models. Both geophysical correction models are capable of generating range-rate errors up to 10 μm/s and affect the quality of the recovered temporal and static gravity fields. Unlike missions such as TOPEX/Poseidon where tides can be estimated with the altimeter, current gravity missions are only to some degree capable of resolving these (geo)physical limitations. One of the reasons is the use of high inclination low earth orbits without a repeating ground track strategy. The consequence is that we will face a contamination of the gravity solution, both in the static and the time variable part. In the conclusions of this paper we provide suggestions for improving this situation, in particular in view of follow-on gravity missions after GRACE and GOCE, which claim an improved capability of estimating temporal variations in the Earth’s gravity field.  相似文献   

11.
An estimate of the glacier ice volume in the Swiss Alps   总被引:1,自引:0,他引:1  
Changes in glacier volume are important for questions linked to sea-level rise, water resource management, and tourism industry. With the ongoing climate warming, the retreat of mountain glaciers is a major concern. Predictions of glacier changes, necessarily need the present ice volume as initial condition, and for transient modelling, the ice thickness distribution has to be known. In this paper, a method based on mass conservation and principles of ice flow dynamics is applied to 62 glaciers located in the Swiss Alps for estimating their ice thickness distribution. All available direct ice thickness measurements are integrated. The ice volumes are referenced to the year 1999 by means of a mass balance time series. The results are used to calibrate a volume–area scaling relation, and the coefficients obtained show good agreement with values reported in the literature. We estimate the total ice volume present in the Swiss Alps in the year 1999 to be 74 ± 9 km3. About 12% of this volume was lost between 1999 and 2008, whereas the extraordinarily warm summer 2003 caused a volume loss of about 3.5%.  相似文献   

12.
Although space geodetic observing systems have been advanced recently to such a revolutionary level that low Earth Orbiting (LEO) satellites can now be tracked almost continuously and at the unprecedented high accuracy, none of the three basic methods for mapping the Earth’s gravity field, namely, Kaula linear perturbation, the numerical integration method and the orbit energy-based method, could meet the demand of these challenging data. Some theoretical effort has been made in order to establish comparable mathematical modellings for these measurements, notably by Mayer-Gürr et al. (J Geod 78:462–480, 2005). Although the numerical integration method has been routinely used to produce models of the Earth’s gravity field, for example, from recent satellite gravity missions CHAMP and GRACE, the modelling error of the method increases with the increase of the length of an arc. In order to best exploit the almost continuity and unprecedented high accuracy provided by modern space observing technology for the determination of the Earth’s gravity field, we propose using measured orbits as approximate values and derive the corresponding coordinate and velocity perturbations. The perturbations derived are quasi-linear, linear and of second-order approximation. Unlike conventional perturbation techniques which are only valid in the vicinity of reference mean values, our coordinate and velocity perturbations are mathematically valid uniformly through a whole orbital arc of any length. In particular, the derived coordinate and velocity perturbations are free of singularity due to the critical inclination and resonance inherent in the solution of artificial satellite motion by using various types of orbital elements. We then transform the coordinate and velocity perturbations into those of the six Keplerian orbital elements. For completeness, we also briefly outline how to use the derived coordinate and velocity perturbations to establish observation equations of space geodetic measurements for the determination of geopotential.  相似文献   

13.
The history and dynamics of the martian polar deposits (MPD), the largest known water reservoirs on Mars, are of great interest, but estimates of ice grain size are required before detailed modeling can be performed. We clarify the microphysical processes that may control grain size in the MPD. If the MPD are ∼2% dust by mass, the maximum ice grain size is ∼1 mm due to grain boundary pinning by silicate microparticles. Relatively dusty layers in the MPD will have smaller grain sizes. If MPD ice has a very low impurity content and has experienced a significant amount of strain, grains may reach a steady state size of ∼1.5 to 3 mm due to dynamic recrystallization, wherein a steady state grain size is maintained due to the balance of grain growth and destruction during flow. If the near-bed ice in the MPD is warmed close to its melting point and has been extensively sheared, grain sizes at its base may be between 10 and 40 mm, by analogy with warm, dirty, near-bed ice in terrestrial ice sheets.  相似文献   

14.
An artificial satellite, flying in a purely gravitational field is a natural probe, such that, by a very accurate orbit determination, would allow a perfect estimation of the field. A true satellite experiences a number of perturbational, non-gravitational forces acting on the shell of the spacecraft; these can be revealed and accurately measured by a spaceborne accelerometer. If more accelerometers are flown in the same satellite, they naturally eliminate (to some extent) the common perturbational accelerations and their differences are affected by the second derivatives of the gravity fields only (gradiometry). The mission GOCE is based on this principle. Its peculiar dynamical observation equations are reviewed. The possibility of estimating the gravity field up to some harmonic degree (200) is illustrated.  相似文献   

15.
F. Nimmo  B.G. Bills 《Icarus》2010,208(2):896-904
The long-wavelength topography of Titan has an amplitude larger than that expected from tidal and rotational distortions at its current distance from Saturn. This topography is associated with small gravity anomalies, indicating a high degree of compensation. Both observations can be explained if Titan has a floating, isostatically-compensated ice shell with a spatially-varying thickness. The spatial variations arise because of laterally-variable tidal heating within the ice shell. Models incorporating shell thickness variations result in an improved fit to the observations and a degree-two tidal Love number h2t consistent with expectations, without requiring Titan to have moved away from Saturn. Our preferred models have a mean shell thickness of ≈100 km in agreement with the observed gravity anomalies, and a heat flux appropriate to a chondritic Titan. Shell thickness variations are eliminated by convection; we therefore conclude that Titan’s ice shell is not convecting at the present day.  相似文献   

16.
《Global and Planetary Change》2006,50(1-2):112-126
Signatures between monthly global Earth gravity field solutions obtained from GRACE satellite mission data are analyzed with respect to continental water storage variability. GRACE gravity field models are derived in terms of Stokes' coefficients of a spherical harmonic expansion of the gravitational potential from the analysis of gravitational orbit perturbations of the two GRACE satellites using GPS high–low and K-band low–low intersatellite tracking and on-board accelerometry. Comparing the GRACE observations, i.e., the mass variability extracted from temporal gravity variations, with the water mass redistribution predicted by hydrological models, it is found that, when filtering with an averaging radius of 750 km, the hydrological signals generated by the world's major river basins are clearly recovered by GRACE. The analyses are based on differences in gravity and continental water mass distribution over 3- and 6-month intervals during the period April 2002 to May 2003. A background model uncertainty of some 35 mm in equivalent water column height from one month to another is estimated to be inherent in the present GRACE solutions at the selected filter length. The differences over 3 and 6 months between the GRACE monthly solutions reveal a signal of some 75 mm scattering with peak values of 400 mm in equivalent water column height changes over the continents, which is far above the uncertainty level and about 50% larger than predicted by global hydrological models. The inversion method, combining GRACE results with the signal and stochastic properties of a hydrological model as ‘a priori’ in a statistical least squares adjustment, significantly reduces the overall power in the obtained water mass estimates due to error reduction, but also reflects the current limitations in the hydrological models to represent total continental water storage change in particular for the major river basins.  相似文献   

17.
Based on the ongoing Chinese lunar exploration mission, i.e. the “Chang'e 1” project, precise orbit determination of lunar orbiters is analyzed for the actual geographical distribution and observational accuracy of the Chinese united S-band (USB) observation and control network as well as the very long baseline interferometry (VLBI) tracking network. The observed data are first simulated, then solutions are found after including the effects of various error sources and finally compared. We use the space data analysis software package, GEODYN, developed at Goddard Space Flight Center, NASA, USA. The primary error source of the flight orbiting the moon is the lunar gravity field. Therefore, the (formal) error of JGL165P1, i.e. the model of the lunar gravity field with the highest accuracy at present, is first discussed. After simulating the data of ranging and velocity measurement as well as the VLBI data of the time delay and time delay rate, precise orbit determination is carried out when the error of the lunar gravity field is added in. When the orbit is determined, the method of reduced dynamics is adopted with the selection of appropriate empirical acceleration parameters to absorb the effect of errors in the lunar gravity field on the orbit determination. The results show that for lunar missions like the “Chang'e 1” project, that do not take the lunar gravity field as their main scientific objective, the method of reduced dynamics is a simple and effective means of improving the accuracy of the orbit determination of the lunar orbiters.  相似文献   

18.
This brief overview will cover some recent work on solar system ices. The focus is on the origin, physical properties, composition, and radiation-induced chemistry of ices dominated by water, with an emphasis on comets and water-rich ices on satellites such as Europa. Understanding the physical characteristics and chemistry of these ices is important for explaining observations such as the albedo and sublimation of ice from planetesimals and comets, the formation of molecules that may have led to life, and planning present and future space missions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
With the increased number of low Earth orbit (LEO) satellites equipped with Global Positioning System (GPS) receiver, the LEO based GPS slant total electron content (STEC) data play a more important role in ionospheric research due to better global coverage. The accuracy of LEO TEC is hardly evaluated by comparison with the independent TEC measurement simultaneously. We propose an approach based on the simulated data to verify the accuracy of TEC determination. The simulated data (i.e., the pseudorange and carrier phase observations) was generated based on the consideration of the effect of the ionosphere, the so-called differential code bias (DCB) and observational noise. The errors of carrier phase to code leveling process and DCB estimation are analyzed quantitatively. Also, the effect of observational noise, solar activity and LEO orbit altitude on the accuracy of TEC determination will be discussed in detail. The accuracy of TEC determination is relative to solar activity and LEO orbit altitude, the higher LEO orbit and lower F10.7 index, the higher accuracy of TEC determination. It is found by the first time that, with the amplification of the pseudorange noise, the accuracy of leveling process and TEC determination declines almost linearly. With the LEO missions in the near future, it is hoped that the GPS satellite DCBs estimated based on LEO observations would be better than those based on ground-based observations.  相似文献   

20.
A new model, dubbed the MRQSphere, provides a multiresolution representation of the gravity field designed for its estimation. The multiresolution representation uses an approximation via Gaussians of the solution of the Laplace’s equation in the exterior of a sphere. Also, instead of the spherical harmonics, variations in the angular variables are modeled by a set of functions constructed using quadratures for the sphere invariant under the icosahedral group. When combined, these tools specify the spatial resolution of the gravity field as a function of altitude and required accuracy. We define this model, and apply it to representing and estimating the gravity field of the asteroid 433 Eros. We verified that a MRQSphere model derived directly from the true spherical harmonics gravity model satisfies the user defined precision. We also use the MRQSphere model to estimate the gravity field of Eros for a simulated satellite mission, yielding a solution with accuracy only limited by measurement errors and their spatial distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号