首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Measuring the hydraulic conductivity of shallow submerged sediments   总被引:4,自引:0,他引:4  
Kelly SE  Murdoch LC 《Ground water》2003,41(4):431-439
The hydraulic conductivity of submerged sediments influences the interaction between ground water and surface water, but few techniques for measuring K have been described with the conditions of the submerged setting in mind. Two simple, physical methods for measuring the hydraulic conductivity of submerged sediments have been developed, and one of them uses a well and piezometers similar to well tests performed in terrestrial aquifers. This test is based on a theoretical analysis that uses a constant-head boundary condition for the upper surface of the aquifer to represent the effects of the overlying water body. Existing analyses of tests used to measure the hydraulic conductivity of submerged sediments may contain errors from using the same upper boundary conditions applied to simulate terrestrial aquifers. Field implementation of the technique requires detecting minute drawdowns in the vicinity of the pumping well. Low-density oil was used in an inverted U-tube manometer to amplify the head differential so that it could be resolved in the field. Another technique was developed to measure the vertical hydraulic conductivity of sediments at the interface with overlying surface water. This technique uses the pan from a seepage meter with a piezometer fixed along its axis (a piezo-seep meter). Water is pumped from the pan and the head gradient is measured using the axial piezometer. Results from a sandy streambed indicate that both methods provide consistent and reasonable estimates of K. The pumping test allows skin effects to be considered, and the field data show that omitting the skin effect (e.g., by using a single well test) can produce results that underestimate the hydraulic conductivity of streambeds.  相似文献   

2.
In glacial outwash deposits, the movement of ground water Is determined by small scale irregularities in the pattern of hydraulic conductivity. Permeability determinations on split spoon samples obtained from coring the site are not sufficient to predict the patchiness of flow since it cannot define continuity of the strata. The lattice work pattern can be determined by vertical profiling with direct ground water flow measurement. The rate and direction of flow is combined with head gradient changes to compute hydraulic conductivity changes across the site.
The results of the tests can be plotted on triangular graphs depicting the fundamental Darcy equation. The local conditions reflect a mathematical "patchiness" of hydraulic conductivity unique to outwash deposits.
The procedure was employed to determine flow characteristics and define the zone of contribution to porous bottom kettle lakes. The zone of contribution was defined by projecting backward from the vertical profiling and shallow measurements and taking into account the daily rain water recharge rate across the site.
For the unconfined aquifer north of the pond, shallow ground water flow measurements were necessary to define the recharge portion of the shoreline. Vertical profiling was required to define the recharge volume since the rate of flow was not even with depth. A simple differential equation for determining the recharge area is presented along with the calculations.  相似文献   

3.
The vertical transport of contaminants from source areas is employed in many risk assessment models and screening tools in order to estimate the contaminant mass discharge (CMD) into underlying aquifers. The key parameters for estimating CMD are the contaminant source area and concentration, and the vertical water flux, the latter of which depends on the vertical hydraulic conductivity and the vertical hydraulic gradient in the subsurface. This study focuses on advancing the use of the combined membrane interface probe hydraulic profiling tool (MiHPT) to investigate the vertical hydraulic gradient across a clay till overlying a sandy aquifer at a contaminated site in Denmark. Only the HPT is necessary for the estimate of vertical hydraulic gradient. The hydraulic head, clay till thickness, and resulting vertical hydraulic gradients found using the MiHPT compared well with observations from nearby nested wells. The parameter with the largest discrepancy was the thickness of the clay till. The advantage of the MiHPT is its relatively quick depth discrete access to information regarding subsurface permeability, vertical hydraulic gradients and contaminant distribution across a site. In this case study, performance of additional dissipationtests during the HPT log to acquire determination of the vertical hydraulic gradient increased the cost by 3% compared to standard HPT logs.  相似文献   

4.
Seismic passive resistance with vertical seepage and surcharge   总被引:1,自引:0,他引:1  
Present paper focuses on the computation of the seismic passive earth pressure acting on a vertical rigid retaining wall by a soil mass subjected to vertical steady-state seepage and a uniform surcharge load. Based on the basic assumptions of Coulomb's theory and a pseudo-static method of analysis, a general solution for the passive earth pressure containing two coefficients is presented. In the solution, many parameters, such as unit weight of saturated soil, soil effective internal friction angle, soil/wall friction angle, water/soil unit weight ratio, surcharge intensity coefficient, horizontal and vertical seismic acceleration coefficients, Poisson's ratio of soil mass, hydraulic gradient, and coefficients of pore water pressure, are considered. The effects of hydraulic gradient and seismic forces on passive earth pressure coefficient and passive earth pressure distribution are investigated. The results indicate that passive earth pressure increases with increasing hydraulic gradient for downward water flow case, but decreases for upward water flow case, and that the presence of seismic forces induces a reduction in passive earth pressure.  相似文献   

5.
Numerical modeling of groundwater-surface water interactions provides vital information necessary for determining the extent of nutrient transport, quantifying water budgets, and delineating zones of ecological support. The hydrologic data that drive these models are often collected at disparate scales and subsequently incorporated into numerical models through upscaling techniques such as piecewise constancy or geostatistical methods. However, these techniques either use basic interpolation methods, which often simplifies the system of interest, or utilize complex statistical methods that are computationally expensive, time consuming, and generate complex subsurface configurations. We propose a bulk parameter termed “vertically integrated hydraulic conductivity” (KV), and defined as the depth-integrated resistance to fluid flow sensed at the groundwater-surface water interface, as an alternative to hydraulic conductivity when investigating vertical fluxes across the groundwater-surface water interface. This bulk parameter replaces complex subsurface configurations in situations dominated by vertical fluxes and where heterogeneity is not of primary importance. To demonstrate the utility of KV, we extracted synthetic temperature time series data from a forward numerical model under a variety of scenarios and used those data to quantify vertical fluxes using the amplitude ratio method. These quantified vertical fluxes and the applied hydraulic head gradient were subsequently input into Darcy's Law and used to quantify KV. This KV was then directly compared to the equivalent hydraulic conductivity (KT) assuming an infinitely extending layer. Vertically integrated hydraulic conductivity allows for more accurate and robust flow modeling across the groundwater-surface water interface in instances where complex heterogeneities are not of primary concern.  相似文献   

6.
We designed and evaluated a “tube seepage meter” for point measurements of vertical seepage rates (q), collecting groundwater samples, and estimating vertical hydraulic conductivity (K) in streambeds. Laboratory testing in artificial streambeds show that seepage rates from the tube seepage meter agreed well with expected values. Results of field testing of the tube seepage meter in a sandy‐bottom stream with a mean seepage rate of about 0.5 m/day agreed well with Darcian estimates (vertical hydraulic conductivity times head gradient) when averaged over multiple measurements. The uncertainties in q and K were evaluated with a Monte Carlo method and are typically 20% and 60%, respectively, for field data, and depend on the magnitude of the hydraulic gradient and the uncertainty in head measurements. The primary advantages of the tube seepage meter are its small footprint, concurrent and colocated assessments of q and K, and that it can also be configured as a self‐purging groundwater‐sampling device.  相似文献   

7.
A tension infiltrometer technique was used to characterize differences in hydraulic conductivity (K) in two rain‐fed hillsides (north‐facing and south‐facing) in central Chile. For the north‐facing locations, smaller values of K (at a range of supply water pressure heads ψ) compared with south‐facing locations were found, with accentuated differences close to saturation (zero pressure head). The differences were attributed to differences in texture and organic matter contents observed for the two sites. Furthermore, K(ψ) had a tendency to increase with increasing slope gradient. This tendency was to an extent explained by the deviation from requirements of measurements on level ground. The differences found in K(ψ) between different slope gradients were explained by the differences in the vertical and lateral hydraulic conductivity and by the occurrence of surface sealing in low slope plots. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

8.
Discharge of groundwater into lakes (lacustrine groundwater discharge, LGD) can play a major role in water balances of lakes. Unfortunately, studies often neglect this input path because of methodological difficulties in its determination. Direct measurements of LGD are labor‐consuming and prone to error. The present study uses both spatially variable hydraulic‐head data and meteorological data to estimate groundwater input by LGD and lake water output through infiltration. The study sites are two shallow, groundwater‐fed lakes without any surface inflows or outflows. Horizontally interpolated groundwater heads were combined with lake water levels to obtain vertical hydraulic gradients between the aquifer and the lake, which are separated by a thick layer of lake bed sediment which has a much lower hydraulic conductivity than the underlying aquifer. By fitting the hydraulic gradient to the results of a simple mass balance and considering the process of clogging, we were able to estimate the hydraulic conductivity of the lake bed sediments. We calculated groundwater inputs by LGD and lake water outputs by infiltration on an annual basis. Although our method requires several assumptions, the results are reasonable and provide useful information about the exchange between the aquifer and the lake, which can, for example, be used for the calculation of nutrient mass balances.  相似文献   

9.
Langseth DE  Smyth AH  May J 《Ground water》2004,42(5):689-699
Predicting the future performance of horizontal wells under varying pumping conditions requires estimates of basic aquifer parameters, notably transmissivity and storativity. For vertical wells, there are well-established methods for estimating these parameters, typically based on either the recovery from induced head changes in a well or from the head response in observation wells to pumping in a test well. Comparable aquifer parameter estimation methods for horizontal wells have not been presented in the ground water literature. Formation parameter estimation methods based on measurements of pressure in horizontal wells have been presented in the petroleum industry literature, but these methods have limited applicability for ground water evaluation and are based on pressure measurements in only the horizontal well borehole, rather than in observation wells. This paper presents a simple and versatile method by which pumping test procedures developed for vertical wells can be applied to horizontal well pumping tests. The method presented here uses the principle of superposition to represent the horizontal well as a series of partially penetrating vertical wells. This concept is used to estimate a distance from an observation well at which a vertical well that has the same total pumping rate as the horizontal well will produce the same drawdown as the horizontal well. This equivalent distance may then be associated with an observation well for use in pumping test algorithms and type curves developed for vertical wells. The method is shown to produce good results for confined aquifers and unconfined aquifers in the absence of delayed yield response. For unconfined aquifers, the presence of delayed yield response increases the method error.  相似文献   

10.
Characterizing the spatio-temporal distribution of groundwater–surface water (GW–SW) exchange fluxes is of paramount importance in understanding catchment behavior. A wide range of field-based techniques are available for such characterization. The objective of this study is to quantify the spatio-temporal distribution of the exchange fluxes along the Çakıt stream (Niğde, Turkey) through coupling a set of geophysical techniques and in-stream measurements in a hierarchical manner. First, geological and water quality information were combined at the catchment scale to determine key areas for reach-scale focus. Second, electromagnetic induction (EMI) surveys were conducted along the reach to pinpoint potential groundwater upwelling locations. EMI anomalies guided our focus to a 665 m-long reach of the stream. Along this selected reach, a fibre-optic distributed temperature sensing (FO-DTS) system was utilized to investigate streambed temperature profiles at fine spatial and temporal scales. Furthermore, vertical hydraulic gradients and exchange fluxes were investigated using nested piezometers and vertical temperature profiles, respectively, at two potential upwelling locations and a potential downwelling location identified by previous surveys. The results of the study reveal heterogeneity of vertical water-flow components with seasonal variability. The EMI survey was successful in identifying a localized groundwater upwelling location. FO-DTS measurements revealed a warm temperature anomaly during cold air temperature and low streamflow conditions at the same upwelling site. Our point-based methods, namely vertical temperature profiles and vertical hydraulic gradient estimates, however, did not always provide consistent results with each other and with EMI and FO-DTS measurements. This study, therefore, highlights the opportunities and challenges in incorporating multi-scale observations in a hierarchical manner in characterization of the GW–SW exchange processes that are known to be highly heterogeneous in time and space. Overall, a combination of different methods helps to overcome the limitations of each single method and increases confidence in the obtained results.  相似文献   

11.
The steady seepage rates at large times from flat-bottomed channels and channels of semi-circular cross-section were determined in laboratory tank experiments using various sands. Good agreement was found with the theoretical relationships which assume the flow to be confined to a saturated region bounded by a capillary-fringe surface and to be uniform and vertical at great depths. The steady large-time seepage rates were also obtained in laboratory sand-tank experiments for the three-dimensional cases of seepage from circular shallow ponds and hemispherical sources. These agreed with relationships obtained using an electrolytic tank analogue with approximate boundary conditions assumed for the flow region. A method of analysis of large-time seepage measurements from irrigation channels and infiltrometer rings is proposed, which yields the hydraulic conductivity and pressure head at the wetting front from experiments with different size channels or rings.  相似文献   

12.
The analytic element method is well suited for the Gardner hydraulic conductivity function, but is limited in describing real soils. Therefore, parameter equivalence between the van Genuchten and Gardner hydraulic conductivity functions is explored for the case of steady vertical flow through a homogeneous medium with a single inclusion, i.e., a binary soil. The inclusion has different hydraulic parameters than the background medium. Equivalence is established using three methods: (1) effective capillary drive; (2) capillary length; (3) and a least-squares optimization method that aims to fit a Gardner function to a corresponding van Genuchten function by minimizing the difference in log conductivity over a specified pressure range. Comparisons between hydraulic models are made based on scatterplots of pressure head and the vertical Darcian flux obtained using a finite-element numerical solution with both constitutive relations. For applicability of an equivalent Gardner function over a broad range of pressure heads, the crossover pressure must be maintained between the two parametric functions. The crossover pressure is defined as the pressure in which the hydraulic conductivity of the inclusion is equal to the background. It can be shown that a hybrid methodology of preserving the crossover pressure exactly and using the effective capillary drive will result in hydraulic parameters that are easily obtained and provide good agreement between the conductivity functions of the GR model to the VG model.  相似文献   

13.
Seepage chambers have been used to characterize the flux of water across the water-sediment interface in a variety of settings. In this work, an electronic seepage chamber was developed specifically for long-term use in a large river where hydraulic gradient reversals occur frequently with river-stage variations. A bidirectional electronic flowmeter coupled with a seepage chamber was used to measure temporal changes in the magnitude and direction of water flux across the water-sediment interface over an 8-week period. The specific discharge measured from the seepage chamber compared favorably with measurements of vertical hydraulic gradient and previous specific discharge calculations. This, as well as other supporting data, demonstrates the effectiveness of the electronic seepage chamber to accurately quantify water flux in two directions over a multimonth period in this setting. The ability to conduct multimonth measurements of water flux at a subhourly frequency in a river system is a critical capability for a seepage chamber in a system where hydraulic gradients change on a daily and seasonal basis.  相似文献   

14.
Carl Keller 《Ground water》2017,55(2):244-254
This study describes a new technique for measuring the head profile in a geologic formation. The technique provides rapid, low cost information on the depth of water‐producing zones and aquitards in heterogeneous aquifers, yielding estimates of hydraulic heads in each zone while identifying any potential for cross contamination between zones. The measurements can be performed in a typical borehole in just a few hours. The procedure uses both the continuous transmissivity profile obtained by the installation (eversion) of a flexible borehole liner into an open borehole and the subsequent removal (inversion) of the same liner from the borehole. The method is possible because of the continuous transmissivity profile (T profile described by Keller et al. 2014) obtained by measuring the rate of liner eversion under a constant driving head. The hydraulic heads of producing zones are measured using the reverse head profile (RHP) method (patent no. 9,008,971) based on a stepwise inversion of the borehole liner. As each interval of the borehole is uncovered by inversion of the liner, the head beneath the liner is allowed to equilibrate to a steady‐state value. The individual hydraulic heads contributing to each measurement are calculated using the measured transmissivity for each zone. Application of the RHP method to a sedimentary bedrock borehole in New Jersey verified that it reproduced the head distribution obtained the same day in the same borehole instrumented with a multilevel sampling system.  相似文献   

15.
Post V  Kooi H  Simmons C 《Ground water》2007,45(6):664-671
The use of hydraulic head measurements in ground water of variable density is considerably more complicated than for the case of constant-density ground water. A theoretical framework for dealing with these complications does exist in the current literature but suffers from a lack of awareness among many hydrogeologists. When corrections for density variations are ignored or not properly taken into account, misinterpretation of both ground water flow direction and magnitude may result. This paper summarizes the existing theoretical framework and provides practical guidelines for the interpretation of head measurements in variable-density ground water systems. It will be argued that, provided that the proper corrections are taken into account, fresh water heads can be used to analyze both horizontal and vertical flow components. To avoid potential confusion, it is recommended that the use of the so-called environmental water head, which was initially introduced to facilitate the analysis of vertical ground water flow, be abandoned in favor of properly computed fresh water head analyses. The presented methodology provides a framework for determining quantitatively when variable-density effects on ground water flow need to be taken into account or can be justifiably neglected. Therefore, we recommend that it should become part of all hydrogeologic analyses in which density effects are suspected to play a role.  相似文献   

16.
Fritz BG  Arntzen EV 《Ground water》2007,45(6):753-760
Measurement of ground water/surface water interaction within the hyporheic zone is increasingly recognized as an important aspect of subsurface contaminant fate and transport. Understanding the interaction between ground water and surface water is critical in developing a complete conceptual model of contaminant transport through the hyporheic zone. At the Hanford Site near Richland, Washington, ground water contaminated with uranium discharges to the Columbia River through the hyporheic zone. Ground water flux varies according to changes in hydraulic gradient caused by fluctuating river stage, which changes in response to operation of dams on the Columbia River. Piezometers and continuous water quality monitoring probes were installed in the hyporheic zone to provide long-term, high-frequency measurement of hydraulic gradient and estimated uranium concentrations. Subsequently, the flux of water and uranium was calculated for each half-hour time period over a 15-month study period. In addition, measurement of water levels in the near-shore unconfined aquifer enhanced the understanding of the relationship between river stage, aquifer elevation, and uranium flux. Changing river stage resulted in fluctuating hydraulic gradient within the hyporheic zone. Further, influx of river water caused lower uranium concentrations as a result of dilution. The methods employed in this study provide a better understanding of the interaction between surface and ground water in a situation with a dynamically varying vertical hydraulic gradient and illustrate how the combination of relatively standard methods can be used to derive an accurate estimation of water and contaminant flux through the hyporheic zone.  相似文献   

17.
Volatile organic compounds delected in ground water from wells at Test Area North (TAN) at the Idaho National Engineering Laboratory (INEL) prompted RCRA facility investigations in 1989 and 1990 and a CERCLA-driven RI/FS in 1992. In order to address ground water treatment feasibility, one of the main objectives, of the 1992 remedial investigation was to determine the vertical extent of ground water contamination, where the principle contaminant, of concern is trichloroethylene (TCE). It was hypothesized that a sedimentary interbed at depth in the fractured basalt aquifer could be inhibiting vertical migration of contaminants to lower aquifers. Due to the high cost of drilling and installation of ground water monitoring wells at this facility (greater than $100,000 per well), a real time method was proposed for obtaining and analyzing ground water samples during drilling to allow accurate placement of well screens in zones of predicted VOC contamination. This method utilized an inflatable pump packer pressure transducer system interfaced with a datalogger and PC at land surface. This arrangement allowed for real lime monitoring of hydraulic head above and below the packer to detect leakage around the packer during pumping and enabled collection of head data during pumping for estimating hydrologic properties. Analytical results were obtained in about an hour from an on-site mobile laboratory equipped with a gas chromalograplvmass spectrometer (GC/MS). With the hydrologic and analytical results in hand, a decision was made to either complete the well or continue drilling to the next test zone. In almost every case, analytical results of ground water samples taken from the newly installed wells closely replicated the water quality of ground water samples obtained through the pump packer system.  相似文献   

18.
A field test and analysis method has been developed to estimate the vertical distribution of hydraulic conductivity in shallow unconsolidated aquifers. The field method uses fluid injection ports and pressure transducers in a hollow auger that measure the hydraulic head outside the auger at several distances from the injection point. A constant injection rate is maintained for a duration time sufficient for the system to become steady state. Exploiting the analogy between electrical resistivity in geophysics and hydraulic flow two methods are used to estimate conductivity with depth: a half-space model based on spherical flow from a point injection at each measurement site, and a one-dimensional inversion of an entire dataset.

The injection methodology, conducted in three separate drilling operations, was investigated for repeatability, reproducibility, linearity, and for different injection sources. Repeatability tests, conducted at 10 levels, demonstrated standard deviations of generally less than 10%. Reproducibility tests conducted in three, closely spaced drilling operations generally showed a standard deviation of less than 20%, which is probably due to lateral variations in hydraulic conductivity. Linearity tests, made to determine dependency on flow rates, showed no indication of a flow rate bias. In order to obtain estimates of the hydraulic conductivity by an independent means, a series of measurements were made by injecting water through screens installed at two separate depths in a monitoring pipe near the measurement site. These estimates differed from the corresponding estimates obtained by injection in the hollow auger by a factor of less than 3.5, which can be attributed to variations in geology and the inaccurate estimates of the distance between the measurement and the injection sites at depth.  相似文献   


19.
A comprehensive analysis of steady flow patterns in saturated and unsaturated, possibly heterogeneous, isotropic soils is presented. It is shown that, at any point, the divergence of the unit tangent vector field to the streamlines is equal to the directional derivative along the streamlines of the orthogonal cross-sectional area of an infinitesimal stream tube divided by that area and also equal to the mean curvature of the surface of constant total head. Expressions are derived for the distribution of the flux, the water content, the velocity, the hydraulic conductivity, the total head, and the pressure head along a stream line or an infinitesimal, stream tube. Among the results is a simpler derivation, further interpretation, and extension of earlier work on calculating the hydraulic conductivity distribution from detailed measurements of the total head distribution in combination with measurements of the hydraulic conductivity at a few locations. In the last section, the jumps of various quantities at an interface are discussed.  相似文献   

20.
Using the type-curve methods of Boulton (1963) and Neuman (1972), and comparisons, at various times, of the cumulative volume of water pumped to the volume of the water-table drawdown cone (volume-balance method), values of specific yield were obtained from pumping test data from numerous piezometers in an unconfined sand aquifer. The long-term value of specific yield for the aquifer was determined from measurements of the laboratory drainage curve of the aquifer material. The volume-balance method gave specific yield values of 0.02, 0.05, 0.12, 0.20, 0.23, and 0.25 at times of 0.25, 0.66, 10, 26, 45, and 65 hours, respectively, indicating a gradual increase in specific yield and an asymptotic approach to the long-term value of 0.30 determined from the laboratory method. The type-curve methods provided values of 0.07 and 0.08, which correspond to the volume-balance values at early times, but which are less than one-third of the value obtained from the laboratory method and from the volume-balance method applied at the end of the pumping test (2.7 days). The type-curve procedures therefore provide unrealistically low values of specific yield for application to problems concerning the long-term yield characteristics of the aquifer. The observed trend towards increasing values of specific yield with increasing duration of pumping, and the vertical hydraulic head profiles that were measured during the pumping test indicate that both delayed drainage from above the water table and downward hydraulic gradients in the saturated zone can be important hydraulic effects contributing to the delayed-drawdown segment that is characteristic of time-drawdown graphs for unconfined aquifers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号