首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 0 毫秒
1.
We produced geologic maps from two regional mosaics of Galileo images across the leading and trailing hemispheres of Europa in order to investigate the temporal distribution of units in the visible geologic record. Five principal terrain types were identified (plains, bands, ridges, chaos, and crater materials), which are interpreted to result from (1) tectonic fracturing and lineament building, (2) cryovolcanic reworking of surface units, with possible emplacement of sub-surface materials, and (3) impact cratering. The geologic histories of both mapped areas are essentially similar and reflect some common trends: Tectonic resurfacing dominates the early geologic record with the formation of background plains by intricate superposition of lineaments, the opening of wide bands with infilling of inter-plate gaps, and the buildup of ridges and ridge complexes along prominent fractures in the ice. It also appears that lineaments are narrower and more widely spaced with time. The lack of impact craters overprinted by lineaments indicate that the degree of tectonic resurfacing decreased rapidly after ridged plains formation. In contrast, the degree of cryovolcanic resurfacing appears to increase with time, as chaos formation dominates the later parts of the geologic record. These trends, and the transition from tectonic- to cryovolcanic-dominated resurfacing could be attributed to the gradual thickening of Europa's cryosphere during the visible geologic history, that comprises the last 2% or 30-80 Myr of Europa's history: An originally thin, brittle ice shell could be pervasively fractured or melted through by tidal and endogenic processes; the degree of fracturing and plate displacements decreased with time in a thickening shell, and lineaments became narrower and more widely spaced; formation of chaos regions could have occurred where the thickness threshold for solid-state convection was exceeded, and can be aided by preferential tidal heating of more ductile ice. In a long-term context it is not clear at this point whether this inferred thickening trend would reflect a drastic change in the thermal evolution of the satellite, or cyclic or irregular episodes of tectonic and cryovolcanic activity.  相似文献   

2.
To explain the formation of surface features on Europa, Enceladus, and other satellites, many authors have postulated the spatial localization of tidal heating within convective plumes. However, the concept that enhanced tidal heating can occur within a convective plume has not been rigorously tested. Most models of this phenomenon adopt a tidal heating with a temperature-dependence derived for an incompressible, homogeneous (zero-dimensional) Maxwell material, but it is unclear whether this formulation is relevant to the heterogeneous situation of a warm plume surrounded by cold ice. To determine whether concentrated dissipation can occur in convective plumes, we develop a two-dimensional model to compute the volumetric dissipation rate for an idealized, vertically oriented, isolated convective plume obeying a Maxwellian viscoelastic compressible rheology. We apply the model to the Europa and Enceladus ice shells, and we investigate the consequences for partial melting and resurfacing processes on these bodies. We find that the tidal heating is strongly temperature dependent in a convective ice plume and could produce elevated temperatures and local partial melting in the ice shells of Europa and Enceladus. Our calculation provides the first quantitative verification of the hypothesis by Sotin et al. [Sotin, C., Head, J.W., Tobie, G., 2002. Geophys. Res. Lett. 29. 74-1] and others that the tidal dissipation rate is a strong function of temperature inside a convective plume. On Europa, such localized heating could help allow the formation of domes and chaos terrains by convection. On Enceladus, localized tidal heating in a thermal plume could explain the concentrated activity at the south pole and its associated heat transport of 2-7 GW.  相似文献   

3.
Although it is mostly accepted that the lower part of the ice shell of Europa is actively convective, there is still much uncertainty about the flow mechanism dominating the rheology of this convective layer, which largely depends on the grain size of the ice. In this work, we examined thermal equilibrium states in a tidally heated and strained convective shell, for two rheologies sensitive to grain size, grain boundary sliding and diffusion creep. If we take a lower limit of 70 mW m−2 for the surface heat flow, according to some geological features observed, the ice grain size should be less than 2 or 0.2 mm for grain boundary sliding or diffusion creep respectively. If in addition the thickness of the ice shell is constrained to a few tens of kilometers and it is assumed that the thickness of the convective layer is related to lenticulae spacing, then grain sizes between 0.2 and 2 mm for grain boundary sliding, and between 0.1 and 0.2 mm for diffusion creep are obtained. Also, local convective layer thicknesses deduced from lenticulae spacing are more similar to those here derived for grain boundary sliding. Our results thus favor grain boundary sliding as the dominant rheology for the water ice in Europa's convective layer, since this flow mechanism is able to satisfy the imposed constraints for a wider range of grain sizes.  相似文献   

4.
A mid-ocean-ridge spreading analog is used to constrain the opening rates and brittle-ductile transition depths for two axisymmetric ridged bands on Europa. Estimates of brittle-ductile transition depth based on the morphologies of Yelland and Ino Lineae are combined with a conductive cooling model based on a mid-ocean ridge analog to estimate the opening rates and active lifetimes of the bands. This model limits local strain rates to ∼10−15-10−12 s−1, opening rates to 0.2-40 mm yr−1, and active lifetimes of the bands to 0.1-30 Myr. If the observed structures in the outer portions of ridged bands are indeed normal faults, the estimated range for the tensile strength of ice on Europa is 0.4-2 MPa, consistent with nonsynchronous rotation as the dominant driving mechanism for band opening.  相似文献   

5.
Adam P. Showman  Lijie Han 《Icarus》2005,177(2):425-437
Europa's surface exhibits numerous pits, uplifts, and disrupted chaos terrains that have been suggested to result from convection in the ice shell. To test this hypothesis, we present numerical simulations of convection in an ice shell including the effects of plasticity, which provides a simple continuum representation for brittle or semibrittle deformation along discrete fractures. Plastic deformation occurs when stresses reach a specified yield stress; at lower stresses, the fluid flow follows a Newtonian, temperature-dependent viscosity. Four distinct modes of behavior can occur. For yield stresses exceeding ∼1 bar, plastic effects are negligible and stagnant-lid convection, with no surface motion and minimal topography, results. At intermediate yield stresses, a stagnant lid forms but deforms plastically, leading to surface velocities up to several millimeters per year. Slightly smaller yield stresses allow episodic, catastrophic overturns of the upper conductive lid, with (transient) stagnant lids forming in between overturn events. The smallest yield stresses allow continual recycling of the upper lid, with simultaneous, gradual ascent of warm ice to the surface and descent of cold, near-surface ice into the interior. The exact yield stresses over which each regime occurs depend on the ice-shell thickness, melting-temperature viscosity, and activation energy for viscous creep. To form hummocky matrix and translate chaos plates by several kilometers, substantial surface strain must accompany chaos formation, and the three plasticity-dominated convection modes described here can provide such deformation. Our simulations suggest that, if yield stresses of ∼0.2-1 bar are relevant to Europa, then convection in Europa's ice shell can produce chaos-like structures at the surface. However, our simulations have difficulty explaining Europa's numerous pits and uplifts. When plasticity forces the upper lid to participate in the convection, dynamic topography of ∼50-100-m amplitude results, but the topographic structures generally have diameters of 30-100 km, an order of magnitude wider than typical pits and uplifts. None of our simulations produced isolated pits or uplifts of any diameter.  相似文献   

6.
Europa's surface exhibits numerous small dome-like and lobate features, some of which have been attributed to fluid emplacement of ice or slush on the surface. We perform numerical simulations of non-Newtonian flows to assess the physical conditions required for these features to result from viscous flows. Our simulations indicate that the morphology of an ice flow on Europa will be, at least partially, influenced by pre-existing topography unless the thickness of the flow exceeds that of the underlying topography by at least an order of magnitude. Three classes of features can be identified on Europa. First, some (possibly most) putative flow-like features exhibit no influence from the pre-existing topography such as ridges, although their thicknesses are generally on the same order as those of ridges. Therefore, flow processes probably cannot explain the formation of these features. Second, some observed features show modest influence from the underlying topography. These might be explained by ice flows with wide ranges of parameters (ice temperatures >230 K, effusion rates >107 m3 year−1, and a wide range of grain sizes), although surface uplift (e.g., by diapirism) and in situ disaggregation provide an equally compelling explanation. Third, several observed features are completely confined by pre-existing topographic structures on at least one side; these are the best known candidates for flow features on Europa. If these features resulted from solid-ice flows, then temperatures >260 K and grain sizes <2 μm are required. Such small grain sizes seem unlikely; low-viscosity flows such as ice slurries or brines provide a better explanation for these features. Our results provide theoretical support for the view that many of Europa's lobate features have not resulted from solid-ice flows.  相似文献   

7.
Louise Prockter  Paul Schenk 《Icarus》2005,177(2):305-326
Europa's Castalia Macula region was comprehensively imaged by the Galileo spacecraft on several orbits, at both local and regional resolutions and with different illumination geometries. Using these datasets we have mapped and identified the different geological units within the Castalia area, and derived digital elevation models (DEMs) of the topography within most of the Castalia Macula region. Using these data sets in combination allows us to map the geology and topography of this area in greater detail than perhaps any other site on Europa. Castalia Macula consists of unusually dark and reddish material, most of which is confined to a broad topographic depression 350 m deep located between two large uplifted domes 900 and 750 m high, to the north and south, respectively. The preservation of topography at the bottom of Castalia Macula indicates that dark material initially filled the depression to a certain depth but was subsequently removed via drainage, resulting in a dark stain up to the original equipotential surface. Superposition and topographic relationships suggest that the Castalia Macula plains deposit formed prior to uplift of both domes, and at least two distinct episodes of chaos formation have occurred near and on top of the northern dome. It appears that Castalia Macula is comparatively young and was active relatively recently, therefore it could provide an ideal place to sample material that has recently been erupted from the subsurface, and may have been in communication with Europa's ocean. These factors combine to make Castalia Macula a very attractive site for a future Europa lander.  相似文献   

8.
Sulfuric acid hydrate has been proposed as an important species on Europa's surface, the acid being produced by radiolysis of surficial sulfur compounds. We investigated the spectral properties of disordered and crystalline forms of sulfuric acid and suggest that the hydration properties of Europa's hypothesized sulfuric acid lie between two end members: liquid sulfuric acid and its higher crystalline hydrates. The spectra of these end members are similar except for spectral shifts at the band edges. We measured the optical constants of sulfuric acid octahydrate and used these with simple radiative transfer calculations to fit Europa spectra obtained by Galileo's Near Infrared Mapping Spectrometer (NIMS). The global distribution of the hydrate that we associate here with hydrated sulfuric acid shows a strong trailing-side enhancement with a maximum fractional hydrate abundance of 90% by volume, corresponding to a sulfur atom to water molecule ratio of 10%. The hydrate concentration spatially correlates with the ultraviolet and visible absorption of the surface and with the sulfur dioxide concentration. The asymmetric global distribution is consistent with Iogenic plasma ion implantation as the source of the sulfur, possibly modified by electron irradiation and sputtering effects. The variegated distribution also correlates with geologic forms. A high spatial resolution image shows resolved lineae with less hydrate appearing within the lineae than in nearby crustal material. The low concentration of hydrated material in these lineae argues against their conveying sulfurous material to the surface from the putative ocean.  相似文献   

9.
F. Nimmo  P.C. Thomas  W.B. Moore 《Icarus》2007,191(1):183-192
The global shape of Europa is controlled by tidal and rotational potentials and possibly by lateral variations in ice shell thickness. We use limb profiles from four Galileo images to determine the best-fit hydrostatic shape, yielding a mean radius of 1560.8±0.3 km and a radius difference ac of 3.0±0.9 km, consistent with previous determinations and inferences from gravity observations. Adding long-wavelength topography due to proposed lateral variations in shell thickness results in poorer fits to the limb profiles. We conclude that lateral shell thickness variations and long-wavelength isostatically supported topographic variations do not exceed 7 and 0.7 km, respectively. For the range of rheologies investigated (basal viscosities from 1014 to ) the maximum permissible (conductive) shell thickness is 35 km. The relative uniformity of Europa's shell thickness is due to either a heat flux from the silicate interior, lateral ice flow at the base of the shell, or convection within the shell.  相似文献   

10.
We investigate the response of conductive and convective ice shells on Europa to variations of heat flux and interior tidal-heating rate. We present numerical simulations of convection in Europa's ice shell with Newtonian, temperature-dependent viscosity and tidal heating. Modest variations in the heat flux supplied to the base of a convective ice shell, ΔF, can cause large variations of the ice-shell thickness Δδ. In contrast, for a conductive ice shell, large ΔF involves relatively small Δδ. We demonstrate that, for a fluid with temperature-dependent viscosity, the heat flux undergoes a finite-amplitude jump at the critical Rayleigh number Racr. This jump implies that, for a range of heat fluxes relevant to Europa, two equilibrium states—corresponding to a thin, conductive shell and a thick, convective shell—exist for a given heat flux. We show that, as a result, modest variations in heat flux near the critical Rayleigh number can force the ice shell to switch between the thin, conductive and thick, convective configurations over a ∼107-year interval, with thickness changes of up to ∼10-30 km. Depending on the orbital and thermal history, such switches might occur repeatedly. However, existing evolution models based on parameterized-convection schemes have to date not allowed these transitions to occur. Rapid thickening of the ice shell would cause radial expansion of Europa, which could produce extensional tectonic features such as fractures or bands. Furthermore, based on interpretations for how features such as chaos and ridges are formed, several authors have suggested that Europa's ice shell has recently undergone changes in thickness. Our model provides a mechanism for such changes to occur.  相似文献   

11.
太阳活动起源研究(Ⅱ):太阳发电机理论   总被引:2,自引:1,他引:2  
对试图解释太阳活动起源的太阳发电机理论作了综合评述。着重介绍了平均场运动学发电机理论,包括平均场的α效应,运用学的αΩ发电机和迁移发电机。讨论了MHD发电机和其它类型发电机的研究概况。  相似文献   

12.
The Composite InfraRed Spectrometer (CIRS) on-board the Cassini spacecraft has currently returned around three years worth of data from Saturn’s largest moon Titan. One of the unique aspects of CIRS is to take high spatial resolution spectra of the limb of Titan, with sub-scale height (20–40 km) resolutions. This is made possible by the small field-of-view (FOV) of the mid-IR detectors. However, many limb spectra have moderate to large sized FOVs, which introduces bias into retrieved profiles of temperature and abundance unless the finite FOV size is taken into account. The bias can be reduced by calculating a FOV-averaged spectrum comprising a weighted sum of a small number of spectra with infinitesimal FOVs across the FOV. Here we introduce a scheme for incorporating FOV averaging into radiative transfer calculations of CIRS spectra and quantify the errors as a function of number of FOV averaging points, FOV size, tangent altitude, and wavenumber. The optimum number of FOV averaging points for a given observation can then be found by matching the calculated FOV averaging error with the measurement error. This allows for accurate analysis of a vast amount of Cassini-CIRS data.  相似文献   

13.
We study the impact of relativistic gravitational deflection of light on the accuracy of future Space Interferometry Mission (SIM). We estimate the deflection angles caused by the monopole, quadrupole and octupole components of gravitational fields for a number of celestial bodies in the solar system. We observe that, in many cases, the magnitude of the corresponding effects is significantly larger than the 1 μas accuracy expected from SIM. This fact argues for the development of a relativistic observational model for the mission that would account for the influence of both static and time-varying effects of gravity on light propagation. Results presented here are different from the ones obtained elsewhere by the fact that we specifically account for the differential nature of the future SIM astrometric measurements. We also obtain an estimate for the accuracy of possible determination of the Eddington’s parameter γ via SIM global astrometric campaign; we conclude that accuracy of ∼7 × 10−6 is achievable via measurements of deflection of light by solar gravity. The article was translated by the authors.  相似文献   

14.
太阳活动区是太阳大气中产生各种活动现象的区域,精确地检测和识别太阳活动区对理解太阳磁场的形成机制具有极为重要的科学意义.根据太阳活动区结构较为复杂的特点,基于尺度不变特征变换(ScaleInvariant Feature Transform, SIFT)和密度峰值聚类(Clustering by Fast Search and Find of Density Peaks,DPC)算法的优越性,提出了一种太阳活动区的自动检测和识别方法.首先,对太阳动力学天文台(Solar Dynamics Observatory, SDO)日震和磁场成像仪(Helioseismic and Magnetic Imager, HMI)的纵向磁图进行对比度增强;然后采用SIFT方法提取出全日面磁图中的特征点;最后利用DPC算法将特征点进行聚类,从而自动检测和识别出太阳活动区.研究结果表明, SIFT和DPC算法相结合的方法可以在不需要人工交互的情况下准确地自动检测出太阳活动区.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号