首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present the detailed reaction network used in Paper I of this series and discuss the sensitivity of the calculated abundances of sulphur-bearing species to various parameters including reaction efficiency and elemental depletions. It is shown that while ion-grain reactions can provide appreciable abundances of many S-bearing species, they do not contribute significantly to the abundance of O-bearing molecules. Observations of HDS in interstellar clouds could provide important information on the formation of H2S.  相似文献   

2.
We present a detailed study of the distribution of key deuterated species (viz., atomic D and HD) and the associated deuterium Lyman-α airglow in the jovian thermosphere. The reactions that appear to govern the abundances of these deuterated species are used in conjunction with C2-chemistry in a 1-D photochemical-diffusion model. While the D abundance is mainly sensitive to H densities and the vibrational temperature profile, the D vertical distribution also depends on other parameters such as eddy mixing and the uncertain values of some of the reaction rate constants. We consider different scenarios by varying several parameters controlling the D distribution in the thermosphere. A radiative transfer model with coupling of the H and D Lyman-α lines is employed to obtain line profiles and total intensities at disk center for these scenarios. This allows a comparison of the impact of various parameters on the jovian D Lyman-α emission. A consequence of these chemical processes in the jovian thermosphere is the formation of CH2D, CH3D, and C2H5D, and other deuterated species. We also discuss the source of these deuterated hydrocarbons and their abundance. We find that HD vibrational chemistry impacts D in the thermosphere, CH3D and C2H5D are vibrationally enhanced in the thermosphere, and variations in abundance of CH3D and C2H5D in the thermosphere may reflect dynamical activity (i.e., Kh) in the jovian upper atmosphere. An observing program dedicated to providing such measurements of these testable phenomena would provide further insight into the synergistic coupling between chemistry, energetics and airglow in the jovian upper atmosphere.  相似文献   

3.
We studied the propagation of uncertainties carried by the reaction rate coefficients in the photochemistry of Neptune's stratosphere. We showed that the uncertainties on the mole fractions of main hydrocarbons are equal to or larger than the estimated uncertainties on abundances gathered from observations. From a global sensitivity analysis study, we determined a list of 26 key reactions and discussed the 7 main key reactions that should be studied in priority to lower the uncertainties in the mole fractions computed from a photochemical model. This methodology is essential to improve the predictivity of photochemical models and, consequently, to better understand the physical and chemical processes that govern the composition of giant planet atmospheres.  相似文献   

4.
The kinetic Monte Carlo simulation is a rigorous numerical approach to study the chemistry on dust grains in cold dense interstellar clouds. By tracking every single reaction in chemical networks step by step, this approach produces more precise results than other approaches but takes too much computing time. Here we present a method of a new data structure, which is applicable to any physical conditions and chemical networks, to save computing time for the Monte Carlo algorithm. Using the improved structure,the calculating time is reduced by 80 percent compared with the linear structure when applied to the osu-2008 chemical network at 10K. We investigate the effect of the encounter desorption in cold cores using the kinetic Monte Carlo model with an accelerating data structure. We found that the encounter desorption remarkably decreases the abundance of grain-surface H_2 but slightly influences the abundances of other species on the grain.  相似文献   

5.
Lenz  Dawn D. 《Solar physics》2000,193(1-2):131-137
Coronal abundance variations arise from and affect solar atmospheric processes such as coronal heating and structural dynamics. Lenz (1999) presented initial results of a numerical theoretical study of abundances and ion heating rates in static, steady-state coronal loops. We present here a closer investigation of two fundamental aspects of the physics of coronal abundances, relating modeling parameters to observables: (1) the effect of varying the abundances on the electron temperature and (2) the effect of varying the ion heating rate on abundances.  相似文献   

6.
Efficient spectrographs at large telescopes have made it possible to obtain high-resolution spectra of stars with high signal-to-noise ratio and advances in model atmosphere analyses have enabled estimates of high-precision differential abundances of the elements from these spectra, i.e. with errors in the range 0.01–0.03 dex for F, G, and K stars. Methods to determine such high-precision abundances together with precise values of effective temperatures and surface gravities from equivalent widths of spectral lines or by spectrum synthesis techniques are outlined, and effects on abundance determinations from using a 3D non-LTE analysis instead of a classical 1D LTE analysis are considered. The determination of high-precision stellar abundances of the elements has led to the discovery of unexpected phenomena and relations with important bearings on the astrophysics of galaxies, stars, and planets, i.e. (i) Existence of discrete stellar populations within each of the main Galactic components (disk, halo, and bulge) providing new constraints on models for the formation of the Milky Way. (ii) Differences in the relation between abundances and elemental condensation temperature for the Sun and solar twins suggesting dust-cleansing effects in proto-planetary disks and/or engulfment of planets by stars; (iii) Differences in chemical composition between binary star components and between members of open or globular clusters showing that star- and cluster-formation processes are more complicated than previously thought; (iv) Tight relations between some abundance ratios and age for solar-like stars providing new constraints on nucleosynthesis and Galactic chemical evolution models as well as the composition of terrestrial exoplanets. We conclude that if stellar abundances with precisions of 0.01–0.03 dex can be achieved in studies of more distant stars and stars on the giant and supergiant branches, many more interesting future applications, of great relevance to stellar and galaxy evolution, are probable. Hence, in planning abundance surveys, it is important to carefully balance the need for large samples of stars against the spectral resolution and signal-to-noise ratio needed to obtain high-precision abundances. Furthermore, it is an advantage to work differentially on stars with similar atmospheric parameters, because then a simple 1D LTE analysis of stellar spectra may be sufficient. However, when determining high-precision absolute abundances or differential abundance between stars having more widely different parameters, e.g. metal-poor stars compared to the Sun or giants to dwarfs, then 3D non-LTE effects must be taken into account.  相似文献   

7.
The synthesis of organic molecules via chemical reactions within impact vapor plumes has been proposed as a mechanism to supply organics on a planet. However, the kinetics of chemical reactions within a rapidly expanding vapor plume or quenching process of the reactions has not been studied extensively. In this study, we constructed a new numerical model that calculates kinetics of the entire chemical reactions within an impact vapor plume. Numerical results revealed that the semi-analytical models proposed so far, in which the final amount of a chemical species was given by the equilibrium abundance at the quenching temperature of the fastest reaction path involving the species, underestimates the yield of organic molecules, such as HCN, by up to a factor of 10. This is because the previously used assumption that a species can achieve equilibrium with the rest of the reaction system via the fastest reaction path involving the species is not necessarily valid. Our analysis of the high-temperature H/C/N/O reaction system suggests that the quenching of slow reactions divides the reaction network into smaller reaction sub-systems isolated from the rest of the reaction system. Then, the fastest reaction path cannot equilibrate an isolated reaction sub-system with the rest of the reaction system. Simulation of this actual disequilibrium mechanism requires a simultaneous numerical calculation of the entire reaction network, which is equivalent to conducting a full kinetic model calculation, such as our model. Our numerical code makes it possible to discuss quantitatively the impact chemistry for various situations, such as the Galilean satellites. In this study, our numerical model is applied to the delivery of organic molecules via cometary impact on the Galilean satellites. Our numerical results indicate that small-particle impacts would produce HCN efficiently. Resulting HCN may freeze out immediately and be deposited on satellite surfaces, where it may be eventually converted into complex organics via irradiation of charged particle. On the other hand, large-size impacts may form transient CH4-N2 atmospheres, in which complex organics (tholin) may be formed via energy deposition of UV and/or charged particle. Resulting complex organics may subsequently precipitate on the satellite surfaces without clear correlation with the locations of impact craters. Such distribution of complex organics created by chemical reactions within vapor plumes due to cometary impacts may explain an absorption (4.57 μm) on Galilean satellites nonassociated with observable (moderate- and large-size) impact craters.  相似文献   

8.
The abundances of long-lived radioactive elements Th and U observed in metal-poor halo stars can be used as chronometers to determine the age of individual stars, and hence set a lower limit on the age of the Galaxy and hence of the universe. This radioactive dating requires the zero-decay productions of Th and U, which involves complicated r-process nucleosynthesis calculations. Several parametric r-process models have been used to calculate the initial abundance ratios of Th/Eu and U/Th, but, due to the sharp sensitivity of these models to nuclear physics inputs, the calculations have relatively large uncertainties which lead to large uncertainties in the age determinations. In order to reduce these uncertainties, we present a simple method to estimate the initial productions of Th and U, which only depends on the solar system abundances and the stellar abundances of stable r-process elements. From our calculations of the initial abundance ratios of Th/Eu and U/Th, we re-estimate the ages of those ver  相似文献   

9.
A variety of physical processes leading to different types of pulsations and chemical compositions are observed between A- and F-type stars. To investigate the underlying mechanisms responsible for these processes in stars with similar locations in the Hertzsprung–Russell diagram, an accurate abundance determination is needed, among others. Here, we describe a semi-automatic procedure developed to determine chemical abundances of various elements ranging from helium to mercury for this type of stars. We test our procedure on synthetic spectra, demonstrating that our procedure provides abundances consistent with the input values, even when the stellar parameters are offset by reasonable observational errors. For a fast-rotating star such as Vega, our analysis is consistent with those carried out with other plane-parallel model atmospheres. Simulations show that the offsets from the input abundances increase for stars with low inclination angle of about  4°  . For this inclination angle, we also show that the distribution of the iron abundance found in different regions is bimodal. Furthermore, the effect of rapid rotation can be seen in the peculiar behaviour of the Hβ line.  相似文献   

10.
We present the very first results of a new 3D numerical model for the formation and evolution of spiral galaxies along the Hubble sequence. We take into account the hydrodynamical properties of the gas with an SPH method while we use a tree code for the gravitational forces of the dark matter and stars. The chemical evolution is also fully included, with both SNe Ia and SNe II explosions being followed, and this will allows us to predict abundances of various chemical species, abundance ratios and their radial distributions. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

11.
The chemistry of both nitrogen and sulfur presents interesting problems in comets.In this paper, we use a model of cometary comae with gas-phase chemical kineticsand gas dynamics to predict molecular abundances in the inner coma region for twoof the brightest comets in the past 20 years, Hyakutake (C/1996 B2) and Hale–Bopp(C/1995 O1). In this progress report we concentrate on the gas-phase chemistry of thenitrogen sulfide (NS) radical at a heliocentric distance of 1 AU to study the abundanceof NS using a detailed photo and chemical reaction network with over 100 species andabout 1000 reactions. The results are compared with recent observations of CometHale–Bopp and reveal that conventional gas-phase reactions schemes do not produceNS in sufficient quantities to explain the observations. We plan to continue therefinement of the model to improve agreement with observational constraints.  相似文献   

12.
An atlas of high resolution (R = 60 000) CCD-spectra in the wavelength range 3500-5000A is presented for four objects in metallicity range -3.0 < [Fe/H] < -0.6, temperature range 4750 < Teff < 5900 K, and surface gravity range 1.6 < lgg < 5.0. We describe the calibration of the stellar atmospheric parameters using Alonso's formula based on the method of infrared flux and outline the determination of the abundances of a total number of 25 chemical elements. An analysis of the abundance determination errors for different chemical elements is carried out, and a method is provided for the observations and reduction of spectral material. Properties of the method of producing an atlas of spectra and line identifications are described.  相似文献   

13.
Photochemistry of giant planets and their satellites is characterized by numerous reactions involving many chemical species. In the present paper, chemical systems are modeled by signal flow graphs. Such a technique evaluates the transmission of any input into the system (solar flux, electrons...) and gives access to the identification of the most important mechanisms in the chemical system. For a given chemical system, we first evaluate rate coefficients. Then, in order to obtain concentrations of each compound, we integrate the set of continuity equations by Gear's method. Gear's method is chosen rather than another classical method because it is recommended for a system of stiff equations due to the existence of greatly differing time constants. Finally, the technique of signal flow graphs is used. This method is applied to the production of hydrocarbons in the atmospheres of giant planets. In particular, the production of C2H6 in the atmosphere of Neptune from the photodissociation of CH4 is investigated. Different paths of dissociation of CH4 are possible from L alpha radiations. A chemical system containing 14 species and 30 reactions including these different paths of dissociation is integrated. The main mechanism of production of C2H6 is identified and evaluated for each model of dissociation. The importance of various reaction paths as a function of time is discussed.  相似文献   

14.
We have constructed models for a region of low mass star formation where stellar winds ablate material from dark dense cores and return it to a translucent intercore medium from which subsequent generations of cores condense. Depletion of gas phase species onto grains plays a major role in the chemistry. For reasonable agreement between model core chemical fractional abundances and measured TMC-1 fractional abundances to obtain, the core collapse, once started, must be relatively uninhibited by turbulence or magnetic fields and the core lifetime must fall in a limited range determined by the assumed depletion rates. In a core with the TMC-1 fractional abundances, CH, OH, C2H, H2CO, HCN, HNC, and CN are the only simple species that have been detected in TMC-1 at radio and millimeter wavelengths to have fractional abundances that are roughly constant or increasing with time; this result bears considerably on previous work concerned with searches for spectroscopic evidence for and the diagnosis of collapse during protostellar formation, but depends on the fractions of the OH and CH emissions that are associated with the core centre rather than more extended gas or a core-stellar wind boundary layer. Model results for the abundance ratios of H2O, CH4, and NH3 ices are in good agreement with those inferred for Halley's Comet.  相似文献   

15.
Nair H  Allen M  Anbar AD  Yung YL  Clancy RT 《Icarus》1994,111(1):124-150
The factors governing the amounts of CO, O2, and O3 in the martian atmosphere are investigated using a minimally constrained, one-dimensional photochemical model. We find that the incorporation of temperature-dependent CO2 absorption cross sections leads to an enhancement in the water photolysis rate, increasing the abundance of OH radicals to the point where the model CO abundance is smaller than observed. Good agreement between models and observations of CO, O2, O3, and the escape flux of atomic hydrogen can be achieved, using only gas-phase chemistry, by varying the recommended rate constants for the reactions CO + OH and OH + HO2 within their specified uncertainties. Similar revisions have been suggested to resolve discrepancies between models and observations of the terrestrial mesosphere. The oxygen escape flux plays a key role in the oxygen budget on Mars; as inferred from the observed atomic hydrogen escape, it is much larger than recent calculations of the exospheric escape rate for oxygen. Weathering of the surface may account for the imbalance. Quantification of the escape rates of oxygen and hydrogen from Mars is a worthwhile objective for an upcoming martian upper atmospheric mission. We also consider the possibility that HOx radicals may be catalytically destroyed on dust grains suspended in the atmosphere. Good agreement with the observed CO mixing ratio can be achieved via this mechanism, but the resulting ozone column is much higher than the observed quantity. We feel that there is no need at this time to invoke heterogeneous processes to reconcile models and observations.  相似文献   

16.
Large molecules in the envelope surrounding IRC+10216   总被引:1,自引:0,他引:1  
A new chemical model of the circumstellar envelope surrounding the carbon-rich star IRC+10216 is developed that includes carbon-containing molecules with up to 23 carbon atoms. The model consists of 3851 reactions involving 407 gas-phase species. Sizeable abundances of a variety of large molecules including carbon clusters, unsaturated hydrocarbons and cyanopolyynes have been calculated. Negative molecular ions of chemical formulae and C n H (7 n 23) exist in considerable abundance, with peak concentrations at distances from the central star somewhat greater than their neutral counterparts. The negative ions might be detected in radio emission, or even in the optical absorption of background field stars. The calculated radial distributions of the carbon-chain C n H radicals are looked at carefully and compared with interferometric observations.  相似文献   

17.
We have constructed a chemical reaction model in a contracting interstellar cloud including 104 species which are involved in a network of 557 reactions. The chemical kinetic equations were integrated as a function of time by using gear package. The evolution of the system was followed in the density range 10–107 particles cm-3.The calculated fractional abundances of the charged species are in good agreement with those given by other investigators. The charge density has been followed in diffuse, intermediate and dense regions. The most dominant ionic species are metallic ions, HCO+ and H 3 + in the shielded regions and atomic ions H+, C+, Si+, He+, S+ and metal ions in the diffuse and intermediate regions. The abundances of negatively charged ions were found to be negligible. The results of the calculations on the different metallic ions are interpreted.  相似文献   

18.
Abstract. We have constructed a chemical reaction system in a contracting interstellar cloud. In paper (I) we have presented the details of the physical and chemical scheme and the method of solution. The results of our chemical model produce fractional abundances of H2CO, CO, OH, H2O, SO and OCS which are in good agreement with the results of observations. On the other hand, the results of chlorine-bearing species are not in agreement with those of the observations. The calculated abundances of H2CO, CO, OH, H2O, SO, OCS and Cl+ are in agreement with the results of previous theoretical studies.  相似文献   

19.
A self-consistent method has been evolved to infer physical parameters like density, radiation field and abundances using line and continuum radiations as diagnostics. For that purpose, we first calculate the temperatures of graphite and silicate grains using the model of Li and Draine (Astrophys. J. 554:778, 2001) by solving self-consistently the energy balance for G 0 (1–104) times the radiation field following Weingartner and Draine (Astrophys. J. Suppl. Ser. 134:263, 2001). Consequently, infrared emission fluxes are also obtained. To keep it simple, this is presented in the empirical form of parameters T D and wavelength. The same model of the grain is adopted for photoelectric heating of gas using the formalism of Weingartner and Draine (Astrophys. J. Suppl. Ser. 134:263, 2001) (hereafter referred to as WD) and Bakes and Tielens (Astrophys. J. 427:822, 1994) (hereafter referred to as BT) for radiation field cited above in the range (6<hν≤13.6 eV). Temperature and abundances are determined using our own code for PDR very similar to cloudy code. All the possible sources of heating and cooling are considered for setting up the thermal balance. For the gas phase abundances that vary with depth in the cloud due to dust, self- and mutual shielding, chemical balance is solved. Most of the photoionization, photodissociation or chemical reaction rates are taken from UMIST database. We present an analysis of the cooling lines of singly ionized carbon [CII] at 158 μm and neutral oxygen [OI], at 63 μm and far infrared (FIR) continuum for a variety of star forming galaxies. Method of analysis of observational data is different from that of Malhotra et al. (Astrophys. J. 561:766, 2001). The radiation field G 0, density N h and abundance of carbon are obtained through best fit of observed and calculated intensities for lines and continuum radiations.  相似文献   

20.
Abstract– The Dawn spacecraft carries a gamma‐ray and neutron detector (GRaND), which will measure and map the abundances of selected elements on the surface of asteroid 4 Vesta. We compare the variability of moderately volatile/refractory incompatible element ratios (K/Th and K/Ti) in howardite, eucrite, and diogenite (HED) meteorites with those in other achondrite suites that represent asteroidal crusts, because these ratios may be accurately measured by GRaND and likely reflect initial chemical compositions of the HED parent body. The K/Th and K/Ti variations can differentiate HED meteorites from angrites and some unique eucrite‐like lithologies. The results suggest that K, Th, and Ti abundances determined from GRaND data could not only confirm that Vesta is the parent body of HED meteorites but might also allow recognition of as‐yet unsampled compositional terranes on Vesta. Besides the K‐Th‐Ti systematics study, we propose a new three‐component mixing model for interpretation of GRaND spectra, required because the spatial resolution of GRaND is coarser than the spectral (compositional) heterogeneity of Vesta’s surface. The mixing model uses abundances of K, Ti, Fe, and Mg that will be analyzed more accurately than other prospective GRaND‐analyzed elements. We examine propagated errors due to GRaND analytical uncertainties and intrinsic errors that stem from an assumption introduced into the mixing model. The error investigation suggests that the mixing model can adequately estimate not only the diogenite/eucrite mixing ratio but also the abundances of most major and minor elements within the GRaND propagated errors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号