首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
松潘-甘孜地块三叠系砂岩的地球化学特征及其意义   总被引:7,自引:1,他引:7  
松潘-甘孜地块位居中国西南部,北邻华北地块,西与青藏高原毗邻,东南缘与扬子地块相连.该区出露的巨厚层砂岩SiO2含量变化范围大为48.64%~71.77%,稳定元素(Al2O3,Fe2O3,MnO)与不稳定元素(MgO,K2O,Na2O)基本持平,CIW值较低;La/Co值集中于3.0~4.5,Th/Co集中于1.0~1.5,La/Th值集中于2.7~3.1,Th/U值均大于4.0,轻稀土元素含量大于重稀土元素含量,具Eu负异常,稀土元素分布形态与上地壳一致;锆石的U-Pb年龄集中分布于1500~1900Ma、700~900Ma、200~400Ma,与扬子地块、南秦岭的岩浆活动相一致.分析表明松潘-甘孜地块具有稳定的物源区,主要以扬子地块为主;其碎屑母岩应主要源自上地壳,以长英质成分为主.松潘-甘孜地块在三叠纪时期处于大陆岛弧环境,周边地区基本处于稳定状态,没有大规模构造运动和岩浆活动,扬子地块向华北地块的俯冲明显减弱或可能已经停止,秦岭造山运动基本已经完成.  相似文献   

2.
对位于松潘-甘孜地体南部的兰尼巴岩体和羊房沟岩体进行了详细的岩石学、地球化学及锆石U-Pb年代学研究,重点讨论了岩体的成因。U-Pb激光剥蚀等离子体质谱(LA-ICPMS)年龄集中在211Ma附近,属晚三叠世,代表了岩体的形成年龄。两岩体具有中等至较高的SiO2含量(58.31%~68.02%)和较高的全碱含量(6.70%~8.80%),具有准铝质(A/CNK=0.68~0.99)的特征,属于高钾钙碱性到橄榄玄粗岩系列。其中,兰尼巴岩体南段富Al2O3(15.85%~16.27%)、K2O(3.29%~3.40%),中等MgO(1.16%~1.47%),并具有高Sr(869×10-6~1032×10-6)、低Y(9.53×10-6~9.85×10-6)特征以及中等至较高的稀土元素分馏[(La/Yb)N>31],并且见有暗色包体,非常类似于下地壳熔融形成的钾质埃达克岩。兰尼巴岩体的北段及羊房沟岩体的主量元素、微量元素特征都很相似,相对兰尼巴岩体南段具有更高的K2O含量(4.08%~5.96%),相对低的Sr(664×10-6~868×10-6),稍高的Y(19.71×10-6~27.76×10-6)和明显较低的Sr/Y比值(29.39~42.05),显示出高钾钙碱性I型花岗岩的特征,可能来自于增厚下地壳的部分熔融。野外地质特征和地球化学特征均显示岩体的形成有幔源物质或新生地壳物质的参与,其中幔源岩浆的加入为松潘-甘孜造山带大量中生代花岗岩的形成提供了热源和部分物源。地幔岩浆的上侵和高钾钙碱性花岗岩体的形成标志着松潘-甘孜造山带至少在晚三叠世就已处于伸展构造环境。  相似文献   

3.
4.
为探讨松潘-甘孜造山带南部新山沟岩体的成因和构造演化背景及时代,对其开展了岩石学、元素地球化学和年代学研究.结果 显示,新山沟岩体具有高K2O(3.84%~6.15%)、富铝(14.23% ~ 16.36%)特征,为准铝质富钾钙碱性A型花岗岩系列;其∑REE为260.17×10-6~333.91×10-6,LREE/H...  相似文献   

5.
牛心沟岩体和四姑娘山岩体位于松潘甘孜造山带东部,分别为中生代中性和酸性侵入岩.牛心沟岩体具有中等的SiO2含量(53.7%~63.6%),较高的K2O(3.44%~5.06%)和全碱含量(K2O Na2O=6.55%~8.80%),显示橄榄粗玄岩特征.牛心沟岩体的微量元素Ba(1280~2010 μg/g)、Sr(1010~1660 μg/g)含量很高,稀土元素分馏明显((La/Yb)N=37.4~67.3),Nb、Ta和Ti明显负异常,并缺乏明显的Eu和Sr负异常,因此属于高Ba-Sr系列范围.牛心沟岩体的Cr(37.6~193 μg/g)、Ni(9.13~76.8 μg/g)和V(57.1~126 μg/g)等过渡元素含量变化较大,并与SiO2含量之间存在负相关关系,且岩体的几个不相容元素对的比值变化较大(Zr/Sm=2.54~29.7、Nb/La=0.13~0.38、Th/Nb=0.53~0.94),表明该岩体可能由幔源基性岩浆与壳源酸性岩浆混合形成.四姑娘山岩体的SiO2含量介于68.9%~73.6%之间,具有较高的全碱含量(K2O Na2O=7.21%~9.38%)、高场强元素含量和较高的10000×Ga/Al比值(2.34~3.03),同时具有平坦的重稀土分布模式((Gd/Yb)N=0.79~1.43),明显的Eu负异常以及较高的Rb、Th和U含量,该岩体相对低的Ba、Sr、P和Ti含量表明它经历了相当程度的分离结晶作用,反映出A型花岗岩的特征.地球化学特征显示两岩体的形成均有幔源物质或新生地壳物质的参与,其中幔源岩浆的加入为松潘甘孜造山带大量中生代花岗岩的形成提供了热源和部分物源.地幔岩浆的上侵和四姑娘山A型花岗岩体的形成标志着松潘甘孜造山带至少在早侏罗世以前就已处于伸展构造体制.  相似文献   

6.
从松潘-甘孜构造带东北部若尔盖盆地的红参一井内分别采取中三叠世晚期和晚三叠世早期的砂岩样品,用激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)方法对其中的碎屑锆石颗粒进行了U-Pb年龄分析,结果显示锆石形成年龄的范围在2432 741 Ma间,主要峰值集中在240~290,400~480,1 800~2 000,2 200~2 500 Ma.通过对碎屑锆石年龄分布特征的研究,并结合古水流条件的约束,认为松潘-甘孜盆地东部中、晚三叠世沉积盖层内形成于240~290 Ma和400~480 Ma的锆石分别来自东昆仑南部和北秦岭,形成于1 800~2 000 Ma和2 200~2 500 Ma的锆石来自华北板块.由不同时期沉积物中碎屑锆石年龄分布特征的变化表明:晚三叠世中期以后有更多扬子板块的物质进入了松潘-甘孜盆地,使盆地内沉积物的组合发生了明显的改变,这样的变化反映了晚三叠世中期以后扬子板块西缘存在一个快速抬升的过程.  相似文献   

7.
长枪穹隆位于青藏高原北部松潘-甘孜地体之南端的木里地区,被东部的扬子板块和西部的羌塘地块所围绕。伏于三叠纪复理石地层之下的长枪穹隆由一套浅变质的沉积岩系组成,核部主要为里伍群二云石英片岩。为精确限定长枪穹隆核部里伍群的沉积时代和源区特征,本文运用LA-ICP-MS锆石U-Pb微区定年和原位Lu-Hf同位素分析技术,对里伍群变沉积岩系样品进行了锆石年代学、锆石微量元素和Lu-Hf同位素研究。结果显示,155颗碎屑年龄横跨早奥陶世-太古宙(476~3583Ma),碎屑锆石的Th/U比值均大于0. 1,大部分锆石具有明显的震荡环带,且锆石的稀土元素呈现明显的HREE富集、正Ce异常和负Eu异常的特点;上述特征指示该系列锆石为岩浆成因。碎屑锆石原位Hf同位素显示其εHf(t)值具有较宽泛的变化范围,介于-22~+14。锆石混合年龄谱能区分出四个明显的特征年龄峰值:~516Ma、~740Ma、~884Ma和~2. 5Ga。综合对比区域研究结果,我们认为476~560Ma的碎屑锆石可能来自于当时邻区冈瓦纳大陆北缘的泛非造山带,而715~1000Ma碎屑锆石可能来源于扬子板块西缘的新元古代的岩浆岩带和江南造山带。  相似文献   

8.
为探讨青海岗察花岗岩类的成因机制,通过岩相学、主量元素、微量元素地球化学特征研究,岩体由辉长辉绿岩、辉石闪长岩、紫苏辉石闪长岩、石英闪长岩、花岗闪长岩、二长花岗岩等组成。岩石里特曼指数δ=1.37~2.36,属钙碱性系列;铝饱和指数(A/CNK)=0.765~1.018,属准铝质-弱过铝质岩石。在ACF图显示岗察岩体主要属I-S型花岗岩。稀土总量48.11×10-6~249.35×10-6,轻重稀土比值4.12~10.72,LaN/YbN比值3.30~12.85,稀土元素分配曲线显示轻稀土元素曲线向右倾斜,重稀土元素呈平缓型,说明轻稀土元素分馏明显,重稀土元素分馏不明显,显示岩浆源区的残留矿物含有角闪石。δEu=0.34~1.21,铕元素具负异常,说明源区在部分熔融过程中有斜长石的残留。微量元素蛛网图显示Rb具有明显富集,K,Th含量较高,Ba相对亏损,Ce,Hf,Zr,Sm,Y,Yb等明显低于洋脊花岗岩,具有后碰撞花岗岩特征。岗察岩体侵入时间上发生在陆陆碰撞期后的陆内叠覆造山阶段,其构造环境属后碰撞陆内造山叠覆-底侵构造环境。其成因是中三叠世,大陆碰撞地壳加厚的地质背景下,岩浆底侵-混合作用形成,为中央造山带印支期构造-岩浆事件的产物。  相似文献   

9.
周玉  周雄  张贻  秦志鹏  贾志泉  梁兵 《中国地质》2022,49(6):1984-2001
研究目的】查明松潘—甘孜地块东南部花岗岩地球化学及构造演化特征,对在该区寻找稀有金属矿产具有重要意义。【研究方法】在野外地质调查基础上,采集了地块东南部前人研究未涉及的苏地岩体二长花岗岩样品开展了镜下鉴定、岩石地球化学及锆石LA-(MC)-ICP-MS U-Pb和Lu-Hf同位素测试工作。【研究结果】结果表明,苏地岩体二长花岗岩SiO2含量为63.72%~66.48%,中—高钾、富钠、贫钙,AR值为1.44~1.83,A/CNK值为0.98~1.16,为中—高钾钙碱性系列;岩石相对富集K、Rb、Cs等大离子亲石元素(LILE),亏损Nb、Ta、Ti等高场强元素(HFSE);岩石稀土总量为157.16×10-6~187.88×10-6,LREE/HREE为6.26~9.46,δEu为0.62~0.74,具有弱—中等的负铕异常;锆石U-Pb定年结果为(221.1±1.5)Ma(MSWD=0.30,n=22)和(214.5±1.5)Ma(MSWD=0.22,n=22),表明苏地岩体原始岩浆初始结晶时代为晚三叠世中期;锆石Lu-Hf同位素εHf(t)和TDM2分别为-6.56~-4.12和1.67~1.51 Ga。【结论】综合分析认为苏地二长花岗岩为较为典型的I型花岗岩,其可能为源于下地壳的初始岩浆于晚三叠世中期在造山碰撞闭合转入伸展体制下上升侵位过程中形成。松潘—甘孜地块东南部在晚三叠世中期处于后碰撞造山环境。  相似文献   

10.
河南商城县汤家坪花岗斑岩产于大别造山带北麓,岩体位于早白垩世达权店花岗岩体的南缘。岩体斑晶含量占10%左右,主要由钾长石、斜长石和石英组成,基质主要由钾长石、斜长石、石英和少量黑云母组成,副矿物主要为磁铁矿、赤铁矿、锆石。花岗斑岩中锆石U-Pb年龄为121.6±4.6Ma,为早白垩世中晚期。汤家坪花岗斑岩含白云母,无角闪石,具高硅(SiO272%)、高碱(Na2O+K2O7.4%)的特征,铝饱和指数(ACNK)为0.99~1.18,轻稀土富集、重稀土亏损(La/Yb)N=10.9~44.5,明显亏损Eu(δEu=0.40~0.58)、Sr、Ba、Nb等。P2O5与SiO2含量呈正相关关系、Pb与SiO2含量呈负相关关系、Y、Th随Rb升高而降低,属弱过铝质高分异S型花岗岩。汤家坪花岗斑岩εHf(t)(-17.6~-10.4)和εNd(t)(-15.5~-13.7)值均显示出壳源特征,tDM2(Hf)和tDM2(Nd)分别为1843~2281Ma和2034~2178Ma,反映汤家坪花岗斑岩来源于古老地壳物质的重熔,中等的初始Sr同位素指示源岩中可能有部分低成熟度地壳物质加入。结合稀土元素特征,认为汤家坪花岗斑岩源岩来源较深,主要源于下地壳物质。  相似文献   

11.
查干花钼矿床是内蒙古中西部的一个大型斑岩钼矿床。矿床成矿期花岗岩为似斑状黑云母花岗岩。2个花岗岩样品锆石SHRIMP U-Pb定年结果分别为253.3±2.8Ma(MSWD=1.17)和253.8±3.7Ma(MSWD=1.6),显示成矿期花岗岩形成于253~254Ma,为晚二叠世。与前人辉钼矿Re-Os测年研究(~243Ma)对比显示,矿床的成岩成矿时间差约为10Ma,这与矿床控矿构造及成矿期花岗岩的结构构造特征相符,也与国内外较多的斑岩型矿床成岩可以对比,反映出查干花钼矿床是成矿岩体经历了长时间演化以后岩浆-热液体系的产物。元素地球化学研究显示,成矿期花岗岩具有高硅、高碱、准铝质至过铝质和高钾钙碱性的特征。其源区是受到早期陆缘弧俯冲作用改造及地壳混染的岩石,再经过部分熔融作用所形成。其微量元素继承了早期陆缘弧成因岩石的一些特征。岩浆在形成以后,在深部岩浆房内经历了以斜长石和钾长石为主导的分离结晶作用,并在上侵到地壳浅部区域以后受到了远古宇宝音图群的混染。其形成的构造环境为古生代末期向中生代转换的后碰撞环境。  相似文献   

12.
来自大别-苏鲁地区晚中生代镁铁质岩石表现出类似于岛弧火山岩的富集大离子亲石元素(LILE)、轻稀土元素(LREE)和相对亏损高场强元素(HFSE)的微量元素地球化学特征,和高度富集的放射成因Sr(ISr:0.7065~0.7090)和低放射成因Nd(εNd(t)=-19~-10)的同位素组成;同时它们显示出一定程度的Nb/Ta和Zr/Hf内部分馏特征,反映其地慢源区曾受到了相对富金红石和CO2的熔体交代作用。我们倾向认为深俯冲陆壳在俯冲或折返过程中发生部分熔融作用形成的熔体与地幔反应是形成大别-苏鲁地区造山带富集岩石圈地幔的重要机制。  相似文献   

13.
Amy L. Weislogel 《Tectonophysics》2008,451(1-4):331-345
The Middle to Late Triassic deep-water deposits that form the Songpan-Ganzi complex (SGC) of central China comprise an estimated ~ 2.0 × 106 km3 of detrital material that accumulated in the northeasternmost branch of the Paleotethys. A review of existing data demonstrates significant spatial and temporal variations in the stratigraphic and petrologic character of these turbidites. These variations are used to divide the complex into different depocenters: a northeastern depocenter (SGC-NE), a eastern–central depocenter (SGC-EC) and a northwestern depocenter (SGC-NW). Turbidite strata of the SGC-NE and SGC-EC zones of the Songpan-Ganzi complex are linked to the collision of the North China and South China blocks, whereas turbidite strata of the SGC-NW area are likely to be more closely affiliated with evolution of the Kunlun deformation belt. To test the validity of the Songpan-Ganzi stratigraphic framework and interpretations of its tectonostratigraphic evolution, sixty-eight U–Pb zircon ages were determined from five samples of felsic intrusive igneous rock, two samples from felsic plutonic rock of the adjacent Yidun arc complex, and one sample of volcanic rock interbedded with Middle Triassic turbidites of the SGC using the Sensitive High Resolution Ion Microprobe-Reverse Geometry (SHRIMP-RG). Together these data indicate primarily Late Triassic (~ 214–211 Ma) felsic magmatism in the SGC, with some indication of magmatic activity beginning as early as Middle Triassic (220 Ma). Zircon ages from the Yidun arc complex support Middle–Late Triassic magmatism from 225–215 Ma, prior to deformation of the SGC, suggesting deformation of the SGC was not related to subduction of the SGC substrate southwestward beneath the Yidun arc. Inherited Neoproterozoic (880–740 Ma) zircon ages found in two samples from the SGC-EC indicate either inheritance of zircon crystals from the surrounding SGC turbidite strata or possibly involvement of South China basement during crustal thickening and magma genesis.  相似文献   

14.
Many granites have compositional features that directly reflect the composition of their source rocks. Since most granites come from the deeper parts of the Earth's crust, their study provides information about the nature of parts of that deep crust. Granites and related volcanic rocks are abundant and widely distributed in the Palaeozoic Lachlan Fold Belt of southeastern Australia. These granites show patterns of regional variation in which sharp discontinuities occur between provinces which internally are of a rather constant character. Such a discontinuity has long been recognized at the I‐S line and the extent of that line can now be defined more fully. Breaks of this type are thought to correspond to sharp changes in the composition of the deep crust that correspond to unexposed or basement terranes. Nine such basement terranes can be recognized in the Lachlan Fold Belt. The character of these basement terranes appears to be different from that of the terranes recognized in the Mesozoic‐Cainozoic Cordilleran fold belt, in which the plates accreted during the period of tectonism reflected in the exposed surface rocks. In the Lachlan Fold Belt, it is postulated that fragments of continental crust, or microplates, were assembled in the Late Proterozoic or Early Palaeozoic to form the substrate of the presently exposed Palaeozoic sedimentary rocks; the compositional features of these fragments were later redistributed vertically by magmatic processes. The identification of basement terranes of this type shows that models which involve the lateral growth of the Lachlan Fold Belt during the Palaeozoic, in a manner analogous to the accretion of younger belts, are untenable. These basement terranes have implications for mineral exploration because the content of heavy metals can vary from one to another and this would ultimately affect the probability of concentrating these metals to form a mineral deposit.  相似文献   

15.
江浪穹窿二叠系地层中发育一套顺层产出的变玄武岩,主要由角闪石(~80%)、斜长石(~15%)与少量的石英(3%)、磁铁矿(~2%)等组成,具有明显的枕状构造。为深入探讨变玄武岩的岩石成因,本文对其进行了主微量元素分析。结果显示,变玄武岩具有低的Si O2(平均44.14%)与Ti O2(平均1.79%)含量、高的TFe2O3(平均13.95%)和Mg O(平均11.64%)含量,Mg#值介于65.6~58.3;稀土配分型式显示为轻微的右倾型,Ce异常(Ce/Ce*平均0.89)与Eu异常(Eu/Eu*平均1.03)不明显;富集大离子亲石元素Rb、Ba和U,亏损高场强元素Nb、P、Zr和Hf;低的La/Sm值(2.71~2.26)、(Th/Ta)PM值(1.36~1.14)与(La/Nb)PM值(1.78~1.33)。综合分析认为,该套变玄武岩属于洋底玄武岩,可能是古特提斯洋的洋壳残余。岩浆源区为亏损地幔混有少量的富集地幔组分,岩浆上升侵位过程中没有遭受地壳物质的混染。与峨眉山低钛玄武岩(LT1)的对比显示,该套变玄武岩并非晚二叠世峨眉山玄武岩。  相似文献   

16.
西天山阿吾拉勒埃达克质岩石成因:Nd和Sr同位素组成的限制   总被引:28,自引:11,他引:28  
西天山阿吾拉勒二叠纪钠质英安岩和钠长斑岩具有与埃达克岩一致的高Sr,低Y、Yb和Eu正异常等独特岩石地球化学特征。系统的Nd和Sr同位素组成研究表明,其(^143Nd/^144Nd)i为0.512384-0.512470,εNd(t)为正值(+1.57-+3.26);(^87Sr/^86Sr)i为0.0751-0.7054,与本区同时代幔源玄武岩的Nd和Sr同位素组成特征相似,但与俯冲洋壳部分熔融成因埃达克岩的Nd和Sr同位素组成有显著区别。结合这些埃达克质岩石形成二叠纪后碰撞阶段构造背景,认为本区埃达克质岩浆最有可能由新底侵的玄武质下地壳在角闪岩相向榴辉岩相过渡或榴辉岩相的条件下部分熔融形成,是西天山晚古生代后碰撞阶段地幔玄武岩浆底侵作用和地壳垂向增生的重要岩石标志。  相似文献   

17.
小兴安岭霍吉河钼矿区含矿花岗岩类特征及成矿年龄   总被引:5,自引:3,他引:2  
张琳琳  刘翠  周肃  孙凯  邱瑞照  冯瑶 《岩石学报》2014,30(11):3419-3431
黑龙江霍吉河钼矿区内含矿花岗岩类岩石组合为黑云母二长花岗岩、二长花岗岩和花岗细晶岩,属高钾钙碱性岩-钾玄岩系列准铝质-过铝质岩石,具有轻稀土富集、重稀土亏损分馏模式;富集不相容元素(Cs、Th)并表现为Ta和Nb负异常以及Pb、Sr正异常,显示俯冲带地球化学特征.含矿岩浆岩明显富集Mo、Cu、Pb、Zn、W、Cr等金属元素.岩石全岩铅同位素来源比较复杂,具有混合成因铅特征.辉钼矿Re-Os模式年龄为180.7±2.5Ma和181.3±2.6Ma,钼矿成矿时代为早侏罗世.霍吉河钼矿是在蒙古-鄂霍茨克洋和古太平洋相向联合俯冲作用下,导致霍吉河地区发生地壳增生和壳幔相互作用以及后来的拆沉作用,形成了该区花岗质岩石和钼矿床.高度演化的花岗岩体(脉)可以作为今后本区钼矿床的找矿方向.  相似文献   

18.
李锦轶  肖序常  陈文 《地质通报》2000,19(3):297-302
出露在准噶尔盆地东北缘的老君庙变质岩 , 主要由绿片岩相的石英片岩构成 , 其上残存含前泥盆纪床板珊瑚和海百合茎化石的大理岩。对石英片岩中的白云母进行的4 0 Ar/ 39Ar定年 , 获得了 (4 6 1.5± 0 .2 ) Ma的坪年龄和 (4 6 2 .0± 4 .1) Ma等时线年龄 , 表明该变质岩的变质时代不晚于中奥陶世晚期 , 准噶尔盆地东部具有前晚奥陶世的陆壳基底。结合区域地质资料 , 推测准噶尔盆地的基底主体是古生代期间的陆块。  相似文献   

19.
四川阿布郎当超镁铁质侵入体成岩机制的地球化学约束   总被引:1,自引:1,他引:0  
马言胜  陶琰  钟宏  朱飞霖  王兴阵 《岩石学报》2009,25(5):1146-1158
阿布郎当超镁铁质侵入体位于扬子地台西缘,康滇地轴中段,安宁河深大断裂之西侧。该岩体呈似同心环状相带分布,基性程度很高,岩体的中心为含长橄榄岩,向外依次过渡为含长辉橄岩、辉橄岩及斜长辉橄岩,边缘带斜长橄辉岩。在岩体的边缘带附近存在明显的Cu-Ni-PGE矿化。随着近年来矿产价格的走高和国家对地质普查工作的力度加大,阿布郎当岩体又重新引起人们的关注。该岩体在地质勘探方面已经积累了丰富的资料,但在地球化学方面的研究还很薄弱。本文对阿布郎当超镁铁岩体进行了系统的主要造岩矿物成分、主量元素、微量元素及铂族元素含量的分析,讨论了该岩体的原始岩浆和地幔部分熔融程度,并对成岩过程进行了探讨。研究认为,阿布郎当超镁铁质岩属拉斑玄武岩系列,是峨眉山大火成岩省构造-岩浆活动产物,成岩原始岩浆为苦橄质岩浆,由类似于洋岛玄武岩岩浆源区成分的地幔经18%左右的部分熔融形成。在岩浆上升过程中,最先结晶的镁铁矿物由于岩浆的流动而集中于岩浆管道的中央,于是形成各种岩石的环带分布。当岩浆上升侵入阿布郎当岩浆房以后,发生了以橄榄石为代表的镁铁矿物的堆积,与此同时,岩浆在岩浆房内继续进行着结晶分异并且还可能与围岩发生了混染,导致岩体边缘相附近出现了硫化物的熔离。在后期的地壳运动中,阿布朗当岩浆房露出地表,即今天所见到的阿不朗当超镁铁质岩体。  相似文献   

20.
Abstract. The late Jurassic Tongshankou and Yinzu plutons in southeast Hubei have been investigated for their contrasting metal mineralization features. The former is closely associated with porphyry Cu‐Mo mineralization, while the latter is barren of metal mineralization, althouth both are located very close to each other. The Tongshankou granodiorite porphyries and the Yinzu granodiorites are geochemically similar to adakites, e.g., high Al2O3 and Sr contents and La/Yb and Sr/Y ratios, enriched in Na2O, depleted in Y and Yb, very weak Eu anomalies and positive Sr anomalies. However, different geochemi‐cal characteristics exist between the two plutons: the Tongshankou adakitic rocks (1) are relatively enriched in SiO2, K2O, MgO, Cr, Ni, and Sr and depleted in Y and Yb; (2) have higher degree REE differentiation; (3) have positive Eu anomalies in contrast with very weak negative or unclear Eu anomalies in the Yinzu rocks; and (4) isotopically have relatively higher ePNd(t) values (‐5.19 to ‐5.38) and lower initial 87Sr/86Sr ratios (0.7060 to 0.7062), while the Yinzu adakitic rocks have relatively lower ePNd(t) values (‐7.22 to ‐8.67) and higher initial 87Sr/86Sr ratios (0.7065 to 0.7074). The trace element and isotopic data demonstrate that the Tongshankou adakitic rocks were most probably originated from partial melting of delaminated lower crust with garnet being the main residual mineral whereas little or no plagioclase in the source. On the contrary, the Yinzu adakitic rocks were likely derived from partial melting of thickened lower crust, with residual garnet and a small quantity of plagioclase and hornblende in the source. Interactions between the adakitic magmas and mantle peridotites possibly took place during the ascent of the Tongshankou adakitic magmas through the mantle, considering that MgO, Cr, and Ni contents and ePNd(t) values of the adakitic magmas were possibly elevated and initial 87Sr/86Sr ratios were possibly lowered due to the contamination of mantle peridotites. In addition, the Fe2O3 of the adakitic magmas was likely released into the mantle and the oxygen fugacities (?o2) of the latter were obviously possibly raised, which made metallic sulfide in the mantle oxidized and the chalcophile elements such as Cu were incorporated into the adakitic magmas. The ascent of the adakitic magmas enriched in Cu and Mo will lead to the formation of porphyry Cu‐Mo deposit. Nevertheless, the Yinzu adakitic magmas were possibly lack of metallogenetic materials due to not interacting with mantle peridotite, and thus unfavorable to metal mineralization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号