首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
The seasonality of the interaction between convection over the western Pacific and general circulation in the Northern Hemisphere (NH) is analyzed in the present paper with singular value decomposition (SVD) and empirical orthogonal function (EOF) analysis approaches, based on 500 hPa monthly mean geopotential height data and high-cloud amount data. The analyses demonstrate that coupled dominant patterns in the interaction between the convection over the western Pacific and the general circulation in NH are different in various seasons. In spring, the convection over the western Pacific is closely related with the western Atlantic (WA) and North Pacific (NP) like patterns of the general circulation in NH, and some associations between the WA and NP like pat?terns and the El Ni?o / Southern Oscillation (ENSO) cycle are also existed. The Pacific Japan (PJ) pattern is the dom?inant pattern in the interaction between the interannual variabilities of the convection over the western Pacific and the general circulation in NH summer. The WA like pattern and 3-4 year period oscillation are also relatively obvious for the summer case. In autumn, the convection over the western Pacific is closely linked with the Eurasian (EU) like pattern and the Atlantic oscillation in the general circulation in NH, it is suggested that in autumn the vitiation of convective activity over the western Pacific is largely affected by the general circulation anomaly (cold air from high latitudes) through EU like teleconnection pattern. Abrupt change happened by the end of 1980’s in the autumn interaction. The strong interaction between the western Pacific (WP) and EU like patterns in the general circulation in NH and the convection over the western Pacific and a linear trend of increasing of this interaction are also suggested in winter. It is also demonstrated that the interaction in summer and winter is stronger than in the transition seasons (spring and autumn).  相似文献   

2.
The features of large-scale circulation, storm tracks and the dynamical relationship between them were examined by investigating Rossby wave breaking (RWB) processes associated with Eastern Pacific (EP) and Central Pacific (CP) E1-Nifio. During EP E1-Nino, the geopotential height anomaly at 500 hPa (Z500) exhibits a Pacific-North America (PNA) pattern. During CP EI-Nifio, the Z500 anomaly shows a north positive-south negative pattern over the North Pacific. The anomalous distributions of baroclinicity and storm track are consistent with those of upper-level zonal wind for both EP and CP EI-Nino, suggesting impacts of mean flow on storm track variability. Anticyclonic wave breaking (AWB) oczurs less frequently in EP EI-Nino years, while cyclonic wave breaking (CWB) occurs more frequently in CP EI-Nino years over the North Pacific sector. Outside the North Pacific, more CWB events occur over North America during EP Ei-NiNo. When AWB events occur less frequently over the North Pacific during EP EI-Nino, Z500 decreases locally and the zonal wind is strengthened (weakened) to the south (north). This is because AWB events reflect a monopoie high anomaly at the centroid of breaking events. When CWB events occur more frequently over the North Pacific under CP EI-Nino conditions, and over North America under EP EI-Nino condition, Z500 increases (decreases) to the northeast (southwest), since CWB events are related to a northeast-southwest dipole Z500 anomaly. The anomalous RWB events act to invigorate and reinforce the circulation anomalies over the North Pacific-North America region linked with the two types of EI-Nino.  相似文献   

3.
In this study, a group of indices were defined regarding intensity (P), area (S) and central position (λc, Φc) of the Aleutian low (AL) in the Northern Hemisphere in winter, using seasonal and monthly mean height field at 1000-hPa. These indices were calculated over 60 winter seasons from 1948/1949 to 2007/2008 using reanalysis data. Climatic and anomalous characteristics of the AL were analyzed based on these indices and relationships between the AL, and general circulations were explored using correlations between indices P, λc, and Pacific SST, as well as Northern Hemisphere temperature and precipitation. The main results are these: (1) AL is the strongest in January, when the center shifts to the south and west of its climatological position, and it is the weakest in December when the center shifts to the north and east. (2) AL intensity (P) is negatively correlated with its longitude (λc): a deeper low occurs toward the east and a shallower low occurs toward the west. On a decadal scale, the AL has been persistently strong and has shifted eastward since the 1970s, but reversal signs have been observed in recent years. (3) The AL is stronger and is located toward the east during strong El Nino winters and vice versa during strong La Nina years; this tendency is particularly evident after 1975. The AL is also strongly correlated with SST in the North Pacific. It intensifies and moves eastward with negative SST anomalies, and it weakens and moves westward with positive SST anomalies. (4) Maps of significance correlation between AL intensity and Northern Hemisphere temperature and rainfall resemble the PNA teleconnection pattern in mid-latitudes in the North Pacific and across North America. The AL and the Mongolian High are two permanent atmospheric pressure systems adjacent to each other during boreal winter over the middle and high latitudes in the Northern Hemisphere, but their relationships with the El Nino/La Nina events and with temperature and precipitation in the Northern Hemisphere are significantly different.  相似文献   

4.
It is a worthwhile attempt to address the role of the Qinghai-Xizang Plateau in the seasonal transition of general circulation from a global prospective. In this paper, the CCM1 (R15L7)-LNWP spectral model is used to study the influences of the Qinghai-Xizang Plateau on the seasonal transfer of the general circulation, with the objective analysis form the State Meteorological Center for March 17, 1996 as the initial field. A mid-level heating source in regions on the same latitudes is shown to cause a warming center of 224 K to form on the level of 200 hPa that warms up the atmosphere by more than 7 K and a drop of temperature by about 6 K on most of the 200-hPa layer over the Antarctic continent, with the largest negative center being-8.28 K. It is favorable to the deepening and widening of the polar vortexes in the course of transition from summer to winter. The topographic effect of the plateau plays a vital role in forming and maintaining the mean troughs and ridges of the atmospheric circulation in Northern Hemisphere such that it strengthens (weakens) the south-north positive gradient of temperature on the northern (southern) side of the latitude zone in which the plateau sits and increases the north-south gradient of temperature near 30°N. The seasonal transition is thus favored so that the bulk travel of global westerly at the middle latitudes and the formation of Asian monsoon in early summer are made possible. In the equatorial and low-latitude areas where the geopotential is increased, the effect of the plateau terrain is also evident in that it is favorable for the northern withdrawal of the tropical high ridge in Southern Hemisphere and the northern shift of the subtropical high in Northern Hemisphere. In addition, the effect also helps increase the polar easterly over the Southern Hemisphere and weaken the low zone at 500 hPa. It acts as an increasing factor for the polar vortex around the Ross Sea and contributes to the genesis of the Somali Jet on the equator.  相似文献   

5.
The features of large-scale circulation, storm tracks and the dynamical relationship between them were examined by investigating Rossby wave breaking(RWB) processes associated with Eastern Pacific(EP) and Central Pacific(CP) El-Nin o. During EP El-Nin o, the geopotential height anomaly at 500 hPa(Z500) exhibits a Pacific–North America(PNA) pattern. During CP El-Nin o, the Z500 anomaly shows a north positive–south negative pattern over the North Pacific. The anomalous distributions of baroclinicity and storm track are consistent with those of upper-level zonal wind for both EP and CP El-Nin o, suggesting impacts of mean flow on storm track variability. Anticyclonic wave breaking(AWB) occurs less frequently in EP El-Nin o years, while cyclonic wave breaking(CWB) occurs more frequently in CP El-Nin o years over the North Pacific sector. Outside the North Pacific, more CWB events occur over North America during EP El-Nin o. When AWB events occur less frequently over the North Pacific during EP El-Nin o, Z500 decreases locally and the zonal wind is strengthened(weakened) to the south(north). This is because AWB events reflect a monopole high anomaly at the centroid of breaking events. When CWB events occur more frequently over the North Pacific under CP El-Nin o conditions, and over North America under EP El-Nin o condition, Z500 increases(decreases) to the northeast(southwest), since CWB events are related to a northeast–southwest dipole Z500 anomaly. The anomalous RWB events act to invigorate and reinforce the circulation anomalies over the North Pacific–North America region linked with the two types of El-Nin o.  相似文献   

6.
Based on researches made by the author in recent years, discussion is made of the quasi-40-day oscillation (QDO) nature and its characteristic propagation, with emphasis on the Southern Hemisphere mill-latitude quasi-periodic cold air forcing on the tropical atmosphere quasi-40-day oscillation along with its effect upon the Northern Hemisphere summer monsoon. It is proposed that the interaction between, or lateral coupling of, meridional circulation systems may serve as the mechanism of the oscillation propagation in a meridional direction.  相似文献   

7.
Based on the three-pattern decomposition of global atmospheric circulation(TPDGAC), this study investigates the double-layer structure of the Hadley circulation(HC) and its interdecadal evolution characteristics by using monthly horizontal wind field from NCEP/NCAR reanalysis data from 1948—2011. The following major conclusions are drawn: First, the double-layer structure of the HC is an objective fact, and it constantly exists in April,May, June, October and November in the Southern Hemisphere. Second, the double-layer structure is more obvious in the Southern than in the Northern Hemisphere. Since the double-layer structure is sloped in the vertical direction, it should be taken into consideration when analyzing the variations of the strength and location of the center of the HC.Third, the strength of the double-layer structure of the HC in the Southern Hemisphere consistently exhibits decadal variations with a strong, weak and strong pattern in all five months(April, May, June, October, and November), with cycles of 20-30 a and 40-60 a. Fourth, the center of the HC(mean position of the double-layer structure) in the Southern Hemisphere consistently and remarkably shifts southward in all the five months. The net poleward shifts over the 64 years are 5.18°, 2.11°, 2.50°, 1.79° and 5.76° for the five respective months, with a mean shift of 3.47°.  相似文献   

8.
In this paper, a quasi-geostrophic, 34-level spherical coordinate model with Rayleigh friction, Newtonian cooling and the horizontal eddy thermal diffusivity is used to simulate the three-dimensional telecon nection in the summer circulation over the Northern Hemisphere.The computed results show that the change of the heat source over the Tibetan Plateau may cause the change of the atmospheric circulation over the middle and high latitudes in the Northern Hemisphere. When the heal source over the Tibetan Plateau is enhanced, it may cause the Tibetan high to enhance over South Asia and cause the change of the atmospheric circulation over East Asia and North America, i. e., Northeast China and North Japan will be controlled by a trough, which brings about a cold summer in this area. In the same way, an anticyclone will be enhanced over the Okhotsk sea. Moreover, another trough will be formed over Alaska, while another ridge will develop to the northeast of North America. Besides, the Pacific subtropical high will be weakened. These results are in good agreement with those obtained from the observed data.  相似文献   

9.
There is increasing evidence of the possible role of extratropical forcing in the evolution of ENSO.The Southern Hemisphere Annular Mode(SAM) is the dominant mode of atmospheric circulation in the Southern Hemisphere extratropics.This study shows that the austral summer(December–January–February; DJF) SAM may also influence the amplitude of ENSO decay during austral autumn(March–April–May;MAM).The mechanisms associated with this SAM–ENSO relationship can be briefly summarized as follows:The SAM is positively(negatively) correlated with SST in the Southern Hemisphere middle(high) latitudes.This dipole-like SST anomaly pattern is referred to as the Southern Ocean Dipole(SOD).The DJF SOD,caused by the DJF SAM,could persist until MAM and then influence atmospheric circulation,including trade winds,over the Nio3.4 area.Anomalous trade winds and SST anomalies over the Nio3.4 area related to the DJF SAM are further developed through the Bjerkness feedback,which eventually results in a cooling(warming) over the Nio3.4 area followed by the positive(negative) DJF SAM.  相似文献   

10.
A storm track is a region in which synoptic eddy activities are statistically most prevalent and intense. At daily weather charts, it roughly corresponds to the mean trajectories of cyclones and anticyclones. In this paper, the recent QuikSCAT (Quick Scatterometer) satellite sea winds data with a 0.5°×0.5° horizontal resolution, and the NCEP (National Centers for Environmental Prediction) 10-m height Gaussian grid wind data and pressure-level reanalysis data, are employed to document the spatial structure of the North Pacific storm track in winter (January) and summer (July) from 1999 to 2005. The results show that in winter the North Pacific storm track is stronger, and is located in lower latitudes with a distinct zonal distribution. In summer, it is weaker, and is located in higher latitudes. Based on the horizontal distributions of geopotential height variance at various levels, three-dimensional schematic diagrams of the North Pacific storm track in winter and summer are extracted and presented. Analyses of the QuikSCAT wind data indicate that this dataset can depict the low-level storm track features in detail. The double storm tracks over the Southern Oceans found by Nakamura and Shimpo are confirmed. More significantly, two new pairs of low-level storm tracks over the North Pacific and the North Atlantic are identified by using this high-resolution dataset. The pair over the North Pacific is focused in this paper, and is named as the "subtropical storm track" and the "subpolar storm track", respectively. Moreover, statistical analyses of cyclone and anticyclone trajectories in the winters of 1999 to 2005 reveal as well the existence of the low-level double storm tracks over the North Pacific.  相似文献   

11.
毛睿  龚道溢 《高原气象》2007,26(5):1023-1030
分析了近40年来华北春季沙尘暴频次与前秋、前冬和当年春季大尺度大气环流因子的关系,重点是检查年际尺度上的相关。结果表明,年际尺度上与沙尘暴频次有密切关系的环流因子包括:春季太平洋/北美遥相关型(PNA)、春季北太平洋指数(NP)、冬季亚洲区极涡面积。前者为正相关,后二者为负相关。这与用包含低频变率的原始序列进行分析的结果有很大的不同。原始序列分析的结果表明,与华北沙尘暴频次有关的环流因子主要是春季太平洋准10年振荡(PDO,为负相关),春季北半球极涡面积和亚洲区极涡面积(正相关)、前冬西大西洋型(WA,为正相关),以及前秋亚洲区极涡面积(正相关)。说明在不同时间尺度上,大气环流因子有不同的作用。此外,除了PNA、NP和亚洲区极涡面积外,年际尺度上ENSO及WA也可能对沙尘暴频次存在适度的影响。年际尺度上春季12个环流因子对春季沙尘暴频次的方差贡献率为65.3%。  相似文献   

12.
运用IAPAGCM模式证实了大气对南极冰异常的强迫遥响应是激发产生全球大气季节内振荡的重要机制,进而着重考察了候平均偏差结果的时间序列,并且通过带通滤波处理,特别分析了响应场中30~60d低频振荡的特征及其活动。通过分析发现:大气对南极冰减退的响应是一种具有30~60d周期的低频遥响应,并呈现出清楚的二维Rossby波列特征;强迫场中的30~60d季节内振荡具有着同实际大气中的低频振荡相类似的垂直结构和传播特征。大气响应场中30~60d振荡能量在垂直方向上随高度的增加而增加,在纬向上表现出明显的区域性特征,即季节内振荡的最大动能区(由于CISK机制)分布在大洋内;EUP,PNA,ASA和RSA波列可能是全球大气低频扰动传播的主要路径,30~60d低频扰动在波列路径上的传播具有很大的一致性和系统性,从而使中高纬和热带地区、以及南北半球的30~60d大气振荡相互联系起来,而且可以认为,赤道中太平洋和赤道中大西洋地区是南北半球30~60d低频振荡间相互作用和相互联系的重要通道。  相似文献   

13.
Summary By using the NCEP/NCAR reanalysis data, the Northern Hemisphere annular mode index (NAMI), China dust storm frequency data and China’s 160-station monthly precipitation data, the relationship between the previous winter (December–February) Northern Hemisphere annular mode (NAM) and the following spring (March–May) Asian atmospheric circulation is examined statistically in this study. Results demonstrate that the relationship between the spring Asian atmospheric circulation and the previous winter NAM is more significant on decadal time scales than on interannual time scales. There are significant negative correlations between the previous winter NAM and the spring temperature in what is almost a troposphere over Northwest China. There is a significant positive correlation between the winter NAMI and following spring geopotential height field over the Mongolian Plateau and Middle Siberia (MPMS) at the upper level. The positive correlation coefficients center moves to the south with the level from high to low. At lower level the high correlation coefficients center is located over the North China. There is a significant negative correlation between the winter NAMI and the surface horizontal wind intensity in the following spring for Northwest China on decadal timescales. The results suggest that a strong NAM in winter is followed by a negative temperature anomaly and a positive anomaly of the spring 500 hPa geopotential height over the MPMS, while at the same time the spring anomaly of the southeast wind is experienced in the surface layer in Northwest China, implying that the intensity of the northwest wind tends to weaken, and vice versa. This circulation pattern can affect the change of the spring dust storm frequency in Northwest China on decadal time scales.  相似文献   

14.
A survey of the spatial and temporal behavior of the atmospheric general circulation as it relates to both polar regions is presented. The review is based on the European Centre for Medium-Range Weather Forecasts (ECMWF) 40-year reanalysis (ERA-40), updated using ECMWF operational analyses. The analysis spans 1960–2005 in the Northern Hemisphere, but is restricted to 1979–2005 in the Southern Hemisphere because of difficulties experienced by ERA-40 prior to the modern satellite era.The seasonal cycle of atmospheric circulation is illustrated by focusing on winter and summer. The huge circulation contrasts between the land-dominated Northern Hemisphere and the ocean-dominated Southern Hemisphere stand out. The intensification of the North Atlantic Oscillation/Northern Annular Mode and the Southern Annular Mode in DJF is highlighted and likely due to warming of the tropical Indian Ocean. The Arctic frontal zone during northern summer and the semi-annual oscillation throughout the year in the Southern Hemisphere are prominent features of the high latitude circulation in the respective hemispheres.Rotated principal component analysis (RPCA) is used to describe the primary modes of temporal variability affecting both polar regions, especially the links with the tropical forcing. The North Atlantic Oscillation is a key modulator of the atmospheric circulation in the North Atlantic sector, especially in winter, and is the dominant control on the moisture transport into the Arctic Basin. The Pacific-South American teleconnection patterns are primary factors in the high southern latitude circulation variability throughout the year, especially in the Pacific sector of Antarctica where the majority of moisture transport into the continent occurs.  相似文献   

15.
南极海冰首要模态呈现偶极子型异常,正负异常中心分别位于别林斯高晋海/阿蒙森海和威德尔海。过去研究表明冬春季节南极海冰涛动异常对后期南极涛动(Antarctic Oscillation,AAO)型大气环流有显著影响,而AAO可以通过经向遥相关等机制影响北半球大气环流和东亚气候。本文中我们利用观测分析发现南极海冰涛动从5~7月(May–July,MJJ)到8~10月(August–October, ASO)有很好的持续性,并进一步分析其对北半球夏季大气环流的可能影响及其物理过程。结果表明,MJJ南极海冰涛动首先通过冰气相互作用在南半球激发持续性的AAO型大气环流异常,使得南半球中纬度和极地及热带之间的气压梯度加大,在MJJ至JAS,纬向平均纬向风呈现显著的正负相间的从南极到北极的经向遥相关型分布。对流层中层位势高度场上,在澳大利亚北部到海洋性大陆区域,出现显著的负异常,在东亚沿岸从低纬到高纬呈现南北走向的“? + ?”太平洋—日本(Pacific–Japan,PJ)遥相关波列,其对应赤道中部太平洋及赤道印度洋存在显著的降水和海温负异常,西北太平洋至我国东部沿海地区存在显著降水正异常和温度负异常;低纬度北美洲到大西洋一带存在的负位势高度异常和北大西洋附近存在的正位势高度异常中心,构成一个类似于西大西洋型遥相关(Western Atlantic,WA)的结构,对应赤道南大西洋降水增加和南撒哈拉地区降水减少。从物理过程来看,南极海冰涛动首先通过局地效应影响Ferrel环流,进而通过经圈环流调整使得海洋性大陆区域和热带大西洋上方的Hadley环流上升支得到增强,海洋性大陆区域特别是菲律宾附近的热带对流活动偏强,激发类似于负位相的PJ波列,影响东亚北太平洋地区的大气环流,而热带大西洋对流增强和北传特征,则通过激发WA遥相关影响大西洋和欧洲地区的大气环流。以上两种通道将持续性MJJ至ASO南极海冰涛动强迫的大气环流信号从南半球中高纬度经热带地区传递到北半球中高纬地区,从而对热带和北半球夏季大气环流产生显著影响。  相似文献   

16.
东北冷涡持续活动时期的北半球500 hPa环流特征分析   总被引:21,自引:2,他引:21       下载免费PDF全文
分别对5月和6~8月东亚东北冷涡活动典型的多寡年份北半球500 hPa高度距平场进行合成、频次累积和相关分析,结果表明:东亚东北冷涡持续性活动不仅与前期、同期和后期北半球的大气环流异常密切相关,而且也是异常区的重要组成部分;500hPa 5月和6~8月东北冷涡活动多寡年的同期500hPa高度距平合成场差异显著;6~8月东北冷涡典型多寡年的同期距平场均与前冬(12~2月)的主要异常区反位相,存在半年尺度的遥相关,与北太平洋涛动(NPO)类同的500 hPa高度距平场,如前冬呈正位相,预报6~8月东北冷涡持续活动弱,反之,冷涡持续活动强;合成场和相关场通过信度检验的关键区主要位于东亚中高纬度至阿留申群岛及其以南的副热带地区、青藏高原接近巴基斯坦一侧和北非乍得盆地与撒哈拉大沙漠等地区;由此可以认为东亚地区中高纬度5月和6~8月东北冷涡持续性活动是北半球大气环流异常持续或调整的重要表征.  相似文献   

17.
Summary The impact of pronounced positive and negative sea surface temperature (STT) anomalies in the tropical Pacific associated with the El Niño/Southern Oscillation (ENSO) phenomenon on the atmospheric circulation in the Northern Hemisphere extratropics during the boreal winter season is investigated. This includes both the impact on the seasonal mean flow and on the intraseasonal variability on synoptic time scales. Moreover, the interaction between the transient fluctuations on these times scales and the mean circulation is examined. Both data from an ensemble of five simulations with the ECHAM3 atmospheric general circulation model at a horizontal resolution of T42 each covering the period from 1979 through 1992 and operational analyses from ECMWF for the corresponding period are examined. In each of the simulations observed SSTs for the period of investigation are given as lower boundary forcing, but different atmospheric initial conditions are prescribed.The simulations with ECHAM3 reveal a distinct impact of the pronounced SST-anomalies in the tropical Pacific on the atmospheric circulation in the Northern Hemisphere extratropics during El Niño as well as during La Niña events. These changes in the atmospheric circulation, which are found to be highly significant in the Pacific/North American as well as in the Atlantic/European region, are consistent with the essential results obtained from the analyses. The pronounced SST-anomalies in the tropical Pacific lead to changes in the mean circulation, which are characterized by typical circulation patterns. These changes in the mean circulation are accompanied by marked variations of the activity of the transient fluctuations on synoptic time scales, that are changes in both the kinetic energy on these time scales and the atmospheric transports of momentum and heat accomplished by the short baroclinic waves. The synoptic disturbances, on the other hand, play also an important role in controlling the changes in the mean circulation associated with the ENSO phenomenon. They maintain these typical circulation patterns via barotropic, but counteract them via baroclinic processes.The hypothesis of an impact of the ENSO phenomenon in the Atlantic/European region can be supported. As the determining factor the intensification (reduction) of the Aleutian low and the simultaneous reduction (intensification) of the Icelandic low during El Niño and during La Niña events respectively, is identified. The changes in the intensity of the Aleutian low during the ENSO-events are accompanied by an alteration of the transport of momentum caused by the short baroclinic waves over the North American continent in such a way that the changes in the intensity of the Icelandic low during El Niño as well as during La Niña events are maintained.With 16 Figures  相似文献   

18.
北半球冬季环流异常与ENSO的非线性关系   总被引:1,自引:0,他引:1  
运用非线性典型相关分析(nonlinear canonical correlation analysis,简称NLCCA)方法,对热带太平洋海表温度异常(SSTA)场与北半球冬季海平面气压异常场(SLPA)进行非线性分析,以反映ENSO与北半球冬季环流异常之间的非线性关系。NLCCA的结果表明:从极冷到极暖期,北半球冬季SLPA场对ENSO的投影在各主成分所分别构成的平面或空间中分别形成一条直线和一条抛物线,说明北半球冬季环流异常与ENSO的相关包含线性和具有二次特征的非线性两部分。无论ENSO的冷、暖事件都能导致冰岛低压减弱,且西伯利亚高压、北美高压和北太平洋高压随SSTA的变化不对称,进一步证明了ENSO对北半球冬季环流异常的非线性影响,其中冰岛低压对于ENSO响应的非线性特征最强,而阿留中低压与ENSO则主要是线性相关。  相似文献   

19.
孙力  安刚 《应用气象学报》2002,13(6):650-661
利用1951~2000年共50年的北半球500 hPa月平均高度距平场资料和奇异值分解技术(SVD),重点对东亚地区季节间大气环流异常的相互关系进行了初步探讨。结果表明,东亚地区季节间大气环流异常存在着较为密切的关联,并且这种明显的非同步联系具有时空相关显著的特点,尤其是夏季大气环流异常与其前冬和前春大气环流异常的联系更为密切。当前冬和前春北半球东亚大槽和北美大槽及蒙古高压偏强(或偏弱),极涡偏弱(或偏强),中高纬度盛行经向环流(或纬向环流),以及低纬和热带地区高度正距平(或负距平)明显时,则对应于夏季东亚地区西太平洋副高和鄂霍次克海阻高强度偏强(或偏弱),位置偏南(或偏北),贝加尔湖阻高强度也偏强(或偏弱),但位置偏西(或偏东)的大尺度环流形势出现。当春季北半球大气环流具有上述特点以及夏季鄂霍次克海阻高和西太平洋副高强度偏强(或偏弱),位置偏南(或偏北),且极涡较弱(较强)时,则东亚地区秋季大气环流对应于蒙古高压加强(或较弱),西太平洋副高减弱(或加强),并向南和向东移动(或移动较慢),极涡向南扩散(或扩散减弱),大气环流向冬季过渡加快(或减慢)。另外,大气环流异常还具有一定的持续性特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号