首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
利用静态吸附实验研究了溶液pH值、反应时间、初始Cu2+浓度等因素对凹凸棒石粘土矿中粘土质白云岩去除Cu2+效 果的影响,将准一级、准二级、Elovich动力学方程与反应动力学进行拟合,再利用Langmuir、Freundlich等温方程对实验数 据进行等温式拟合,并与普通白云岩和凹凸棒石粘土进行了对比研究。结果表明,粘土质白云岩相对于其他两种材料受pH 影响较小,且在pH3~5范围内对Cu2+去除率均大于85%,最佳pH为5;对Cu2+的去除符合准二级动力学模型,粘土质白云 岩对铜的去除速率和去除率均最高;等温数据符合Freundlich模型,对Cu2+的最大去除量(pH=5,30℃)为186.2×10-3。粘 土质白云岩去除水中Cu2+的主要机制为矿物水化与溶解引起的表面沉淀及凹凸棒石与新生碱式碳酸铜[Cu2CO3(OH)2]胶体的静 电吸附。粘土质白云岩中纳米凹凸棒石与亚微米多孔白云石共生,具有较高的化学反应活性,除Cu2+效果明显优于普通白 云岩和凹凸棒石粘土,在处理含Cu2+废水方面具有潜在应用价值。  相似文献   

2.
水悬浮体系中蒙脱石和凹凸棒石的互相作用及其意义   总被引:7,自引:0,他引:7  
由于晶体结构的制约,蒙脱石和凹凸棒石具有不同的形态和物理化学性质,在水悬浮体系中必定存在蒙脱石和凹凸棒石的互相作用,但这种互相作用的形式和科学意义未曾被人认知。通过蒙脱石和凹凸棒石分散、悬浮液混合、固液分离处理,经XRD、TEM、SSA分析证实,水悬浮体系蒙脱石和凹凸棒石存在胶体互相作用,并且以面-面形式结合。研究结果的理论和实际意义表现在以下三个方面:①为合理解释凹凸棒石蒙脱石混合粘土吸附现象和物理化学性质提供新的视角;②凹凸棒石可以作为蒙脱石粘土的改性剂,在蒙脱石粘土中添加少量的凹凸棒石即可达到提高比表面积的效果,可以利用蒙脱石和凹凸棒石的互相作用来制备类似柱撑粘土的纳米孔结构材料;③凹凸棒石粘土样品湿法处理时,水悬浮体系中不同矿物胶体颗粒互相作用会影响X射线粉末衍射分析结果,对此现象在粘土矿物定量研究中应引起重视。  相似文献   

3.
凹凸棒石与Ni2+的长期吸附作用   总被引:2,自引:1,他引:1  
以Ni2+为例研究了凹凸棒石与重金属离子长期作用过程,探讨了重金属离子在凹凸棒石上的吸附反应动力学,并运用高分辨透射电镜揭示了凹凸棒石与重金属离子互相作用引起重金属离子水解沉淀、形成氢氧化物或层状双氢氧化物次生物相的现象.实验表明,凹凸棒石-Ni2+水悬浮体系中,随着时间的延长溶液的pH值逐渐升高,Ni2+浓度逐渐降低,并且长期作用后悬浮液的pH值和重金属离子浓度受到固/液比控制.Ni2+在凹凸棒石和水两相中的分配在长达40 d的时间内都没有达到完全平衡,表明凹凸棒石-Ni2+水悬浮体系中存在凹凸棒石与重金属离子长期互相作用.凹凸棒石与Ni2+长期作用Ni2+浓度变化可以用抛物线扩散方程、双常数方程、一级扩散方程、Elovich方程较好地拟合.凹凸棒石与重金属的长期作用反应机制可能是由于凹凸棒石纳米效应和反应活性,表面缓慢水化导致含重金属离子溶液pH值缓慢升高,诱导了Ni2+在凹凸棒石表面沉淀,在凹凸棒石表面形成了氢氧化物或层状双氢氧化物.  相似文献   

4.
水悬浮体系中凹凸棒石与Cu2+作用机理   总被引:12,自引:0,他引:12  
研究矿物吸附重金属性能和机理,对正确认识矿物吸附性质、环境矿物材料应用研究以及重金属环境化学行为具有重要理论和实际意义。凹凸棒石是重要粘土矿物之一,也是重要的环境矿物材料,其吸附净化功能潜在应用受到广泛关注。在制备凹凸棒石纯样基础上,进行了凹凸棒石吸附Cu^2 单因素实验,吸附前后溶液pH值变化观测和吸附Cu^2 后凹凸棒石表面结构高分辨透射电镜调查。结果表明,从表面来看,凹凸棒石对Cu^2 的吸附性能主要受振荡速度、吸附时间、初始溶液pH值、吸附剂用量等因素影响,但实际上,凹凸棒石对Cu^2 的吸附作用主要是凹凸棒石诱导的Cu^2 水解沉淀作用以及凹凸棒石(带负电荷)与氢氧化铜(带正电荷)正负电荷胶体颗粒的互相作用,这有别于严格意义的矿物界面吸附作用。产生这种作用的机制在于凹凸棒石属于天然纳米矿物材料,具有较高的表面化学活性,凹凸棒石一水悬浮体系中凹凸棒石表面水解呈现出碱性,结果导致吸附平衡水溶液pH值较初始水溶液有较大程度的升高,达到Cu^2 水解基本完全的pH条件.  相似文献   

5.
针对煤层气排采过程中煤粉产出易造成卡泵、埋泵等问题,以韩城区块太原组11号煤为研究对象,采用阴离子分散剂十二烷基硫酸钠SDS,以煤粉粒径、分散剂用量、煤粉浓度等作为影响因素,探究了分散剂对煤粉分散稳定性的影响规律,分析了分散剂与煤粉之间的相互作用机理。结果表明:不同粒径煤粉悬浮液煤粉分散效果不同,随着煤粉粒径增大,SDS悬浮液煤粉浓度出现不同程度下降;适宜的SDS分散剂用量,低的煤粉浓度,有利于煤粉在悬浮液中稳定分散,SDS分散剂质量浓度1.5~2.5 g/L,煤粉质量浓度小于30 g/L时较为适合煤粉稳定分散;分散剂的加入改变了悬浮液黏度,黏度的升高增加了携粉能力,同时不会影响洗井工艺中洗井液的返排。   相似文献   

6.
为掌握褐煤颗粒界面与煤泥水之间的相互作用规律,作者研究了褐煤颗粒在不同搅拌强度、浸泡时间以及不同粒度下对煤泥水溶液的pH值和电导率以及离子组成的影响,探讨了pH值、搅拌强度、浸泡时间、阳离子种类与浓度对褐煤颗粒表面Zeta电位以及含氧官能团的影响。结果表明,搅拌和浸泡使煤泥水溶液的pH值由弱酸性逐渐增大至中性,溶液电导率也逐渐增大,随着粒度的减小,悬浮液的酸性增强电导率增加。Zeta电位绝对值随着搅拌强度和pH值的增加总体呈上升趋势,浸泡使褐煤颗粒表面Zeta电位绝对值先减小后增大,当浸泡3 d时达到最小值,不同阳离子改变褐煤颗粒表面Zeta电位能力顺序为Al~(3+)>Ca~(2+)>Mg~(2+)>Na~+。搅拌使颗粒表面羧基和醇羟基含量增加,酚羟基含量先降低后增加,浸泡使羧基含量先降低后增加,而酚羟基和醇羟基含量逐渐增加。  相似文献   

7.
宁南西吉存在范围较大的高氟地下水区,属于高氟水重灾区.以宁南含水层沉积物为研究对象开展室内实验,探讨了pH、Ca2+、Na+、HCO3-和Ca2+/OH-协同作用对沉积物中氟释放的影响及定量关系.结果表明,相对于HCO3-,pH值对F-释放的促进作用更高,相对增量为10%~50%.低Ca2+/ Na+比提高了沉积物所释放F-的活度,有利于地下水中F-的聚集.不同岩性对pH值的缓冲能力不同,从而决定F-的释放.整体而言,粉质粘土、泥岩和粘土F-释放的浓度相对其他岩性要高.泥岩和粉质粘土的F-释放受pH影响较大.沉积物中Al、Fe、Mn、Si组分含量、总F-浓度与不同条件下淋滤出的F-浓度也具备较好的相关性.沉积物的F-含量对地下水中F-聚集有较大的影响.  相似文献   

8.
挤压对凹凸棒石粘土胶体性能的影响及其机理   总被引:11,自引:0,他引:11  
凹凸棒石粘土经过挤压辊适当的挤压处理后,其内部显微结构被“膨松化”,并形成显微间隙与裂缝,从而使水分容易进入其中,造成显微结构的水化膨胀,以致在弱分散条件下就可在介质中解体分散,形成较镐粘度(如二次抗压凹土的粘度可达未挤压凹土的5~10倍)。凹土经挤压后,其水悬液的角变性和依时性也明显增强,而流变特性则随凹土挤压程度的加深有从不典型宾汉体向假塑性流体演变的趋势,且塑性粘度(η1)上升,动切力(ι0  相似文献   

9.
凹凸棒石黏土(凹土)对重金属类污染组分具有较强吸附作用,但受原状凹土固液难以分离的制约,目前尚未应用于实际工程。本文利用海藻酸钠对酸改性凹土进行造粒,通过静态批实验分析了其对Sr和Cs的吸附性能,并利用柱迁移实验分析动态迁移规律。结果表明,Sr和Cs浓度为100 mg/L,投加量为10 g/L时,120 min内达到平衡,造粒后的凹土颗粒对Sr和Cs去除率分别为40.4%和45.9%,造粒作用引起吸附效能低于凹土原土,具有明显负效应;柱实验结果表明,吸附剂用量为10.0 g、流速为10 m L/min时Sr和Cs的去除率达到41.8%和61.5%,随流速增加或降低,去除率均减小。因此,海藻酸钠造粒改性凹土颗粒可作为含Sr和Cs废水处理的备选材料。  相似文献   

10.
为证实本文第一部分所阐述的关于粘土质点间相互接触对饱水粘土的物理——力学性质影响这一观点,我们将下列试验研究综述如下:1.在粘土矿物悬浮液中,凝聚结构形成的研究;2.单矿物型粘土泥浆强度性质的研究;3.不同温度条件下,粘土泥浆双电层  相似文献   

11.
《Geochimica et cosmochimica acta》1999,63(13-14):2043-2059
Effects of the organic acid (OA) anions, oxalate and citrate, on the solubility and dissolution kinetics of feldspars (labradorite, orthoclase, and albite) at 80°C and of quartz at 70°C were investigated at pH 6 in separate batch experiments and in media with different ionic strength (0.02–2.2 M NaCl). Although it has been shown that OAs can increase rates of feldspar dissolution, prior experiments have focused primarily on dilute, highly undersaturated and acidic conditions where feldspar dissolution kinetics are dominated by H+ adsorption and exchange reactions. Many natural waters, however, are only weakly acidic and have variable ionic strength and composition which would be expected to influence mineral surface properties and mechanisms of organic ligand-promoted reactions.Oxalate and citrate (2–20 mM) increased the rate of quartz dissolution by up to a factor of 2.5. Quartz solubility, however, was not increased appreciably by these OAs, suggesting that Si–OA complexation is not significant under these conditions. The lack of significant OA–SiO2 interaction is important to understanding the effects of OAs on the release of both Si and Al from feldspars. In contrast to quartz, both the rates of dissolution and amounts of Si and Al released from the three feldspars studied increased regularly with increasing OA concentration. Feldspar dissolution was congruent at all but the lowest OA concentrations. Total dissolved Al concentrations increased by 1–2 orders of magnitude in the presence of oxalate and citrate, and reached values as high as 43 mg/l (1.6 mM). Si concentrations reached values up to 65 mg/l (2.3 mM) in feldspar–OA experiments. Precipitation of authigenic clays was observed only in experiments without or at very low concentrations of OAs. The high concentrations of dissolved Si attained during dissolution of feldspars in OA solutions, relative to Si concentrations in quartz–OA experiments, is attributed to concomitant release of Si driven by strong Al–OA interactions.Modeling of the dependence of feldspar dissolution rates on OA concentration in natural diagenetic environments is complicated by the competing effects of overall solution chemistry and ionic strength on the dissolution mechanism. Results of experiments using labradorite (An70) indicate that in OA-free solutions, dissolution is progressively slower at increasing NaCl concentrations (up to 2.2 M), in agreement with prior experiments on the effects of alkali metals on feldspar dissolution. The combined effects of oxalate and NaCl on labradorite dissolution rates are such that the rate increase due to oxalate is suppressed by the addition of NaCl. Thus, feldspar dissolution kinetics should be most significantly affected by a given concentration of OAs in low ionic strength solutions.  相似文献   

12.
The present investigation tests a model to explain the behavior of dissolved Si during early diagenesis in sediments. The model assumes that low-Fe clays and other minerals can be treated simply as Al hydroxides, having attached silica. When the minerals are placed in seawater solutions, Si is released, causing exposure of fresh Al-octahedra. which are reactive toward Si and other elements in solution. Standard clays (kaolinite, montmorillonite) and solid silicic acid were suspended in seawater solutions in various combinations and dissolved Al, Si, Ca, pH and alkalinity were determined as a function of time. The theoretical model correctly predicts the behavior of Si in mixtures of the different minerals, based upon the dissolution behavior of the minerals in suspension alone. Further, the decrease in the alkalinity of kaolinitecontaining seawater solutions, where carbonate dissolution, organic matter decomposition and reduced sulfur oxidation are apparently unimportant, can be predicted from a simple extrapolation of the silica model results. The alkalinity changes observed in this study, as well as the pH changes observed in standard clay suspensions by other researchers, can be explained simply by equilibration of the charge on exposed Al-octahedra with the pH of the surrounding waters. The results of this study indicate that theoretical models of Si diagenesis in sediments should have general usefulness for predicting the effects of clay dissolution on sediment properties.  相似文献   

13.
The empirical rate laws formulated to describe the dissolution rates of oxide minerals include the surface charge concentration that results from the protonation and deprotonation of surface functional groups. Previous experiments on quartz and silica have shown that dissolution rates vary as a function of different background electrolyte solutions, however, such experiments are often conducted at elevated temperatures where it is difficult to estimate surface charge along with the dissolution rates. In the present study we measuresurface charge concentrations for silica in different electrolyte solutions at 298 K in order to quantify the extent to which the different counterions could affect the dissolution rates through their influence on the surface charge concentrations. The experimental solutions in the electrolyte series: LiCl, NaCl, KCl, RbCl, CaCl2, SrCl2 and BaCl2 were prepared to maintain a constant metal concentration of 1.0 M. For the alkali-metal chlorides, the surface charge concentrations correlate with the size of the hydrated alkali metal, consistent with the idea that these counterions affect charge via outer-sphere coordination that shield proton surface complexes from one another. The reactivity trend for alkaline-earth cations is less clear, but the data demonstrate distinct differences in the acid-base propertiesof the silica surface in these different electrolytes. We then discuss how these trends are manifested in the rate equations used to interpret dissolution experiments.  相似文献   

14.
BORON IN CLAYS AND ESTIMATION OF PALEOSALINITIES   总被引:3,自引:0,他引:3  
A. LERMAN 《Sedimentology》1966,6(4):267-286
Experiments on the uptake of boron by some clays from artificial sea-water solutions at room temperatures show that the uptake is proportional to the concentration in solution, and takes place in relatively short time. The uptake process can be described by the Freundlich adsorption equation, with the constants in the equation, k and b, varying from one clay to another. Additional factor which apparently promotes the boron adsorption by clays is the occurrence of a sodium-borate complex in saline waters. The boron concentrations in a sequence of marine Cretaceous sediments derived from a fairly localized source area show variation much greater than can be accounted for by a model which assumes (1) nearly constant boron concentration in illitic-montmorillonitic clays prior to their deposition in the sea, and (2) changes in the boron concentration in solution as may be expected under slight variations in sea water of near “normal” salinity. Differences in the properties of clay-mineral polymorphs, in predepositional histories of the clays, and possible adsorption from interstitial waters, render inconsequential the estimates of the boron concentrations in the waters at the time of deposition.  相似文献   

15.
The mineral solubility model of Harvie and Weare (1980) is extended to the eight component system, Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O at 25°C to high concentrations. The model is based on the semi-empirical equations of Pitzer (1973) and co-workers for the thermodynamics of aqueous electrolyte solutions. The model is parameterized using many of the available isopiestic, electromotive force, and solubility data available for many of the subsystems. The predictive abilities of the model are demonstrated by comparison to experimental data in systems more complex than those used in parameterization. The essential features of a chemical model for aqueous electrolyte solutions and the relationship between pH and the equilibrium properties of a solution are discussed.  相似文献   

16.
软土流变的物质基础及流变机制探索   总被引:2,自引:0,他引:2  
谷任国  房营光 《岩土力学》2009,30(7):1915-1919
采用改进的直剪蠕变仪,研究结合水对软土流变性质的影响。在相同试验条件下分别完成了含高岭土、膨润土不同重量百分比2组烘干试样和1组砂土的流变性质测试。测试结果与近期已取得的试验成果对比分析表明,结合水是产生土样流变性质的重要因素;烘干试样的黏滞系数均比与其矿物成分相同的湿土试样的黏滞系数大,砂土试样的黏滞系数比湿黏土的黏滞系数大,即烘干土样与砂土土样流变变形阻力相对湿黏土的大,流变现象相对不明显。在试验基础上,探索了控制软土流变特性的物质基础,提出了“流变物质”概念,“流变物质”与软土的流变性质互相对应,是软土产生流变的主要物质基础,并给出了与其力学性质相适应的流变机制的软土流变特性的物理描述。  相似文献   

17.
This paper presents the results of a systematic analysis aimed at establishing whether acidic pore fluids can affect the properties of natural soils, in particular their compressibility. Marine deposits with different mineral compositions and undisturbed soil structure were collected for this research from three coastal areas in Japan. Pleistocene clays from the Osaka and Ariake Bays were obtained from boreholes at a depth of more than 10 m, whereas the Kawasaki mud, a relatively young deposit of Holocene, was dredged from the bed of the Tokyo Bay. Soil specimens were placed in special containers, which were designed to reproduce the process of long-term soil–water–chemical interaction, and leached with solutions of sulfuric acid for different periods of time, ranging from 1 to 9 months. At the end of each time interval, standard compression tests were performed to study the behavior of soil in an acidic environment. It was found that clay mineralogy and soil structure had a significant effect on the compressibility of clays at low pH. In the case of the Osaka and Ariake clays, the compressibility significantly increased with a decrease in pH values, a finding that was primarily attributed to changes in the soil’s structure. In contrast, the effect of acidic leaching on the properties of Kawasaki mud was observed to be the opposite. Laboratory data showed that in acidic medium the compressibility of soil decreased presumably due to the collapse of the diffuse double layer.  相似文献   

18.
Natural and constructed clay liners are routinely used to contain waste and wastewater. The impact of acidic solutions on the geochemistry and mineralogy of clays has been widely investigated in relation to acid mine drainage systems at pH > 1.0. The impact of H2SO4 leachate characterized by pH < 1.0 and potentially negative pH values on the geochemistry and mineralogy of clays is, however, not clear. Thus, laboratory batch experiments were conducted on three natural clay samples with different mass ratios of smectite, illite and kaolinite to investigate the impact of H2SO4 on the geochemistry and mineralogy of aluminosilicates from pH 5.0 to −3.0. Batch testing was conducted at seven pH treatments (5.0, 3.0, 1.0, 0.0, −1.0, −2.0 and −3.0) using standardized H2SO4 solutions for four exposure periods (14, 90, 180, and 365 d). Aqueous geochemical and XRD analyses showed: increased dissolution of aluminosilicates with decreasing pH and increasing exposure period, that smectite was more susceptible to dissolution than illite and kaolinite, precipitation of an amorphous silica phase occurred at pH ? 0.0, and anhydrite precipitated in Ca-rich clays at pH ? −1.0. In addition, global dissolution rates were calculated for the clays and showed good agreement to literature smectite, illite and kaolinite dissolution rates, which suggests global dissolution rates for complex clays could be determined from monomineralic studies. A stepwise conceptual model of the impact of H2SO4 on aluminosilicate geochemistry and mineralogy between pH 5.0 and −3.0 is proposed.  相似文献   

19.
Clay minerals synthesized under surface conditions take up boron in proportion to the concentration of boron in the solution. A synthetic montmorillonite contained 2160 ppm B when precipitated from a solution containing 5 ppm B and having a pH of 8.5. The fixation of B by the synthetic clay mineral is greatly reduced by a high ?HCO3 concentration in the solution. Part of the fixed boron is incorporated into the tetrahedral sheet of the clay mineral structure, whereas the remainder is present in the form of a Mg borate-like complex. Mg borate-like complexes similar to those found in the synthetic clay may also occur in detrital clays. This possibility was examined experimentally using natural illite and montmorillonite suspended in solutions containing boron alone and magnesium-boron in combination at pH 8–9 and 10. The results show that more B was sorbed from solutions containing both Mg and B than from solutions containing B alone. For example, at pH 8, montmorillonite takes up 18 ppm B from the combination solution and 11 ppm from a solution containing only B. In a similar experiment, illite takes up 28 and 20 ppm B, respectively. It is suggested that B in natural clays is fixed partly as a Mg-borate-like complex. This complex probably formed as a first step by sorption of B to Mg(OH)2, which may be present in clays.These results should apply to the interpretation of the boron content of recent clayey sediments  相似文献   

20.
Estimation of equation of state parameters for Sn++ and calculation of the thermodynamic properties of other aqueous species and dissociation constants for various stannous and stannic complexes as a function of temperature permit prediction of the high temperature solution chemistry of tin and calculation of the solubility of cassiterite in hydrothermal solutions. The results of these calculations indicate that in the absence of appreciable chloride and fluoride concentrations, Sn(OH)20 and Sn(OH)40 are the predominant tin species in H2O up to 350°C at ~2 $?pH $?7.5. The calculations also indicate that chloride complexes of Sn++ predominate by several orders of magnitude over their fluoride and hydroxide counterparts in 1–3 molal (m) NaCl solutions, except in the presence of geologically unrealistic concentrations of fluoride or a pH greater than ~3.5 at 250°C or ~5.0 at 350°C. At higher pH values, most of the tin in solution is present as hydroxide complexes, even at concentrations of NaCl as high as 3 m. Calculated values of the solubility of cassiterite at high temperatures compare favorably with experimental data reported in the literature. Depending on the fugacity of oxygen and solution composition, the solubility of cassiterite in hydrothermal solutions may exceed 100 ppm under geologically realistic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号