首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of Type Ia supernovae (SNe Ia) as cosmological standard candles is a key to solving the mystery of dark energy. Improving the calibration of SNe Ia increases their power as cosmological standard candles. We find tentative evidence for a correlation between the late-time light-curve slope and the peak luminosity of SNe Ia in the B band; brighter SNe Ia seem to have shallower light-curve slopes between 100 and 150 d from maximum light. Using a Markov Chain Monte Carlo (MCMC) analysis in calibrating SNe Ia, we are able to simultaneously take into consideration the effect of dust extinction, the luminosity and light-curve width correlation (parametrized by  Δ m 15  ), and the luminosity and late-time light-curve slope correlation. For the available sample of 11 SNe Ia with well-measured late-time light curves, we find that correcting for the correlation between luminosity and late-time light-curve slope of the SNe Ia leads to an intrinsic dispersion of 0.12 mag in the Hubble diagram. Our results have significant implications for future supernova surveys aimed to illuminate the nature of dark energy.  相似文献   

2.
We present Hubble Space Telescope ( HST )/Wide Field Planetary Camera 2 (WFPC2), Galaxy Evolution Explorer ( GALEX ) and Chandra observations of the position of the Type Ia supernova 2007sr in the Antennae galaxy, taken before the explosion. No source is found in any of the observations, allowing us to put interesting constraints on the progenitor luminosity. In total there is about 450 ks of Chandra data, spread over seven different observations. Limiting magnitudes of far-ultraviolet (FUV) (23.7 AB mag), near-ultraviolet (NUV) (23.8 AB mag), F555W (26.5 Vega mag) and F814W (24.5–25 Vega mag) are derived. The distance to the Antennae galaxy is surprisingly poorly known, with almost a factor of 2 difference between the latest distance based on the tip of the red giant branch (13.3 Mpc) and the distance derived from the 2007sr light curve (25 Mpc). Using these distances we derive limits on absolute optical and UV magnitudes of any progenitor but these are still above the brightest (symbiotic) proposed progenitors. From the Chandra data a 3σ upper limit to the X-ray luminosity of  0.5–8.0 × 1037 erg s−1  in the 0.3–1 keV range is found. This is below the X-ray luminosity of the potential progenitor of the Type Ia supernova 2007on that we recently discovered and for which we report a corrected X-ray luminosity. If that progenitor is confirmed it suggests the two supernovae have different progenitors. The X-ray limit is comparable to the brightest supersoft X-ray sources in the Galaxy, the Large Magellanic Cloud (LMC) and the Small Magellanic Cloud (SMC) and significantly below the luminosities of the brightest supersoft and quasi-soft X-ray sources found in nearby galaxies, ruling out such sources as progenitors of this Type Ia supernova.  相似文献   

3.
The evidence for positive cosmological constant Λ from Type Ia supernovae is re-examined.
Both high redshift supernova teams are found to underestimate the effects of host galaxy extinction. The evidence for an absolute magnitude–decay time relation is much weakened if supernovae not observed before maximum light are excluded. Inclusion of such objects artificially suppresses the scatter about the mean relation.
With a consistent treatment of host galaxy extinction and elimination of supernovae not observed before maximum, the evidence for a positive lambda is not very significant  (3–4 σ )  . A factor which may contribute to apparent faintness of high- z supernovae is evolution of the host galaxy extinction with z .
The Hubble diagram using all high- z distance estimates, including SZ clusters and gravitational lens time-delay estimates, does not appear inconsistent with an  Ωo=1  model.
Although a positive Λ can provide an (albeit physically unmotivated) resolution of the low curvature implied by cosmic microwave background (CMB) experiments and evidence that  Ωo<1  from large-scale structure, the direct evidence from Type Ia supernovae seems at present to be inconclusive.  相似文献   

4.
The use of standard candles for distance measurements is wide spread. Yet, we currently do not know a pure standard candle in astronomy. The concept of standard candles involves not only the secure establishment of a unique luminosity but also a clear observational distinction of the objects as a class. Even Type Ia supernovae, whose maximum luminosity shows amongst the smallest scatter known, need to be normalised to provide accurate distances. Without this normalisation the cosmological claims based on supernovae would not be possible. With a careful normalisation Type Ia supernovae are the best known distance indicators for cosmology to date. This is most easily shown by the small dispersion around the expansion line in the Hubble diagram. Problems with the empirical normalisation remain and a theoretical understanding of this normalisation is missing. This has direct ramifications on systematic uncertainties when deriving cosmological implications from Type Ia supernovae. Improving the understanding of supernova physics is now the prime task to sharpen this tool of observational cosmology. Once the explosion mechanism is revealed a serious discussion of possible evolutionary effects in Type Ia supernovae can start.  相似文献   

5.
Massive stars are of interest as progenitors of supernovae, i.e. neutron stars and black holes, which can be sources of gravitational waves. Recent population synthesis models can predict neutron star and gravitational wave observations but deal with a fixed supernova rate or an assumed initial mass function for the population of massive stars. Here we investigate those massive stars, which are supernova progenitors, i.e. with O‐ and early B‐type stars, and also all supergiants within 3 kpc. We restrict our sample to those massive stars detected both in 2MASS and observed by Hipparcos, i.e. only those stars with parallax and precise photometry. To determine the luminosities we calculated the extinctions from published multi‐colour photometry, spectral types, luminosity class, all corrected for multiplicity and recently revised Hipparcos distances. We use luminosities and temperatures to estimate the masses and ages of these stars using different models from different authors. Having estimated the luminosities of all our stars within 3 kpc, in particular for all O‐ and early B‐type stars, we have determined the median and mean luminosities for all spectral types for luminosity classes I, III, and V. Our luminosity values for supergiants deviate from earlier results: Previous work generally overestimates distances and luminosities compared to our data, this is likely due to Hipparcos parallaxes (generally more accurate and larger than previous ground‐based data) and the fact that many massive stars have recently been resolved into multiples of lower masses and luminosities. From luminosities and effective temperatures we derived masses and ages using mass tracks and isochrones from different authors. From masses and ages we estimated lifetimes and derived a lower limit for the supernova rate of ≈20 events/Myr averaged over the next 10 Myr within 600 pc from the sun. These data are then used to search for areas in the sky with higher likelihood for a supernova or gravitational wave event (like OB associations) (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
We cross-correlate the sample of type Ia supernovae from Riess A. G. et al. with the SDSS DR2 photometric galaxy catalogue. In contrast to recent work, we find no detectable correlation between supernova magnitude and galaxy overdensity on scales ranging between 1 and 10 arcmin. Our results are in accord with theoretical expectations for gravitational lensing of supernovae by large-scale structure. Future supernova surveys such as SNAP will be capable of detecting unambiguously the predicted lensing signal.  相似文献   

7.
Supernova rates (hypernova, type II, type Ib/c and type Ia) in a particular galaxy depend on the metallicity (i.e. on the galaxy age), on the physics of star formation and on the binary population. In order to study the time evolution of the galactic supernova rates, we use our chemical evolutionary model that accounts in detail for the evolution of single stars and binaries. In particular, supernovae of type Ia are considered to arise from exploding white dwarfs in interacting binaries and we adopt the two most plausible physical models: the single degenerate model and the double degenerate model. Comparison between theoretical prediction and observations of supernova rates in different types of galaxies allows to put constraints on the population of intermediate mass and massive close binaries.

The temporal evolution of the absolute galactic rates of different types of supernovae (including the type Ia rate) is presented in such a way that the results can be directly implemented into a galactic chemical evolutionary model. Particularly for type Ia’s the inclusion of binary evolution leads to results considerably different from those in earlier population synthesis approaches, in which binary evolution was not included in detail.  相似文献   


8.
In this paper, we present and discuss the effects of scattered light echoes (LEs) on the luminosity and spectral appearance of Type Ia supernovae (SNe). After introducing the basic concept of LE spectral synthesis by means of LE models and real observations, we investigate the deviations from pure SN spectra, light and colour curves, the signatures that witness the presence of an LE and the possible inferences on the extinction law. The effects on the photometric parameters and spectral features are also discussed. In particular, for the case of circumstellar dust, LEs are found to introduce an apparent relation between the post-maximum decline rate and the absolute luminosity, which is most likely going to affect the well-known Pskowski–Phillips relation.  相似文献   

9.
We present the results of our UBVRI CCD photometry for the second brightest supernova of 2009, SN 2009nr, discovered during a sky survey with the telescopes of the MASTER robotic network. Its light and color curves and bolometric light curves have been constructed. The light-curve parameters and the maximum luminosity have been determined. SN 2009nr is shown to be similar in light-curve shape and maximum luminosity to SN 1991T, which is the prototype of the class of supernovae Ia with an enhanced luminosity. SN 2009nr exploded far from the center of the spiral galaxy UGC 8255 and most likely belongs to its old halo population. We hypothesize that this explosion is a consequence of the merger of white dwarfs.  相似文献   

10.
The absolute luminosities and homogeneity of early-time infrared (IR) light curves of type Ia supernovae are examined. Eight supernovae are considered. These are selected to have accurately known epochs of maximum blue light as well as having reliable distance estimates and/or good light curve coverage. Two approaches to extinction correction are considered. Owing to the low extinction in the IR, the differences in the corrections via the two methods are small. Absolute magnitude light curves in the J , H and K bands are derived. Six of the events, including five established 'branch-normal' supernovae, show similar coeval magnitudes. Two of these, supernovae (SNe) 1989B and 1998bu, were observed near maximum infrared light. This occurs about 5 d before maximum blue light. Absolute peak magnitudes of about −19.0, −18.7 and −18.8 in J , H and K respectively were obtained. The two spectroscopically peculiar supernovae in the sample, SNe 1986G and 1991T, also show atypical IR behaviour. The light curves of the six similar supernovae can be represented fairly consistently with a single light curve in each of the three bands. In all three IR bands the dispersion in absolute magnitude is about 0.15 mag, and this can be accounted for within the uncertainties of the individual light curves. No significant variation of absolute IR magnitude with B -band light curve decline rate, Δ m 15( B ), is seen over the range 0.87<Δ m 15( B )<1.31. However, the data are insufficient to allow us to decide whether or not the decline rate relation is weaker in the IR than in the optical region. IR light curves of type Ia supernovae should eventually provide cosmological distance estimates that are of equal, or even superior, quality to those obtained in optical studies.  相似文献   

11.
On the basis of the current observational evidence, we put forward the case that the merger of two CO white dwarfs produces both a Type Ia supernova explosion and a stellar remnant, the latter in the form of a magnetar. The estimated occurrence rates raise the possibility that many, if not most, Type Ia supernovae might result from white dwarf mergers.  相似文献   

12.
超新星在宇宙学中的应用   总被引:2,自引:0,他引:2  
对Ia超新星在宇宙学中的应用作了述评。蓝Ia超新星具有相对均匀的光谱、光变曲线及峰值光度,是较好的相对距离指示器。利用峰值光度同光变曲线形状或其它与距离无关的可观测量的关系可进一步将Ia超新星校准成精确的距离指示器。一旦它们的绝对光度得到标定,就可以定出哈勃常数H0。基于对邻近星系Ia超新星的理解,高红移Ia超新星的数据可对宇宙密度参数ΩM、ΩV及减速因子q0作出限制,并对膨胀宇宙的最终命运作出判  相似文献   

13.
Four years ago, two teams presented independent analyzes coming from photometry of type Ia supernovae at various distances. The results presented back then shook-up the scientific community: the universe is accelerating with a positive repulsive fluid sometimes called dark energy. No significant work has disproved the fundamental results, yet some doubt subsists in the assumptions behind the full use of type Ia supernovae as perfect distance indicators. The uncertainty of the evolution problem, the explosion mechanisms and the diversity of the observed light curves properties are often cited problems. All these aspects are now being deeply investigated in to-come or already started supernova searches along with the on-going quest of determining the nature of dark energy. We will present here a brief introduction to the use of type Ia supernova in cosmology, the current status of supernova cosmology as well as an overview of the wide supernova surveys about to begin.  相似文献   

14.
We present the results of a study of selection criteria to identify Type Ia supernovae photometrically in a simulated mixed sample of Type Ia supernovae and core collapse supernovae. The simulated sample is a mockup of the expected results of the Dark Energy Survey. Fits to the MLCS2k2 and SALT2 Type Ia supernova models are compared and used to help separate the Type Ia supernovae from the core collapse sample. The Dark Energy Task Force Figure of Merit (modified to include core collapse supernovae systematics) is used to discriminate among the various selection criteria. This study of varying selection cuts for Type Ia supernova candidates is the first to evaluate core collapse contamination using the Figure of Merit. Different factors that contribute to the Figure of Merit are detailed. With our analysis methods, both SALT2 and MLCS2k2 Figures of Merit improve with tighter selection cuts and higher purities, peaking at 98% purity.  相似文献   

15.
We present first-season infrared (IR) and optical photometry and spectroscopy of the Type Ia Supernova 1998bu in M96. We also report optical polarimetry of this event. SN 1998bu is one of the closest type Ia supernovae of modern times, and the distance of its host galaxy is well determined. We find that SN 1998bu is both photometrically and spectroscopically normal. However, the extinction to this event is unusually high, with     We find that SN 1998bu peaked at an intrinsic     Adopting a distance modulus of 30.25 (Tanvir et al.) and using Phillips et al.'s relations for the Hubble constant, we obtain     Combination of our IR photometry with those of Jha et al. provides one of the most complete early-phase IR light curves for a SN Ia published so far. In particular, SN 1998bu is the first normal SN Ia for which good pre- t B max IR coverage has been obtained. It reveals that the J , H and K light curves peak about 5 days earlier than the flux in the B -band curve.  相似文献   

16.
The observational cosmology with distant Type Ia supernovae (SNe) as standard candles claims that the Universe is in accelerated expansion, caused by a large fraction of dark energy. In this paper we investigate the SN Ia environment, studying the impact of the nature of their host galaxies on the Hubble diagram fitting. The supernovae (192 SNe) used in the analysis were extracted from Joint-Light-curves-Analysis (JLA) compilation of high-redshift and nearby supernovae which is the best one to date. The analysis is based on the empirical fact that SN Ia luminosities depend on their light curve shapes and colors. We confirm that the stretch parameter of Type Ia supernovae is correlated with the host galaxy type. The supernovae with lower stretch are hosted mainly in elliptical and lenticular galaxies. No significant correlation between SN Ia colour and host morphology was found. We also examine how the luminosities of SNe Ia change depending on host galaxy morphology after stretch and colour corrections. Our results show that in old stellar populations and low dust environments, the supernovae are slightly fainter. SNe Ia in elliptical and lenticular galaxies have a higher α (slope in luminosity-stretch) and β (slope in luminosity-colour) parameter than in spirals. However, the observed shift is at the 1-σ uncertainty level and, therefore, can not be considered as significant. We confirm that the supernova properties depend on their environment and that the incorporation of a host galaxy term into the Hubble diagram fit is expected to be crucial for future cosmological analyses.  相似文献   

17.
We present photometric and spectroscopic data of the Type II-P supernova (SN II-P) 2003gd, which was discovered in M74 close to the end of its plateau phase. SN 2003gd is the first Type II supernova (SN) to have a directly confirmed red supergiant (RSG) progenitor. We compare SN 2003gd to SN 1999em, a similar SN II-P, and estimate an explosion date of 2003 March 18. We determine a reddening towards the SN of   E ( B − V ) = 0.14 ± 0.06  , using three different methods. We also calculate three new distances to M74 of  9.6 ± 2.8, 7.7 ± 1.7  and  9.6 ± 2.2 Mpc  . The former was estimated using the standard candle method (SCM), for Type II supernovae (SNe II), and the latter two using the brightest supergiants method (BSM). When combined with existing kinematic and BSM distance estimates, we derive a mean value of  9.3 ± 1.8 Mpc  . SN 2003gd was found to have a lower tail luminosity compared with other normal Type II-P supernovae (SNe II-P) bringing into question the nature of this SN. We present a discussion concluding that this is a normal SN II-P, which is consistent with the observed progenitor mass of  8+4−2 M  .  相似文献   

18.
The accelerated expansion of the Universe was proposed through the use of Type-Ia supernovae (SNe) as standard candles. The standardization depends on an empirical correlation between the stretch/color and peak luminosity of the light curves. The use of Type-Ia SNe as standard candles rests on the assumption that their properties (and this correlation) do not vary with redshift. We consider the possibility that the majority of Type-Ia SNe are in fact caused by a Quark-Nova detonation in a tight neutron-star-CO-white-dwarf binary system, which forms a Quark-Nova Ia (QN-Ia). The spin-down energy injected by the Quark-Nova remnant (the quark star) contributes to the post-peak light curve and neatly explains the observed correlation between peak luminosity and light curve shape. We demonstrate that the parameters describing QN-Ia are NOT constant in redshift. Simulated QN-Ia light curves provide a test of the stretch/color correlation by comparing the true distance modulus with that determined using SN light curve fitters. We determine a correction between the true and fitted distance moduli, which when applied to Type-Ia SNe in the Hubble diagram recovers the ΩM = 1 cosmology. We conclude that Type-Ia SNe observations do not necessitate the need for an accelerating expansion of the Universe (if the observed SNe Ia are dominated by QNe Ia) and by association the need for dark energy.  相似文献   

19.
We present new spectroscopic and photometric data of the Type Ibn supernovae 2006jc, 2000er and 2002ao. We discuss the general properties of this recently proposed supernova family, which also includes SN 1999cq. The early-time monitoring of SN 2000er traces the evolution of this class of objects during the first few days after the shock breakout. An overall similarity in the photometric and spectroscopic evolution is found among the members of this group, which would be unexpected if the energy in these core-collapse events was dominated by the interaction between supernova ejecta and circumstellar medium. Type Ibn supernovae appear to be rather normal Type Ib/c supernova explosions which occur within a He-rich circumstellar environment. SNe Ibn are therefore likely produced by the explosion of Wolf–Rayet progenitors still embedded in the He-rich material lost by the star in recent mass-loss episodes, which resemble known luminous blue variable eruptions. The evolved Wolf–Rayet star could either result from the evolution of a very massive star or be the more evolved member of a massive binary system. We also suggest that there are a number of arguments in favour of a Type Ibn classification for the historical SN 1885A (S-Andromedae), previously considered as an anomalous Type Ia event with some resemblance to SN 1991bg.  相似文献   

20.
The explosion mechanism associated with thermonuclear supernovae (SNIa) is still a matter of debate. There is a wide agreement that high amounts of radioactive nuclei are produced during these events and they are expected to be strong γ-ray emitters. In the past, several authors have investigated the use of this γ-ray emission as a diagnostic tool. In this paper we have performed a complete study of the γ-ray spectra associated with all the different scenarios currently proposed. This includes detonation, delayed detonation, deflagration and the off-centre detonation. We have performed accurate simulations for this complete set of models in order to determine the most promising spectral features that could be used to discriminate among the different models. Our study is not limited to qualitative arguments. Instead, we have quantified the differences among the spectra and established distance limits for their detection. The calculations have been performed considering the best current response estimations of the SPI and IBIS instruments aboard INTEGRAL in such a way that our results can be used as a guideline to evaluate the capabilities of INTEGRAL in the study of Type Ia supernovae. For the purpose of completeness we have also investigated the nuclear excitation and spallation reactions as a possible secondary source of γ-rays present in some supernova scenarios. We conclude that this mechanism can be neglected because of its small contribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号