首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Antarctic site-testing campaigns have shown that Dome C is an excellent astronomical site on the earth, it is better than any of existing mid-latitude astronomical sites in the world, because of its cold and dry weather, low infrared background radiation, continuously observable time as long as 34 months, clear and highly transparent atmosphere, low wind speed, and the absence of dust and light pollution. And in the international astronomical community it is generally believed that Dome A with a higher altitude may be better than Dome C as a potential excellent astronomical site. In the past 3 years, although held by the Center for Antarctic Astronomy of Chinese Academy of Sciences, the site testing at Dome A has preliminarily con?rmed the many advantages of Dome A as an excellent astronomical site, but the data about the atmospheric seeing, which is an important parameter for assessing the site quality for optical observations, have not been obtained until now. Hence, on the basis of a commercial telescope with the diameter of 35 cm, we have made the hardware reformation and software development to have it operate as a DIMM (Differential Image Motion Monitor), which can simultaneously monitor both the seeing and isoplanatic angle at Dome A automatically. At present this instrument has been shipped to Antarctica by the “Xuelong” exploration ship, and will be installed at Dome A, and begin to work in early 2011. Before the shipment, by through the comparative measurements together with an existing seeing monitor at the Xinglong astronomical station, the software, hardware, as well as the installation and adjustment of the instrument, are further veri?ed by testing.  相似文献   

2.
南极冰穹C (Dome C)的选址结果显示:Dome C具有寒冷干燥、红外背景辐射低、可连续3~4个月观测、空气明净、透过率高、风速低等特征,是比地面上任何中纬度台址都好的天文观测台址.而由我国最先登陆的内陆最高点冰穹A (Dome A)被国际天文界广泛认为可能是比Dome C更好的天文台址.近3 yr来,中国科学院南极天文中心领导开展Dome A的台址测量工作,初步结果表明Dome A作为天文台址具有巨大优势.但是到目前还没有获得直接用于衡量天文台址在光学观测方面的主要参数—视宁度数据.介绍了中国科学院南京天文光学技术研究所自行研制的我国首个用于Dome A的自动视宁度测量仪,基于一台口径35 cm的商用望远镜进行硬件改造和软件开发,使其能在Dome A低温低压环境下进行自动观测和数据处理.目前该仪器已随“雪龙号,科考船起运南极,于2011年初安装到Dome A并开始测量.起运前,在兴隆观测站与中国科学院国家天文台(国台)选址组的一台视宁度监测仪进行了对比测量,对软件、硬件和装调方法进行了检验验证.  相似文献   

3.
J.W.V.Storey 《天文学报》2006,47(4):407-409
南极洲高原的天文开发在过去的10年中有了显著的进展.大的天文设施已在南极(South Pole)的Amundsen-Scott站运行,更具威力的望远镜已在计划或正在那儿建设,然而由于一些重要的原因,高原站址冰穹A(Dome A)和冰穹C(Dome C)对多种天文学科似乎比南极更具有利条件.2005年1月中国对冰穹A的成功考察,加上2005年以整年运行为目的的法/意Concordia站在冰穹C的开启,已为南极洲天文学创造了激动人心的新机遇.  相似文献   

4.
The atmospheric properties above three sites (Dome C, Dome A and the South Pole) on the Internal Antarctic Plateau are investigated for astronomical applications using the monthly median of the analyses from ECMWF (the European Centre for Medium-Range Weather Forecasts). Radiosoundings extended on a yearly time-scale at the South Pole and Dome C are used to quantify the reliability of the ECMWF analyses in the free atmosphere as well as in the boundary and surface layers, and to characterize the median wind speed in the first 100 m above the two sites. Thermodynamic instability properties in the free atmosphere above the three sites are quantified with monthly median values of the Richardson number. We find that the probability to trigger thermodynamic instabilities above 100 m is smaller on the Internal Antarctic Plateau than on mid-latitude sites. In spite of the generally more stable atmospheric conditions of the Antarctic sites compared to mid-latitude sites, Dome C shows worse thermodynamic instability conditions than those predicted above the South Pole and Dome A above 100 m. A rank of the Antarctic sites done with respect to the strength of the wind speed in the free atmosphere (ECMWF analyses) as well as the wind shear in the surface layer (radiosoundings) is presented.  相似文献   

5.
6.
Temporal sampling does more than add another axis to the vector of observables. Instead, under the recognition that how objects change (and move) in time speaks directly to the physics underlying astronomical phenomena, next‐generation wide‐field synoptic surveys are poised to revolutionize our understanding of just about anything that goes bump in the night (which is just about everything at some level). Still, even the most ambitious surveys will require targeted spectroscopic follow‐up to fill in the physical details of newly discovered transients. We are now building a new system intended to ingest and classify transient phenomena in near real‐time from high‐throughput imaging data streams. Described herein, the Transient Classification Project at Berkeley will be making use of classification techniques operating on “features” extracted from time series and contextual (static) information. We also highlight the need for a community adoption of a standard representation of astronomical time series data (ie. “VOTimeseries”). (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
Dome A in Antarctica has been demonstrated to be the best site on earth for optical, infrared, and terahertz astronomical observations by more and more evidence, such as excellent free-atmosphere seeing,extremely low perceptible water vapor, low sky background, and continuous dark time, etc. In this paper,we present a complete picture of the development of astronomy at Dome A from the very beginning, review recent progress in time-domain astronomy, demonstrate exciting results of the site testing, and address the challenges in instrumentation. Currently proposed projects are briefly discussed.  相似文献   

8.
Based on the measurements performed from 2007 to 2015 at the summit of Mount Shatdzhatmaz adjacent to the 2.5-m telescope at the Caucasus Observatory of the SAI MSU, we have determined the statistical characteristics of basic meteorological parameters: the ambient air temperature, the ground wind speed, and the relative humidity. The stability of these parameters over the entire period of our measurements and their variations within an annual cycle have been studied. The median temperature on clear nights is +3.2°C, although there are nights with a temperature below ?15°C. The typical ground wind speed is 3 m s?1; the probability of a wind stronger than 10 m s?1 does not exceed 2%. The losses of observing time due to high humidity are maximal in the summer period but, on the whole, are small over a year, less than 10%. We have estimated the absolute water vapor content in the atmosphere, which is especially important for infrared observations. Minimum precipitablewater vapor is observed in December–February; the median value over these months is 5 mm. We additionally provide the wind speeds at various altitudes above the ground (from 1 to 16 km) that we obtained when measuring the optical turbulence. We present the results and technique of our measurements of the annual amount of clear night astronomical time, which is, on average, 1320 h, i.e., 45% of the possible one at the latitude of the observatory. The period from mid-September to mid-March accounts for about 70% of the clear time. A maximum of clear skies is observed in November, when its fraction reaches 60% of the possible astronomical night time.  相似文献   

9.
The installation and operation of a telescope in Antarctica represent particular challenges, in particular the requirement to operate at extremely cold temperatures, to cope with rapid temperature fluctuations and to prevent frosting. Heating of electronic subsystems is a necessity, but solutions must be found to avoid the turbulence induced by temperature fluctuations on the optical paths. ASTEP 400 is a 40cm Newton telescope installed at the Concordia station, Dome C since 2010 for photometric observations of fields of stars and their exoplanets. While the telescope is designed to spread star light on several pixels to maximize photometric stability, we show that it is nonetheless sensitive to the extreme variations of the seeing at the ground level (between about 0′′.1 and 5′′) and to temperature fluctuations between –30°C and –80 °C. We analyze both day‐time and night‐time observations and obtain the magnitude of the seeing caused by the mirrors, dome and camera. The most important effect arises from the heating of the primary mirror which gives rise to a mirror seeing of 0′′.23 K–1. We propose solutions to mitigate these effects. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
Dome A,Antarctica,has been thought to be one of the best astronomical sites on the Earth for decades.Since it was first visited by astronomers in 2008,dozens of facilities for astronomical observation and site testing were deployed.Due to its special geographical location,the data and message exchange between Dome A and the domestic control center could only depend on Iridium.Because the link bandwidth of Iridium is extremely limited,the network traffic cost is quite expensive and the network is rather unstable,the commonly used data transfer tools,such as rsync and scp,are not suitable in this case.In this paper,we design and implement a data transfer tool called NBFTP(narrow bandwidth file transfer protocol)for the astronomical observation of Dome A.NBFTP uses a uniform interface to arrange all types of data and matches specific transmission schemes for different data types according to rules.Break-point resuming and extensibility functions are also implemented.Our experimental results show that NBFTP consumes 60%less network traffic than rsync when detecting the data pending to be transferred.When transferring small files of 1 KB,the network traffic consumption of NBFTP is 40%less than rsync.However,as the file size increases,the network traffic consumption of NBFTP tends to approach rsync,but it is still smaller than rsync.  相似文献   

11.
We describe the largest data‐producing astronomy project in the coming decade – the LSST (Large Synoptic Survey Telescope). The enormous data output, database contents, knowledge discovery, and community science expected from this project will impose massive data challenges on the astronomical research community. One of these challenge areas is the rapid machine learning, data mining, and classification of all novel astronomical events from each 3‐gigapixel (6‐GB) image obtained every 20 seconds throughout every night for the project duration of 10 years.We describe these challenges and a particular implementation of a classification broker for this data fire hose. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
An empirical method for correcting low‐resolution astronomical spectra for second‐order contamination is presented. The method was developed for correcting spectra obtained with grism#4 of the ALFOSC spectrograph at the Nordic Optical Telescope and the performance is demonstrated on spectra of two nearby bright Type Ia supernovae. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
We present the results of the blazar 3C 345 monitoring in Johnson‐Cousins BVRI bands for the period 1996–2006. We have collected 29 V and 43 R data points for this period; the BI light curves contain a few measurements only. The accuracy of our photometry is not better than 0.03 mag in the VR bands. The total amplitude of the variability obtained from our data is 2.06 mag in the V and 2.25 mag in the R band. 3C 345 showed periods of flaring activity during 1998/99 and 2001: a maximum of the blazar brightness was detected in 2001 February – 15.345 mag in the V and 14.944 mag in the R band. We confirm that during brighter stages 3C 345 becomes redder; for higher fluxes the colour index seems to be less dependent on the magnitude. The intra‐night monitoring of 3C 345 in three consecutive nights in 2001 August revealed no significant intra‐night variability; 3C 345 did not show evident flux changes over timescales of weeks around the period of the intra‐night monitoring. This result supports the existing facts that intra‐night variability is correlated with rapid flux changes rather than with specific flux levels. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
Ice divide–dome behaviour is used for ice sheet mass balance studies and interpretation of ice core records. In order to characterize the historical behaviour (last 400 yr) of Dome C and Talos Dome (East Antarctica), ice velocities have been measured since 1996 using a GPS system, and the palaeo-spatial variability of snow accumulation has been surveyed using snow radar and firn cores. The snow accumulation distribution of both domes indicates distributions of accumulation that are non-symmetrical in relation to dome morphology. Changes in spatial distributions have been observed over the last few centuries, with a decrease in snow accumulation gradient along the wind direction at Talos Dome and a counter-clockwise rotation of accumulation distribution in the northern part of Dome C. Observations at Dome C reveal a significant increase in accumulation since the 1950s, which could correlate to altered snow accumulation patterns due to changes in snowfall trajectory. Snow accumulation mechanisms are different at the two domes: a wind-driven snow accumulation process operates at Talos Dome, whereas snowfall trajectory direction is the main factor at Dome C. Repeated GPS measurements made at Talos Dome have highlighted changes in ice velocity, with a deceleration in the NE portion, acceleration in the SW portion and migration of dome summit, which are apparently correlated with changes in accumulation distribution. The observed behaviour in accumulation and velocity indicates that even the most remote areas of East Antarctica have changed from a decadal to secular scale.  相似文献   

15.
16.
17.
18.
中国地区天文夜晴空概率分布   总被引:1,自引:0,他引:1  
利用1995~1997年静止气象卫星(GMS)红外通道的数据,采用综合了时间判断法、空间判断法和红外阈值法等特征的一种综合判断有云无云的方法,统计分析了中国地区较高空间分辨率(优于20km)和时间分辨率(优于1h)的晴空概率和天文夜晴空概率的分布.分析结果表明,全年天文夜晴空概率的极值出现在我国的西部和北部.冬半年的最大天文夜晴空概率值大于夏半年.其中西藏地区12月的天文夜晴空概率可达到95%.  相似文献   

19.
The first radio astronomical investigations in the Lebedev Physical Institute are described. Some details of the large radio telescopes construction in Pushchino Radio Astronomy Observatory as well as the most significant scientific results obtained with them are quoted in the paper, too. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
In this paper we present an interference detection toolbox consisting of a high dynamic range Digital Fast‐Fourier‐Transform spectrometer (DFFT, based on FPGA‐technology) and data analysis software for automated radio frequency interference (RFI) detection. The DFFT spectrometer allows high speed data storage of spectra on time scales of less than a second. The high dynamic range of the device assures constant calibration even during extremely powerful RFI events. The software uses an algorithm which performs a two‐dimensional baseline fit in the time‐frequency domain, searching automatically for RFI signals superposed on the spectral data. We demonstrate, that the software operates successfully on computer‐generated RFI data as well as on real DFFT data recorded at the Effelsberg 100‐m telescope. At 21‐cm wavelength RFI signals can be identified down to the 4σ rms level. A statistical analysis of all RFI events detected in our observational data revealed that: (1) mean signal strength is comparable to the astronomical line emission of the Milky Way, (2) interferences are polarised, (3) electronic devices in the neighbourhood of the telescope contribute significantly to the RFI radiation. We also show that the radiometer equation is no longer fulfilled in presence of RFI signals. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号