首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The combination of dispersion measures of pulsars, distances from the model of Cordes & Lazio (2002) and emission measures from the WHAM survey enabled a statistical study of electron densities and filling factors of the diffuse ionized gas (DIG) in the Milky Way. The emission measures were corrected for absorption and contributions from beyond the pulsar distance. For a sample of 157 pulsars at |b | > 5. and 60° < ℓ < 360°, located in mainly interarm regions within about 3 kpc from the Sun, we find that: (1) The average volume filling factor along the line of sight and the mean density in ionized clouds are inversely correlated: ( ) = (0.0184 ± 0.0011) –1.07 ± 0.03 for the ranges 0.03 < < 2 cm–3 and 0.8 > > 0.01. This relationship is very tight. The inverse correlation of and causes the well‐known constancy of the average electron density along the line of sight. As (z ) increases with distance from the Galactic plane |z |, the average size of the ionized clouds increases with |z |. (2) For |z| < 0.9 kpc the local density in clouds n c(z ) and local filling factor f (z ) are inversely correlated because the local electron density n e(z ) = f (z )n c(z ) is constant. We suggest that f (z ) reaches a maximum value of >0.3 near |z | = 0.9 kpc, whereas n c(z ) continues to decrease to higher |z |, thus causing the observed flattening in the distribution of dispersion measures perpendicular to the Galactic plane above this height. (3) For |z | < 0.9 kpc the local distributions n c(z ), f (z ) and (z ) have the same scale height which is in the range 250 < h ≲ 500 pc. (4) The average degree of ionization of the warm atomic gas (z ) increases towards higher |z | similarly to (z ). Towards |z | = 1 kpc, (z ) = 0.24 ± 0.05 and (z ) = 0.24 ± 0.02. Near |z | = 1 kpc most of the warm, atomic hydrogen is ionized. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
We interpret the de‐reddened UBV data for the field SA 133 to deduce the stellar density and metallicity distribution functions. The logarithmic local space density for giants, D*(0) = 6.40, and the agreement of the luminosity function for dwarfs and sub‐giants with the one of Hipparcos confirms the empirical method used for their separation. The metallicity distribution for dwarfs gives a narrow peak at [Fe/H] = +0.13 dex, due to apparently bright limiting magnitude, Vo = 16.5, whereas late‐type giants extending up to z ∼ 4.5 kpc from the galactic plane have a multimodal distribution. The metallicity distribution for giants gives a steep gradient d[Fe/H]/dz = –0.75 dex kpc–1 for thin disk and thick disk whereas a smaller value for the halo, i.e. d[Fe/H]/dz = –0.45 dex kpc–1. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
4.
We present here rigorous analytical solutions for the Boltzmann-Poisson equation concerning the distribution of stars above the galactic plane. The number density of stars is considered to follow a behaviour n(m,0) ∼H(m - m0)m−x, wherem is the mass of a star andx an arbitrary exponent greater than 2 and also the velocity dispersion of the stars is assumed to behave as < v2(m)> ∼ m−θ the exponent θ being arbitrary and positive. It is shown that an analytic expression can be found for the gravitational field Kz, in terms of confluent hypergeometric functions, the limiting trends being Kz∼z for z →0, while Kz constant for z → infinity. We also study the behaviour of < |z(m)|2>,i.e. the dispersion of the distance from the galactic disc for the stars of massm. It is seen that the quantity < |z(m)|2> mt-θ, for m→ t, while it departs significantly from this harmonic oscillator behaviour for stars of lighter masses. It is suggested that observation of < |z(m)|2> can be used as a probe to findx and hence obtain information about the mass spectrum.  相似文献   

5.
We impose the requirement that the spatial distribution of pulsars deduced from their dispersion measures using a model of the galactic electron density (n e ) should be consistent with cylindrical symmetry around the galactic centre (assumed to be 10 kpc from the Sun). Using a carefully selected subsample of the pulsars detected by the II Molonglo Survey (II MS), we test a number of simple models and conclude that (i) the effective mean 〈ne〉) for the whole galaxy is 0.037-0.012 +0.020 cm-3, (ii) the scale height of electrons is greater than 300 pc and probably about 1 kpc or more, and (iii) there is little evidence for variation of ne with galactic radius RGC for RGc ≳ 5 kpc. Further, we make a detailed analysis of the contribution to ne from H II regions. Combining the results of a number of relatively independent calculations, we propose a model for the galactic electron density of the formn e (z) = 0.030 + 0.020 exp (- |z|/70) cm-3 where z(pc) is the height above the galactic plane and the second term describes the contribution from H II regions. We believe the statistical uncertainties in the parameters of this model are quite small.  相似文献   

6.
The noteworthy deviations and differences given in the individual values of the metal abundance of open clusters were studied. It could be shown that the metal abundance of open clusters, which are situated in or near the galactic plane (|z| ≦ 0.3 Kpc) are not only correlated wiht the galactocentric distance (RGC ) but also with the galactic longitude l of the clusters. This correlation is not given in the open clusters of high |z|-distances. There, the metal abundance is connected as well with the galactocentric radius (RGC ) as with the distances of the objects form the galactic plane.  相似文献   

7.
The density distributions of the two main components in interstellar hydrogen are calculated using 21 cm line data from the Berkeley Survey and the Pulkovo Survey. The narrow, dense component (state I of neutral hydrogen) has a Gaussianz-distribution with a scale-height of 50 pc in the local zones (the galactic disk). For the wide, tenuous component (hydrogen in state II) we postulate a distribution valid in the zones where such a material predominates (70 pc?z? 350 pc the galactic stratum) i.e., $$n_H \left( z \right) = n_H \left( 0 \right)exp \left( { - \left( {z/300{\text{ }}pc} \right)^{3/2} } \right).$$ Similar components are found in the dust distribution and in the available stellar data reaching sufficiently highz-altitudes. The scale-heights depend on the stellar type: the stratum in M III stars is considerably wider than in A stars (500–700 pc against 300 pc). The gas to dust ratio is approximately the same in both components: 0.66 atom cm?3 mag?1 kpc in the galactic plane. A third state of the gas is postulated associating it the observed free electron stratum at a scale-height of 660 pc (hydrogen fully ionized at high temperatures). The ratio between the observed dispersions in neutral hydrogen (thermal width plus turbulence) and the total dispersions corresponding to the real inner energies in the medium is obtained by a comparison with the dispersion distribution σ(z) of the different stellar types associated with the disk and the stratum $$\sigma ^2 \left( {total} \right) = \sigma ^2 \left( {21{\text{ cm line}}} \right) \cdot {\text{ }}Q^2 ,$$ from which we graphically obtainedQ 2=2.9 ± 0.3, although that number could be lower in the densest parts of the spiral arms. Its dependence on magnetic field and cosmic rays is analysed, indicating equipartition of the different energy components in the interstellar medium and consistency with the observed values of the magnetic field: i.e., fluctuations with an average of ~ 3 μG (associated with the disk) in a homogeneous background of ~ 1 μG (associated with the stratum). A minimum and maximumK z-force are obtained assuming extreme conditions for the total density distribution (gas plus stars). TheK z-force obtained from the interstellar gas in its different states using approximations of the Boltzmann equation is a reasonable intermediate case between maximum and minimumK z. The mass density obtained in the galactic plane is 0.20±0.05M pc?3, and the results indicate that the galactic disk is somewhat narrower and denser than has usually been believed. The effects of wave-like distributions of matter in thez-coordinate are analysed in relation with theK z-force, and comparisons with theoretical results are performed. A qualitative model for the galactic field of force is postulated together with a classification of the different zones of the Galaxy according to their observed ranges in velocity dispersions and the behaviour of the potential well at differentz-altitudes. The disk containing at least two-thirds of the total mass atz<100 pc, the stratum containing one-third or less of the total mass atz≤600–800 pc, and the halo at higherz-altitudes with a small fraction of such a mass which is difficult to evaluate.  相似文献   

8.
ISOGAL is a survey at 7 and 15 μm with ISOCAM of the inner galactic disk and bulge of our Galaxy. The survey covers ∼ 22 deg2 in selected areas of the centrall = ±30 degree of the inner Galaxy. In this paper, we report the study of a small ISOGAL field in the inner galactic bulge (l = 0°,b = −1°, area = 0.033deg2). Using the multicolor nearinfrared data (IJKs) of DENIS (DEep Near Infrared Southern Sky Survey) and mid-infrared ISOGAL data, we discuss the nature of the ISOGAL sources. The various color-color and color-magnitude diagrams are discussed in the paper. While most of the detected sources are red giants (RGB tip stars), a few of them show an excess in J-Ks and Ks-[15] colors with respect to the red giant sequence. Most of them are probably AGB stars with large mass-loss rates.  相似文献   

9.
We explore a simple model for the representation of the observed distributions of the motions, and the characteristic ages of the local population of pulsars. The principal difference from earlier models is the introduction of a unique value,S, for the kick velocity with which pulsars are born. We consider separately the proper motion components in galactic longitude and latitude, and find that the distributions of the velocity components parallel and perpendicular to the galactic plane are represented satisfactorily byS = 200 km/sec, and leave no room for a significant fraction of much higher velocities. The successful proposition of a unique value for the kick velocity may provide an interesting tool in attempts to understand the physical process leading to the expulsion of the neutron star. This paper is an extended analysis of the talk presented by A. Blaauw at the Raman Research Institute on 20th February, 1996.  相似文献   

10.
The Hipparcos Space Astrometry Mission photometric observations of V398 Lac, led to the discovery of its variability, allowing to classify it as an eclipsing binary with an orbital period of about 5.4 days. This prompted us to acquire highresolution échelle spectra with the aim of performing accurate radial velocity measurements and to determine the main physical parameters of the system's components. We present, for the first time, a double‐lined radial velocity curve and determine the orbital and physical parameters of the two components, that can be classified both as late B‐type stars. In particular, we obtained an orbital inclination i ∼ 85°. With this value of the inclination, we deduced masses M1 = 3.83±0.35 M andM2 = 3.29±0.32 M, and radii R1 = 4.89±0.18 R and R2 = 2.45±0.11 R for the more massive and less massive components, respectively. Both components are well inside their own Roche lobes. The mass ratio is M2/M1 ∼ 0.86. We derived also the projected rotational velocities as v1 sin i = 79±2 km s–1 and v2 sin i = 19±2 km s–1. Our measurements indicate that the rotation of the primary star is essentially pseudo‐synchronized with the orbital velocity at the periastron, while the secondary appears to rotate very slowly and has not yet attained synchronization. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
Our knowledge of the presence and the strength of magnetic fields in intermediate‐mass pre‐main‐sequence stars remains very poor. We present new magnetic field measurements in six Herbig Ae/Be stars observed with HARPS in spectropolarimetric mode. We downloaded from the European Southern Observatory (ESO) archive the publically available HARPS spectra for six Herbig Ae/Be stars. Wavelength shifts between right‐ and left‐hand side circularly polarised spectra were interpreted in terms of a longitudinal magnetic field 〈Bz〉, using the moment technique introduced by Mathys. The application of the moment technique to the HARPS spectra allowed us in addition to study the presence of the crossover effect and quadratic magnetic fields. Our search for longitudinal magnetic fields resulted in first detections of weak magnetic fields in the Herbig Ae/Be stars HD 58647 and HD 98922. Further, we confirm the previous tentative detection of a weak magnetic field in HD 104237 by Donati et al. and confirm the previous detection of a magnetic field in the Herbig Ae star HD 190073. Surprisingly, the measured longitudinal magnetic field of HD 190073, 〈Bz〉 = 91 ± 18 G at a significance level of 5σ is not in agreement with the measurement results of Alecian et al. (2013), 〈Bz〉 = –10 ± 20 G, who applied the LSD method to exactly the same data. No crossover effect was detected for any star in the sample. Only for HD 98922 the crossover effect was found tobe close to 3σ with a measured value of –4228 ± 1443 km s–1 G. A quadratic magnetic field of the order of 10 kG was detected in HD 98922, and of ∼3.5 kG in HD 104237. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
Photometric and spectroscopic characteristics of the WN5+O6 binary system, V444 Cyg, were studied. The Wilson‐Devinney (WD) analysis, using new BV observations carried out at the Ankara University Observatory, revealed the masses, radii, and temperatures of the components of the system as MWR = 10.64 M, MO = 24.68 M, RWR = 7.19 R, RO = 6.85 R, TWR = 31 000 K, and TO = 40000 K, respectively. It was found that both components had a full spherical geometry, whereas the circumstellar envelope of the WR component had an asymmetric structure. The OC analysis of the system revealed a period lengthening of 0.139 ± 0.018 syr–1, implying a mass loss rate of (6.76 ± 0.39) ×10–6 M yr–1 for the WR component. Moreover, 106 IUE‐NEWSIPS spectra were obtained from NASA's IUE archive for line identification and determination of line profile variability with phase, wind velocities and variability in continuum fluxes. The integrated continuum flux level (between 1200–2000 Å) showed a mild and regular increase from orbital phase 0.00 up to 0.50 and then a decrease in the same way back to phase 0.00. This is evaluated as the O component making a constant and regular contribution to the system's UV light as the dominant source. The C IV line, originating in the circumstellar envelope, had the highest velocity while N IV line, originating in deeper layers of the envelope, had the lowest velocity. The average radial velocity calculated by using the C IV line (wind velocity) was found as 2326 km s–1 (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
Under the two initial 1‐D one parameter velocity distribution forms (one is normal, the other is exponential), the z direction scale height evolution of normal neutron stars in the Galaxy is studied by numerical simulation. We do statistics for the cases at different time segments, also do statistics for the cumulative cases made of each time segment. The results show in the cumulative cases the evolution curves of the scale heights are smoother than in the each time segment, i.e., the cumulation improve the signal‐to‐noise ratio. Certainly the evolution cases are different at different Galactic disk locations, which also have very large difference from the average cases in the whole disk. In the initial stages of z evolution of normal neutron stars, after the beginning transient states, the cumulative scale heights increase linearly with time, and the cumulative scale height increasing rates have linear relationship with the initial velocity distribution parameters, which have larger fluctuation in the vicinity of the Sun than in the whole disk. We utilize the linear relationship of the cumulative scale height increasing rates vs. the initial velocity distribution parameters in the vicinity of the Sun to make comparison with the observation near the Sun. The results show if there is no magnetic decay, then the deserved initial velocity parameters are obvious lower than the present well known results from some authors; whereas if introducing magnetic decay, for the 1‐D normal case we can make consistence among concerning results using magnetic decay time values which are supported by some authors, while for the 1‐D exponential case the results show the lackness of young pulsar samples in the larger z in the vicinity of the Sun (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
Using polarimetric spectra obtained with the SOFIN spectrograph installed at the Nordic Optical Telescope, we detect a longitudinal magnetic field 〈Bz〉 = –168±35 G in the Of?p star HD 108. This result is in agreement with the longitudinal magnetic field measurement of the order of –150 G recently reported by the MiMeS team. The measurement of the longitudinal magnetic field in the Of?p star HD 191612 results in 〈Bz〉 = +450±153 G. The only previously published magnetic field measurement for this star showed a negative longitudinal magnetic field 〈Bz〉 = –220±38 G, indicating a change of polarity over ∼100 days. Further, we report the detection of distinct Zeeman features in the narrow Ca II and Na I doublet lines for both Of?p stars, hinting at the possible presence of material around these stars. The origin of these features is not yet clear and more work is needed to investigate how magnetic fields interact with stellar wind dynamics (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
We study the stability of motion in the 3-body Sitnikov problem, with the two equal mass primaries (m 1 = m 2 = 0.5) rotating in the x, y plane and vary the mass of the third particle, 0 ≤ m 3 < 10−3, placed initially on the z-axis. We begin by finding for the restricted problem (with m 3 = 0) an apparently infinite sequence of stability intervals on the z-axis, whose width grows and tends to a fixed non-zero value, as we move away from z = 0. We then estimate the extent of “islands” of bounded motion in x, y, z space about these intervals and show that it also increases as |z| grows. Turning to the so-called extended Sitnikov problem, where the third particle moves only along the z-axis, we find that, as m 3 increases, the domain of allowed motion grows significantly and chaotic regions in phase space appear through a series of saddle-node bifurcations. Finally, we concentrate on the general 3-body problem and demonstrate that, for very small masses, m 3 ≈ 10−6, the “islands” of bounded motion about the z-axis stability intervals are larger than the ones for m 3 = 0. Furthermore, as m 3 increases, it is the regions of bounded motion closest to z = 0 that disappear first, while the ones further away “disperse” at larger m 3 values, thus providing further evidence of an increasing stability of the motion away from the plane of the two primaries, as observed in the m 3 = 0 case.  相似文献   

16.
Results are presented from multicolor photometric and polarimetric studies of the eclipsing binary RY Per during 2001-2003. Light curves in the UBVRI bands are shown. An analysis of the variations in the linear polarization makes it possible to separate it into interstellar and intrinsic components. The degree of intrinsic polarization of the system away from the eclipse attains a maximum (0.23%) in the B band and falls off rapidly with increasing wavelength. This dependence is indicative of the existence of optically thick gas in the system. An analysis of the polarimetric data also shows that: the total mass of optically thin gas in the system is about 2·10-10 M , while the total mass of the shell must be several times that; and, the inclination of the orbital plane of the binary system relative to the galactic plane is 4° or 18°.  相似文献   

17.
We present new BV photometry and spectroscopic observations of RZ Cassiopeiae. The light and radial velocity curves were formed by the new observations which have been analyzed simultaneously by using theWilson‐Dewinney code. The non‐synchronous rotational velocity v 1 sin i = 76 ± 6 km s–1, deduced for the primary component from the new spectroscopic observations, was also incorporated in the analysis. A time‐series analysis of the residual light curves revealed the multi‐periodic pulsations of the primary component of RZ Cas. The main peak in the frequency spectrum was observed at about 64.197 c d–1 in both B and V bands. The pulsational constant was calculated to be 0.0116 days. This value corresponds to high overtones (n ∼ 6) of non‐radial mode oscillations.We find significant changes in the pulsational amplitude of the primary component from year to year. The peak‐to‐peak pulsational amplitude of the main frequency displays a decrease from 0.m013 in 2000 to 0.m002 in 2001 and thereafter we have found an increase again in the amplitude to 0.m01 in the year 2002. We propose the mass transfer from the cool secondary to the pulsating primary as a possible explanation for such remarkable changes in the pulsational behavior of the primary component. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
We present differential Hα and Hβ photometry of the very bright RS CVn‐binary α Aurigae (Capella)obtained with theVienna automatic photoelectric telescope in the years 1996 through 2000. Low‐level photometric variations of up to 0m.04 are detected in Hα. A multifrequency analysis suggests two real periods of 106 ± 3 days and 8.64 ± 0.09 days, that we interpret to be the rotation periods of the cool and the hot component of the Capella binary, respectively. These periods confirm that the hotter component of Capella rotates asynchronously, while the cooler component appears to be synchronized with the binary motion. The combined Hα data possibly contains an additional period of 80.4 days that we, however, believe is either spurious and was introduced due to seasonal amplitude variations or stems from a time‐variable circumbinary mass flow. The rotational periods result in stellar radii of 14.3 ± 4.6 R and 8.5 ± 0.5 R for the cool and hot component, respectively, and are in good agreement with previously published radii based on radiometric and interferometric techniques. The long‐period eclipsing binary Aurigae served as our check star, and we detected complex light variations outside of eclipse of up to 0m.15 in H α and 0m.20 in Hβ. Our frequency analysis suggests the existence of at least three significant periods of 132, 89, and 73 days. One of our comparison stars (HD 33167, F5V) was discovered to be a very‐low amplitude variable with a period of 2.6360 ± 0.0055 days.  相似文献   

19.
20.
We present new equilibrium component distribution functions that depend on three analytic integrals in a Stäckel potential, and that can be used to model stellar discs of galaxies. These components are generalizations of two-integral ones and can thus provide thin discs in the two-integral approximation. Their most important properties are the partly analytical expression for their moments, the disc-like features of their configuration space densities (exponential decline in the galactic plane and finite extent in the vertical direction) and the anisotropy of their velocity dispersions. We further show that a linear combination of such components can fit a van der Kruit disc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号