首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
射电望远镜的发展和前景   总被引:1,自引:0,他引:1  
在近代科学技术发展的基础上诞生和成长起来的射电天文学已经走过了66年的历程,作为射电天文学主要探测工具的射电望远镜有了长足的进步,面临21世纪人类社会和自然科学技术包括天文学发展的挑战,射电望远镜及射电天文学将迈出新的步伐.从射电天文学和射电望远镜发展的关系、射电望远镜几个主要发展方向和目前水平、自90年代以来逐步勾画而明确起来的未来发展方向等方面阐明了射电望远镜的发展和前景,以作为我国发展新一代射电望远镜的参考.  相似文献   

2.
在射电天文观测中,射频干扰(Radio Frequency Interference, RFI)会以多种形式混入望远镜接收系统,给观测带来误判或者降低观测信噪比.近年来国内国际射电天文快速发展,国内国际大型射电望远镜和阵列先后建设,观测灵敏度大为提高,射频干扰的影响尤为突出.随着科技发展和人类活动的加剧,射频干扰日益严重且不可逆转.提出利用2维离散小波变换的方法分析射电天文观测的数据,对望远镜系统输出的时间频率序列进行小波变换,根据小波系数分离出原始信号中各分量,每个分量统计得到相应的阈值,将各分量与阈值相比较识别干扰成分并标记去除.利用该方法对实际观测数据进行了处理,结果表明该方法能够很好地标记并消减干扰信号,且提高了观测的信噪比.  相似文献   

3.
The aim of this article is to draw attention to the priority of the well-known astronomer and geophysicist, member of the Academy of Sciences of Ukraine A.Ya. Orlov (1880–1954) in the determination of the following parameters describing the secular motion of the earth’s poles: speed (4 mas/year) and direction (69° west). These results (1954) are based on the astronomical observations from 1900 to 1950 with zenith telescopes at international latitude stations. Orlov is well known in the world astronomical community as the founder of the Poltava Gravimetric Observatory, the Main Astronomical Observatory, and the national research school of global geodynamics. However, his pioneering work on secular polar motion is little known worldwide. At present, Orlov’s estimates for secular polar motion have been verified by century-long observations (1900–2012) obtained with different telescopes at many observatories worldwide and by different, both astronomical and space-based, methods (LLS, VLBI, GNSS, etc.).  相似文献   

4.
The first radio astronomical investigations in the Lebedev Physical Institute are described. Some details of the large radio telescopes construction in Pushchino Radio Astronomy Observatory as well as the most significant scientific results obtained with them are quoted in the paper, too. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Decameter wavelength radio emission is finely structured in solar bursts. For their research it is very important to use a sufficient sensitivity of antenna systems. In this paper we study an influence of the radiotelescope‐antenna effective area on the results of decameter solar radio observations. For this purpose we compared the solar bursts received by the array of 720 ground‐based dipoles and the single dipole of the radiotelescope UTR‐2. It is shown that a larger effective area of the ground‐based antenna allows us to measure a weaker solar emission and to distinguish a fine structure of strong solar events. This feature has been also verified by simultaneous ground‐ and space‐based observations in the overlapping frequency range (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Following the detection of extraterrestrial radio waves in 1932 by Karl Jansky, radio astronomy developed quickly after World War II. It established itself soon as a new branch of astronomy with today's outstanding record in the detection of new phenomena in space. These have been honoured by a number of Nobel prizes. Radio astronomy largely depends on technical developments in receiver technology, antenna systems, electronics and computing power. Ever shorter wavelengths down to the submm‐wavelength range became accessible, resulting in new exciting discoveries. However, now and in future care must be taken, in particular for the lower frequency range, of harmful man‐made interferences, which might mask the weak signals from space. New international facilities with orders‐of‐magnitude higher sensitivity like ALMA and SKA are planned or under construction. Space‐borne observatories like PLANCK will detect weak fluctuations of the cosmic microwave background, which will constrain cosmological models with an unprecedented accuracy.  相似文献   

7.
射电天文中焦面阵或多波束馈源的应用   总被引:4,自引:1,他引:3  
焦面阵技术或者多波束馈源系统已经日益广泛地应用于现代射电望远镜,因为它可以充分地利用同一射电望远镜反射面所能提供的信息,在观测比射电望远镜方向瓣大得多的展源时数倍乃至数十倍地提高观测的速度;当存在大气层或电离层的起伏或不均匀影响观测成像质量时,可消除这种影响,提高观测质量;利用焦面阵各单个馈源接收到的信息的互相关,则可以实时监控射电望远镜的反射面、二次反射面、指向精度,从而降低地面上大射电望远镜或空间射电望远镜的精度要求和造价。目前焦面阵已经愈来愈广泛地配置在毫米波射电望远镜和大型射电望远镜的主要波段。对此作了一个较新和全面的评述,对焦面阵应用中的限制,包括相位误差的限制和性能价格比的考虑和可能的前景作了简要的介绍。还分析了在计划中的大型主动球反射面射电望远镜(即FAST)上,配置焦面阵的相应限制、问题和难点,提出了初步的建议,并给出经中英双方讨论后初步拟定的FAST频段、波束及低噪声放大器的配置。  相似文献   

8.
With the aim of evaluating the actual possibilities of doing, from the ground, sensitive radio astronomy at decametre wavelengths (particularly below ), an extensive program of radio observations was carried out, in 1999–2002, by using digital spectral and waveform analysers (DSP) of new generation, connected to several of the largest, decametre radio telescopes in the world (i.e., the UTR-2 and URANs arrays in Ukraine, and the Nançay Decametre Array in France).

We report and briefly discuss some new findings, dealing with decametre radiation from Jupiter and the Solar Corona: namely the discovery of new kinds of hyper fine structures in spectrograms of the active Sun, and a new characterisation of Jupiter's “millisecond” radiation, whose waveform samples, with time resolution down to 40 ns, and correlated measurements, by using far distant antennas (3000 km), have been obtained. In addition, scattering effects, caused by the terrestrial ionosphere and the interplanetary medium, could be disentangled through high time resolution and wide-band analyses of solar, planetary and strong galactic radio sources. Consequences for decametre wavelength imaging at high spatial resolution (VLBI) are outlined. Furthermore, in spite of the very unfavourable electromagnetic environment in this frequency range, a substantial increase in the quality of the observations was shown to be provided by using new generation spectrometers, based on sophisticated digital techniques. Indeed, the available, high dynamic range of such devices greatly decreases the effects of artificial and natural radio interference. We give several examples of successful signal detection in the case of much weaker radio sources than Solar System ones, down to the intensity level.

In summary, we conclude that searching for sensitivity improvement at the decametre wavelength is scientifically quite justified, and is now technically feasible, in particular by building giant, phased antenna arrays of much larger collecting area (as in the LOFAR project). In this task, one must be careful of some specifics of this wavelength range—somewhat unusual in “classical” radio astronomy—i.e., very high level and density of radio interference (telecommunications) and the variable terrestrial ionosphere.  相似文献   


9.
Forged by the development of radar during World War II, radio astronomy revolutionized astronomy during the decade after the war. A new universe was revealed, centered not on stars and planets, but on the gas between the stars, on explosive sources of unprecedented luminosity, and on hundreds of mysterious discrete sources with no optical identifications. Using “radio telescopes” that looked nothing like traditional (optical) telescopes, radio astronomers were a very different breed from traditional (optical) astronomers. This pathbreaking of radio astronomy also made it much easier for later “astronomies” and their “telescopes” (X-ray, ultraviolet, infrared, gamma-ray) to become integrated into astronomy after the launch of the space age in the 1960s. This paper traces the history of radio telescopes from 1945 through about 1990, from the era of converted small-sized, military radar antennas to that of large interferometric arrays connected by complex electronics and computers; from the era of strip-chart recordings measured by rulers to powerful computers and display graphics; from the era of individuals and small groups building their own equipment to that of Big Science, large collaborations and national observatories.  相似文献   

10.
In radio astronomy observations, radio frequency interference (RFI) is mixed into the telescope receiving system in various forms. The existence of RFI brings misjudgment to the observation or reduces the observational signal-to-noise ratio. In recent years, the domestic and overseas radio astronomy has developed rapidly. Large-scale radio telescopes and telescope arrays at home and abroad have been constructed successively. Observation sensitivity is greatly improved, and the influence of RFI is particularly prominent. With the development of science and technology and the intensification of human activities, the RFI has become increasingly serious and irreversible. We propose to use the two-dimensional discrete wavelet transform method to analyze the data of radio astronomy observations, and to perform wavelet transform on the time-frequency sequence output by the telescope system. According to the wavelet coefficients, the every component in the original signal is separated, and the corresponding threshold value is obtained by the statistics on each component. Each component is compared with the threshold to identify the interference component, and to mark it for removal. This method is used to process the actual observation data. The results show that this method can well mark and eliminate the interference signal, and improve the observational signal-to-noise ratio.  相似文献   

11.
An unusual solar burst was observed simultaneously by two decameter radio telescopes UTR-2 (Kharkov, Ukraine) and URAN-2 (Poltava, Ukraine) on 3 June 2011 in the frequency range of 16?–?28 MHz. The observed radio burst had some unusual properties, which are not typical for the other types of solar radio bursts. Its frequency drift rate was positive (about 500 kHz?s?1) at frequencies higher than 22 MHz and negative (100 kHz?s?1) at lower frequencies. The full duration of this event varied from 50 s up to 80 s, depending on the frequency. The maximum radio flux of the unusual burst reached ≈103 s.f.u. and its polarization did not exceed 10 %. This burst had a fine frequency-time structure of unusual appearance. It consisted of stripes with the frequency bandwidth 300?–?400 kHz. We consider that several accompanied radio and optical events observed by SOHO and STEREO spacecraft were possibly associated with the reported radio burst. A model that may interpret the observed unusual solar radio burst is proposed.  相似文献   

12.
Given that the cause for the strong increase in 14C in AD 774/5 in Japanese and German trees is still a matter of debate (e.g. short gamma‐ray burst or solar super‐flare), we have searched in Arabic chronicles for reports about unusual transient celestial events. In the History of al‐Tabarī we found two (almost identical) reports about such an event. The group around caliph al‐Mansūr observed a transient event while on the way from Baghdad to Mecca on AD 775 Augusst 29– September 1 (Julian calendar). A celestial object (kawkab) was seen to fall or set (inqadda), and its trace (atharuhu) was seen for at least tens of minutes (up to 70–90 min) during morning twilight. The reports use the Arabic words kawkab and athar(uhu), which were also used in the known Arabic reports about supernovae SN 1006 and 1054, so that one might consider an interpretation as a nova‐like event. The kawkab (celestial object) was observed only during the morning twilight at a brightness of probably between about –3 and 0 mag. Such a brightness and time‐scale would be expected for optical kilonovae (at ∼3 to 9 kpc) in the context of short gamma‐ray bursts. There are no similar reports from eastern Asia for this time. However, the short reports are fully consistent with a bolide: The word kawkab can be used for meteor, the verb inqad. d. a normally means falling down, the word atharuhu can mean its trace. We therefore prefer the interpretation as bolide. We discuss in detail how to convert the Muslim calendar date to a date in the Julian calendar using first the calculated Islamic calendar and then considering the time when the crescent new moon could be visible at the given location. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
14.
The impact of the Struve astronomical dynasty on the development of astronomy in Ukraine in the 19th–20th centuries is studied. First of all, the role of F.G.W. Struve and O.V. Struve in the formation of astronomical research programs at the observatories at the Kharkiv, Kyiv, Odesa, and Mykolayiv, in equipping the observatories with instruments, in practical training of astronomers as well as in the organization of astronomy-geodetic expeditions (19th century). Particular attention is paid to the activity of L.O. Struve as a director of the Astronomical observatory of Kharkiv University and his works conducted together with G.A. Shajn and B.P. Gerasimovich (20th century) as well as to the impact of his scientific and public activity, including one he made as a President of IAC, on the development of astronomy in the Soviet Union and Ukraine. A range of important documents from the archives of Russian Academy of Sciences, Institute of astronomy and State Archive of Ukraine are cited. The article was translated by the authors.  相似文献   

15.
This issue of AN contains the proceedings of the Special Colloquium “European Astronomy in the 20th Century”, which formed part of the JENAM (2001) conference in Munich, Germany. Subjects covered are the history of γ‐ray and radio astronomy, extragalactic research and compact objects, new media, southern observatories and ESO, as well as some archaeoastronomical questions. Some biographic sketches of individual European astronomers are also given.  相似文献   

16.
17.
P. Zarka   《Planetary and Space Science》2004,52(15):1455-1467
Jupiter emits intense decameter (DAM) radio waves, detectable from the ground in the range 10–40 MHz. They are produced by energetic electron precipitations in its auroral regions (auroral-DAM), as well as near the magnetic footprints of the Galilean satellite Io (Io-DAM). Radio imaging of these decameter emissions with arcsecond angular resolution and millisecond time resolution should provide:
(1) an improved mapping of the surface planetary magnetic field, via imaging of instantaneous cyclotron sources of highest frequency;

(2) measurements of the beaming angle of the radiation relative to the local magnetic field, as a function of frequency;

(3) detailed information on the Io–Jupiter electrodynamic interaction, in particular the lead angle between the Io flux tube and the radio emitting field line;

(4) direct information on the origin of the sporadic drifting decameter S-bursts, thought to be electron bunches propagating along magnetic field lines, and possibly revealing electric potential drops along these field lines;

(5) direct observation of DAM emission possibly related to the Ganymede–Jupiter, Europa–Jupiter and/or Callisto–Jupiter interactions, and their energetics;

(6) information on the magnetospheric dynamics, via correlation of radio images with ultraviolet and infrared images of the aurora as well as of the Galilean satellite footprints, and study of their temporal variations;

(7) an improved mapping of the Jovian plasma environment (especially the Io torus) via the propagation effects that it induces on the radio waves propagating through it (Faraday rotation, diffraction fringes, etc.);

(8) possibly on the long-term a better accuracy on the determination of Jupiter's rotation period.

Fast imaging should be permitted by the very high intensity of Jovian decameter bursts. LOFAR's capability to measure the full polarization of the incoming waves will be exploited. The main limitation will come from the maximum angular resolution reachable. We discuss several approaches for bringing it close to the value of 1 at 30–40 MHz, as required for the above studies.

Keywords: Jupiter; Magnetosphere; Radio emission; Radio astronomy; LOFAR; Solar system; Planetology  相似文献   


18.
Array Signal Processing for Radio Astronomy   总被引:1,自引:0,他引:1  
Radio astronomy forms an interesting application area for array signal processing techniques. Current synthesis imaging telescopes consist of a small number of identical dishes, which track a fixed patch in the sky and produce estimates of the time-varying spatial covariance matrix. The observations sometimes are distorted by interference, e.g., from radio, TV, radar or satellite transmissions. We describe some of the tools that array signal processing offers to filter out the interference, based on eigenvalue decompositions and factor analysis, which is a more general technique applicable to partially calibrated arrays. We consider detection of interference, spatial filtering techniques using projections, and discuss how a reference antenna pointed at the interferer can improve the performance. We also consider image formation and its relation to beamforming.  相似文献   

19.
We present new results of heliographic observations of quiet‐Sun radio emission fulfilled by the UTR‐2 radio telescope. The solar corona investigations have been made close to the last solar minimum (Cycle 23) in the late August and early September of 2010 by means of the two‐dimensional heliograph within 16.5–33 MHz. Moreover, the UTR‐2 radio telescope was used also as an 1‐D heliograph for one‐dimensional scanning of the Sun at the beginning of September 2010 as well as in short‐time observational campaigns in April and August of 2012. The average values of integral flux density of the undisturbed Sun continuum emission at different frequencies have been found. Using the data, we have determined the spectral index of quiet‐Sun radio emission in the range 16.5–200 MHz. It is equal to –2.1±0.1. The brightness distribution maps of outer solar corona at frequencies 20.0 MHz and 26.0 MHz have been obtained. The angular sizes of radio Sun were estimated. It is found that the solar corona at these frequencies is stretched‐out along equatorial direction. The coefficient of corona ellipticity varies slightly during above period. Its mean magnitudes are equal to ≈ 0.75 and ≈ 0.73 at 20.0 MHz and 26.0 MHz, respectively. The presented results for continuum emission of solar corona conform with being ones at higher frequencies. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
吴洪敖 《天文学进展》1996,14(2):105-113
综述了毫米波太阳射电的观测研究概况,着重介绍一些中,大型的毫米波太阳射电观测设备最新的观测结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号