首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We re‐discuss the evolutionary state of upper main sequence magnetic stars using a sample of Ap and Bp stars with accurate Hipparcos parallaxes and definitely determined longitudinal magnetic fields. We confirm our previous results obtained from the study of Ap and Bp stars with accurate measurements of the mean magnetic field modulus and mean quadratic magnetic fields that magnetic stars of mass M < 3 M are concentrated towards the centre of the main‐sequence band. In contrast, stars with masses M > 3 M seem to be concentrated closer to the ZAMS. The study of a few known members of nearby open clusters with accurate Hipparcos parallaxes confirms these conclusions. Stronger magnetic fields tend to be found in hotter, younger and more massive stars, as well as in stars with shorter rotation periods. The longest rotation periods are found only in stars which spent already more than 40% of their main sequence life, in the mass domain between 1.8 and 3 M and with log g values ranging from 3.80 to 4.13. No evidence is found for any loss of angular momentum during the main‐sequence life. The magnetic flux remains constant over the stellar life time on the main sequence. An excess of stars with large obliquities β is detected in both higher and lower mass stars. It is quite possible that the angle β becomes close to 0. in slower rotating stars of mass M > 3 M too, analog to the behaviour of angles β in slowly rotating stars of M < 3 M. The obliquity angle distribution as inferred from the distribution of r ‐values appears random at the time magnetic stars become observable on the H‐R diagram. After quite a short time spent on the main sequence, the obliquity angle β tends to reach values close to either 90. or 0. for M < 3 M. The evolution of the obliquity angle β seems to be somewhat different for low and high mass stars. While we find a strong hint for an increase of β with the elapsed time on the main sequence for stars with M > 3 M, no similar trend is found for stars with M < 3 M. However, the predominance of high values of β at advanced ages in these stars is notable. As the physics governing the processes taking place in magnetised atmospheres remains poorly understood, magnetic field properties have to be considered in the framework of dynamo or fossil field theories. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
We present UBVRCIC magnitudes of 49 comparison stars in the fields of the Seyfert galaxies Mrk 335, Mrk 79, Mrk 279, Mrk 506, 3C 382, 3C 390.3, NGC 6814, Mrk 304, Ark 564, and NGC 7469 in order to facilitate the photometric monitoring of these objects; 36 of the stars have not been calibrated before. The comparison stars are situated in 5 × 5 arcmin fields centred on the Seyfert galaxies, their V band flux ranges from 11.7 to 18.2 mag with a median value of 16.3 mag, and their BV colour index ranges from 0.4 to 1.6 mag with a median value of 0.8 mag. The median errors of the calibrated UBVRCIC magnitudes are 0.08, 0.04, 0.03, 0.04, and 0.06 mag, respectively. Comparison stars were calibrated for the first time in three of the fields (Mrk 506, 3C 382, and Mrk 304). The comparison sequences in the other fields were improved in various aspects. Extra stars were calibrated in four fields (Mrk 335, Mrk 79, NGC 6814, and NGC 7469) – most of these stars are fainter and are situated closer to the Seyfert galaxies compared to the existing comparison stars. The passband coverage of the sequences in five fields (Mrk 335, Mrk 79, Mrk 279, NGC 6814, and Ark 564) was complemented with the U band. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Hot cluster horizontal branch (HB) stars and field subdwarf B (sdB) stars are core helium burning stars that exhibit abundance anomalies that are believed to be due to atomic diffusion. Diffusion can be effective in these stars because they are slowly rotating. In particular, the slow rotation of the hot HB stars (Teff > 11000 K), which show abundance anomalies, contrasts with the fast rotation of the cool HB stars, where the observed abundances are consistent with those of red giants belonging to the same cluster. The reason why sdB stars and hot HB stars are rotating slowly is unknown. In order to assess the possible role of magnetic fields on abundances and rotation, we investigated the occurrence of such fields in sdB stars with Teff < 30 000 K, whose temperatures overlap with those of the hot HB stars. We conclude that large‐scale organised magnetic fields of kG order are not generally present in these stars but at the achieved accuracy, the possibility that they have fields of a few hundred Gauss remains open. We report the marginal detection of such a field in SB 290; further observations are needed to confirm it (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
We report the results of our search for magnetic fields in a sample of 16 field Be stars, the binary emission‐line B‐type star υ Sgr, and in a sample of fourteen members of the open young cluster NGC3766 in the Carina spiral arm. The sample of cluster members includes Be stars, normal B‐type stars and He‐strong/He‐weak stars. Nine Be stars have been studied with magnetic field time series obtained over ∼1 hour to get an insight into the temporal behaviour and the correlation of magnetic field properties with dynamical phenomena taking place in Be star atmospheres. The spectropolarimetric data were obtained at the European Southern Observatory with the multi‐mode instrument FORS1 installed at the 8m Kueyen telescope. We detect weak photospheric magnetic fields in four field Be stars, HD 62367, μ Cen, o Aqr, and ε Tuc. The strongest longitudinal magnetic field, 〈Bz〉 = 117 ± 38 G, was detected in the Be star HD 62367. Among the Be stars studied with time series, one Be star, λ Eri, displays cyclic variability of the magnetic field with a period of 21.12 min. The binary star υ Sgr, in the initial rapid phase of mass exchange between the two components with strong emission lines in the visible spectrum, is a magnetic variable star, probably on a timescale of a few months. The maximum longitudinal magnetic field 〈Bz〉 = –102 ± 10 G at MJD 54333.018 was measured using hydrogen lines. The cluster NGC3766 seems to be extremely interesting, where we find evidence for the presence of a magnetic field in seven early B‐type stars out of the observed fourteen cluster members (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
We have used two robotic telescopes to obtain time‐series high‐resolution optical echelle spectroscopy and VI and/or by photometry for a sample of 60 active stars, mostly binaries. Orbital solutions are presented for 26 double‐lined systems and for 19 single‐lined systems, seven of them for the first time but all of them with unprecedented phase coverage and accuracy. Eighteen systems turned out to be single stars. The total of 6609 R = 55000 échelle spectra are also used to systematically determine effective temperatures, gravities, metallicities, rotational velocities, lithium abundances and absolute Hα‐core fluxes as a function of time. The photometry is used to infer unspotted brightness, VI and/or by colors, spot‐induced brightness amplitudes and precise rotation periods. An extra 22 radial‐velocity standard stars were monitored throughout the science observations and yield a new barycentric zero point for our STELLA/SES robotic system. Our data are complemented by literature data and are used to determine rotation‐temperature‐activity relations for active binary components. We also relate lithium abundance to rotation and surface temperature. We find that 74% of all known rapidly‐rotating active binary stars are synchronized and in circular orbits but 26% (61 systems) are rotating asynchronously of which half have Prot > Porb and e > 0. Because rotational synchronization is predicted to occur before orbital circularization active binaries should undergo an extra spin‐down besides tidal dissipation. We suspect this to be due to a magnetically channeled wind with its subsequent braking torque. We find a steep increase of rotation period with decreasing effective temperature for active stars, Prot α T–7eff, for both single and binaries, main sequence and evolved. For inactive, single giants with Prot > 100 d, the relation is much weaker, Prot α T‐1.12eff. Our data also indicate a period‐activity relation for Hα of the form R α P0.24rot for binaries and R α P‐0.14rot for singles. Its power‐law difference is possibly significant. Lithium abundances in our (field‐star) sample generally increase with effective temperature and are paralleled with an increase of the dispersion. The dispersion for binaries can be 1–2 orders of magnitude larger than for singles, peaking at an absolute spread of 3 orders of magnitude near Teff ≈ 5000 K. On average, binaries of comparable effective temperature appear to exhibit 0.25 dex less surface lithium than singles, as expected if the depletion mechanism is rotation dependent. We also find a trend of increased Li abundance with rotational period of form log n (Li) α –0.6 log Prot but again with a dispersion of as large as 3‐4 orders of magnitude (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
This paper is based on 2MASS photometry (J H Ks magnitudes) of 1172 Be stars. The observed mean intrinsic colours have been derived with aid of two‐colour diagrams for Be stars of luminosity classes Ie‐IIe, IIIe and IVe‐Ve. The obtained results are the first determinations of their intrinsic colours in the astronomical literature. The smoothed infrared colours are compared with those obtained for “normal” B stars. Several two‐colour diagrams and plots of observed and smoothed intrinsic colour versus spectral type of luminosity classes Ie‐IIe, IIIe and IVe‐Ve are presented. Generally the determined infrared intrinsic colours of Be stars (VJ)0, (VH)0, and (VKs)o differ substantially from those of “normal” B stars. It is found that the intrinsic colours of B stars are generally bluer than Be stars of corresponding spectral type and luminosity class. The mean absolute visual magnitude Mv of 528 Be stars for luminosity classes Iae, Ibe‐Iabe, IIe, IIIe and IVe‐Ve is derived from HIPPARCOS parallaxes. The Mv calibration is compared with the existing ones. The Be stars are generally brighter than “normal” B stars of corresponding spectral types. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
We present a first overview of variable stars in the Bochum Galactic Disk Survey (GDS) with emphasis on eclipsing binaries (EBs). This ongoing survey is performed by a robotic twin refractor at the Universitätssternwarte Bochum located near Cerro Armazones in Chile. It comprises a mosaic of 268 fields in a stripe of Δb = ±3° along the Galactic plane observed once per month simultaneously in the Sloan r and i filters with a detection limit of rs ∼ 16 mag and is ∼ 15 mag. The data from the first three years until the end of February 2014 yields a total of 41718 variable stars with variability amplitudes between 0.1–6 mag. A cross‐match with SIMBAD identified 11 465 of these variables unambiguously, while 2184 had multiple matches; most of the remaining stars could be matched with 2MASS objects. Among the SIMBAD‐listed objects with single matches, only 1982 turned out as known variables while a further 256 are suspected of variability. That leaves a total of 39480 potentially new variables. The group of known variables comprises 419 stars (21 %) that are classified as EBs while 443 (22%) are of other types; for the remaining 1120 catalogued variables (57 %) the type is unknown. Investigating variability as a function of spectral type, we find that SIMBAD provides spectral types for 2811 (25 %) of the identified stars. Spectral classes B (26 %), A (20 %), and M (25%) contain the most numerous variables, while all other classes contribute less than 10% each. More than half of the B (55 %) and A (56%) stars are designated as EBs, suggesting that hundreds of new B‐ and A‐type EBs may be contained in the GDS archive. In contrast, among the numerous M stars no EBs are known. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
We present the results of our observations of eight magnetic Herbig Ae/Be stars obtained with the X‐shooter spectrograph mounted on UT2 at the VLT. X‐shooter provides a simultaneous, medium‐resolution and high‐sensitivity spectrum over the entire wavelength range from 300 to 2500 nm. We estimate the mass accretion rates (acc) of the targets from 13 different spectral diagnostics using empiric calibrations derived previously for T Tauri‐type stars and brown dwarfs. We have estimated the mass accretion rates of our targets, which range from 2 × 10–9 to 2 × 10–7 M yr–1. Furthermore, we have found accretion rate variability with amplitudes of 0.10–0.40 dex taking place on time scales from one day to tens of days. Additional future night‐to‐night observations need to be carried out to investigate the character of acc variability in details. Our study shows that the majority of the calibration relations can be applied to Herbig Ae/Be stars, but several of them need to be re‐calibrated on the basis of new spectral data for a larger number of Herbig Ae/Be stars (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
Our knowledge of the presence and the strength of magnetic fields in intermediate‐mass pre‐main‐sequence stars remains very poor. We present new magnetic field measurements in six Herbig Ae/Be stars observed with HARPS in spectropolarimetric mode. We downloaded from the European Southern Observatory (ESO) archive the publically available HARPS spectra for six Herbig Ae/Be stars. Wavelength shifts between right‐ and left‐hand side circularly polarised spectra were interpreted in terms of a longitudinal magnetic field 〈Bz〉, using the moment technique introduced by Mathys. The application of the moment technique to the HARPS spectra allowed us in addition to study the presence of the crossover effect and quadratic magnetic fields. Our search for longitudinal magnetic fields resulted in first detections of weak magnetic fields in the Herbig Ae/Be stars HD 58647 and HD 98922. Further, we confirm the previous tentative detection of a weak magnetic field in HD 104237 by Donati et al. and confirm the previous detection of a magnetic field in the Herbig Ae star HD 190073. Surprisingly, the measured longitudinal magnetic field of HD 190073, 〈Bz〉 = 91 ± 18 G at a significance level of 5σ is not in agreement with the measurement results of Alecian et al. (2013), 〈Bz〉 = –10 ± 20 G, who applied the LSD method to exactly the same data. No crossover effect was detected for any star in the sample. Only for HD 98922 the crossover effect was found tobe close to 3σ with a measured value of –4228 ± 1443 km s–1 G. A quadratic magnetic field of the order of 10 kG was detected in HD 98922, and of ∼3.5 kG in HD 104237. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
Double peak kHz QPO frequencies in neutron star sources varies in time by a factor of hundreds Hz while in microquasar sources the frequencies are fixed and located at the line ν 2 = 1.5ν 1 in the frequency‐frequency plot. The crucial question in the theory of twin HFQPOs is whether or not those observed in neutron‐star systems are essentially different from those observed in black holes. In black hole systems the twin HFQPOs are known to be in a 3:2 ratio for each source. At first sight, this seems not to be the case for neutron stars. For each individual neutron star, the upper and lower kHz QPO frequencies, ν 2 and ν 1, are linearly correlated, ν 2 = 1 + B , with the slope A < 1.5, i.e., the frequencies definitely are not in a 1.5 ratio. In this contribution we show that when considered jointly on a frequency‐frequency plot, the data for the twin kHz QPO frequencies in several (as opposed to one) neutron stars uniquely pick out a certain preferred frequency ratio that is equal to 1.5 for the six sources examined so far. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
Parallaxes of W UMa stars in the Hipparcos catalogue have been analyzed. 31 W UMa stars, which have the most accurate parallaxes (σπ /π < 0.15) which are neither associated with a photometric tertiary nor with evidence of a visual companion, were selected for re‐calibrating the Period‐Luminosity‐Color (PLC) relation of W UMa stars. Using the Lutz‐Kelker (LK) bias corrected (most probable) parallaxes, periods (0.26 < P < 0.87, P in days), and colors (0.04 < (BV)0 < 1.28) of the 31 selected W UMa, the PLC relation have been revised and re‐calibrated. The difference between the old (revised but not bias corrected) and the new (LK bias corrected) relations are almost negligible in predicting the distances of W UMa stars up to about 100 pc. But, it increases and may become intolerable as distances of stars increase. Additionally, using (JH)0 and (HKs)0 colors from 2MASS (TwoMicron All Sky Survey) data, a PLC relation working with infrared data was derived. It can be used with infrared colors in the range –0.01 < (JH)0 < 0.58, and –0.10 < (HKs)0 < 0.18. Despite of the fact that the 2MASS data refer to single epoch observations which are not guaranteed to be taken at maximum brightness of theWUMa stars, the established relation has been found surprisingly consistent and reliable in predicting LK corrected distances of W UMa stars (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
It is essential for the understanding of stellar structure models of high mass stars to explain why constant stars, nonpulsating chemically peculiar hot Bp stars and pulsating stars co‐exist in the slowly pulsating B stars and β Cephei instability strips. We have conducted a search for magnetic fields in the four Bp stars HD55522, HD105382, HD131120, and HD138769 which previously have been wrongly identified as slowly pulsating B stars. A recent study of these stars using the Doppler Imaging technique revealed that the elements He and Si are inhomogeneously distributed on the stellar surface, causing the periodic variability. Using FORS 1 in spectropolarimetric mode at the VLT, we have acquired circular polarisation spectra to test the presence of a magnetic field in these stars. A variable magnetic field is clearly detected in HD55522 and HD105382, but no evidence for the existence of a magnetic field was found in HD131120. The presence of a magnetic field in HD138769 is suggested by one measurement at 3σ level. We discuss the occurrence of magnetic B stars among the confirmed pulsating B stars and find strong magnetic fields of order kG and oscillations to be mutually exclusive. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
We study the spatial structure and sub‐structure of regions rich in Hipparcos stars with blue BTVT colours. These regions, which comprise large stellar complexes, OB associations, and young open clusters, are tracers of on‐going star formation in the Galaxy. The DBSCAN (Density‐Based Spatial Clustering of Applications with Noise) data clustering algorithm is used to look for spatial overdensities of early‐type stars. Once an overdensity, “agglomerate”, is identified, we carry out a data and bibliographic compilation of their star member candidates. The actual membership in agglomerate of each early‐type star is studied based on its heliocentric distance, proper motion, and previous spectro‐photometric information. We identify 35 agglomerates of early‐type Hipparcos stars. Most of them are associated to previously known clusters and OB associations. The previously unknown P Puppis agglomerate is subject of a dedicated study with Virtual Observatory tools. It is actually a new, nearby, young open cluster (d ∼ 470 pc, age ∼ 20 Ma) with a clear radial density gradient.We list P Puppis and other six agglomerates (including NGC 2451 A, vdBH 23, and Trumpler 10) as new sites for substellar searches because of their youth, closeness, and spatial density. We investigate in detail the sub‐structure in the Orion, CMa‐Pup and Pup‐Vel OB complexes (“super‐agglomerates”). We confirm or discover some stellar overdensities in the Orion complex, like the 25 Ori group, the Horsehead region (including the σ Orionis cluster), and the η Orionis agglomerate. Finally, we derive accurate parallactic distances to the Pleiades, NGC 2451 A, and IC 2391, describe several field early‐type stars at d < 200 pc, and discuss the incompleteness of our search. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
We present and discuss V BLUW photometry of eleven massive stars in the Magellanic Clouds: the SMC stars AzV121, AzV136 = HD5277 = R10, AzV197, AzV310 = R26 and AzV 369; the LMC stars GV80 = HD32034 = R62, GV91 = HDE 268 819, GV346 = HDE 269661 = R111, GV352 = HDE 269697, GV423 = HDE 269953 = R150 and GV460 = HDE 270111. Only one G0 Ia SMC supergiant is found to be variable, whereas all members of the LMC sample show definite variability. We find that roughly above M /M = 25, supergiants become photometrically unstable. The reddening‐independent metal‐index [BL ] is used to investigate the metallicity of the late‐type supergiants in both galaxies relative to similar supergiants in the solar neighbourhood. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
Some insight on the first generation of stars can be obtained from the chemical composition of their direct descendants, extremely metal‐poor stars (EMP), with metallicity less than or equal to 1/1000 of the solar metallicity. Such stars are exceedingly rare, the most successful surveys, for this purpose, have so far provided only about 100 stars with 1/1000 the solar metallicity and 4 stars with about 1/10000 of the solar metallicity. The Sloan Digital Sky Survey has the potential to provide a large number of candidates of extremely low metallicity. X‐shooter has the unique capability of performing the necessary follow‐up spectroscopy providing accurate metallicities and abundance ratios for several elements (Mg, Al, Ca, Ti, Cr, Sr,...) for EMP candidates. We here report on the results for the first two stars observed in the course of our Franco‐Italian X‐shooter GTO. The two stars were targeted to be of metallicity around –3.0, the analysis of the X‐shooter spectra showed them to be of metallicity around –2.0, but with a low α to iron ratio, which explains the underestimate of the metallicity from the SDSS spectra. The efficiency of X‐shooter allows an in situ study of the outer halo, for the two stars studied here we estimate distances of 3.9 and 9.1 kpc, these are likely the most distant dwarf stars studied in detail to date (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
This work deals with a CCD imaging study at optical and near‐infrared wavelength oftwo giant molecular clouds (plus a control field) in the southern region of the Large Magellanic Cloud, one ofwhich shows multiple signs of star formation, whereas the other does not. The observational data from VLT FORS2 (R band) and NTT SOFI (Ks band) have been analyzed to derive luminosity functions and color‐magnitude diagrams. The young stellar content of these two giant molecular clouds is compared and confirmed to be different, in the sense that the apparently “starless” cloud has so far formed only low‐luminosity, low‐mass stars (fainter than mKs ∽ 16.5 mag, not seen by 2MASS), while the other cloud has formed both faint low‐mass and luminous high‐mass stars. The surface density excess oflow‐luminosity stars (∽2 per square arcmin) in the “starless” cloud with respect to the control field is about 20% whereas the excess is about a factor of 3 in the known star‐forming cloud. The difference may be explained theoretically by the gravo‐turbulent evolution of giant molecular clouds, one being younger and less centrally concentrated than the other (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
We present comparison results of our Independent Latitude (IL) catalogue of μδ determinations for 1120 bright stars with the Hipparcos, new Hipparcos and Earth Orientation Catalogue (EOC‐2) values. Also, we took into consideration the EOC3 and EOC4 (recent versions of EOC catalogues). Our μδ values are based on zenith telescope observations from seven Independent Latitude (IL) observatories. The IL measures are spanning a time baseline of up to 90 years which is the key advantage to the accurate determination of μδ. The short interval of the Hipparcos satellite observations is a disadvantage for a good accuracy of stellar proper motion, especially in the case of double and multiple stars. For this reason many astrometric catalogues have appeared after the publication of the Hipparcos including our IL catalogue. These catalogues are an appropriate combination of the Hipparcos satellite and ground‐based data which yields more accurate stellar coordinates and/or their proper motions. Among various types of ground‐based observations the latitude and universal time variations obtained from several million observations of stars reduced to the Hipparcos reference system were used for this purpose. These observations were obtained during almost the entire last century and were originally used to determine the Earth Orientation Parameters. It is also possible to use these data in the inverse task of checking the accuracy of stellar coordinates and/or their proper motions listed in the Hipparcos Catalogue. Such latitude and universal time variations data are the basis of the EOC and IL catalogues. In this paper, we computed the differences in μδ values between pairs of catalogues and analyzed the results to characterize the μδ errors for the four catalogues with a special focus on our IL catalogue. The standard errors of μδ for IL stars observed over more than 20 years are mostly smaller than or equal to the Hipparcos errors, and close to the accuracy level of the EOC‐2 (EOC‐3, EOC‐4) and the new Hipparcos. The resulting investigations of errors of differences of μδ, show that all four catalogues have relatively small random and systematic errors which are close to each other meaning that the corresponding μδ values have a high accuracy. Our sample also contains detected double and multiple stars for which the effects of the orbital and proper motions are difficult to separate. The differences of μδ values for these stars generally exceed those obtained for single stars. Also, these discrepancies could be attributed to effect of possible, still unrecognized, astrometric binaries. These investigations about the proper motions and double stars are in line with the activity of the IAU Working Group on Astrometry by Small Ground‐Based Telescopes. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
Our aim is to investigate tidal interaction in High‐Mass X‐ray Binary stars in order to determine in which objects the rotation of the mass donors is synchronized or pseudosynchronized with the orbital motion of the compact companion. We calculate the pseudosynchronization period (Pps) and compare it with the rotational period of the mass donors (Prot). We find that (1) the Be/X‐ray binaries are not synchronized, the mass donors rotate faster than the orbital period and the ratio Pps/Prot is 2–300; (2) the giant and supergiant systems are close to synchronization and for them the ratio Pps/Prot is 0.3–2 (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
Because of the intense brightness of the OB‐type multiple star system σ Ori, the low‐mass stellar and substellar populations close to the centre of the very young σ Orionis cluster is poorly know. I present an IJHKs survey in the cluster centre, able to detect from the massive early‐type stars down to cluster members below the deuterium burning mass limit. The near‐infrared and optical data have been complemented with X‐ray imaging. Ten objects have been found for the first time to display high‐energy emission. Previously known stars with clear spectroscopic youth indicators and/or X‐ray emission define a clear sequence in the I vs. IKs diagram. I have found six new candidate cluster members that follow this sequence. One of them, in the magnitude interval of the brown dwarfs in the cluster, displays X‐ray emission and a very red JKs colour, indicative of a disc. Other three low‐mass stars have excesses in the Ks band as well. The frequency of X‐ray emitters in the area is 80±20 %. The spatial density of stars is very high, of up to 1.6±0.1 arcmin–2. There is no indication of lower abundance of substellar objects in the cluster centre. Finally, I also report two cluster stars with X‐ray emission located at only 8000–11000 AU to σ Ori AB, two sources with peculiar colours and an object with X‐ray emission and near‐infrared magnitudes similar to those of previously‐known substellar objects in the cluster. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
We have applied the “moving cluster” method to an archive of L and T brown dwarf stars to identify those stars which are members of the Ursa Major moving group.We show that five stars have proper motion directions which agree with the direction of motion expected for a cluster member, and which have proper motion distances in agreement with distances determined by trigonometrical parallax observations. We then use 2MASS data to produce an M K versus J ‐ K S colour magnitude diagram. The group members define an empirical 400 Myr isochrone, which is compared to theoretical models. This is the first cluster/group to have a known T dwarf member. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号