首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The space experiment Gaia, the approved cornerstone 6 ESA mission, will observe up to a billion stars in our Galaxy and obtain their astrometric positions on a micro-arcsec level, multi-band photometry as well as spectroscopic observations. It is expected that about one million Eclipsing Binaries (EBs) (with V ≤ 16 mag) will be discovered and the observing fashion will be quite similar to Hipparcos/Tycho mission operational mode. The combined astrometric, photometric and spectroscopic data will be used to compute the physical parameters of the observed EBs. From a study of a small sample of EBs, it is shown that the agreement between the fundamental stellar parameters, derived from ground-based and Hipparcos (Gaia-like) observations, is more than satisfactory and the Gaia data will be suitable to obtain accurate binary solutions.  相似文献   

2.
This paper covers the main features of Russia??s Phobos-Grunt space mission, whose primary goal is to return soil samples from the Martian satellite Phobos. The mission scenario, major design solutions, and evolution of the project throughout its development are described.  相似文献   

3.
We describe a mission concept for a stand-alone Titan airplane mission: Aerial Vehicle for In-situ and Airborne Titan Reconnaissance (AVIATR). With independent delivery and direct-to-Earth communications, AVIATR could contribute to Titan science either alone or as part of a sustained Titan Exploration Program. As a focused mission, AVIATR as we have envisioned it would concentrate on the science that an airplane can do best: exploration of Titan??s global diversity. We focus on surface geology/hydrology and lower-atmospheric structure and dynamics. With a carefully chosen set of seven instruments??2 near-IR cameras, 1 near-IR spectrometer, a RADAR altimeter, an atmospheric structure suite, a haze sensor, and a raindrop detector??AVIATR could accomplish a significant subset of the scientific objectives of the aerial element of flagship studies. The AVIATR spacecraft stack is composed of a Space Vehicle (SV) for cruise, an Entry Vehicle (EV) for entry and descent, and the Air Vehicle (AV) to fly in Titan??s atmosphere. Using an Earth-Jupiter gravity assist trajectory delivers the spacecraft to Titan in 7.5 years, after which the AVIATR AV would operate for a 1-Earth-year nominal mission. We propose a novel ??gravity battery?? climb-then-glide strategy to store energy for optimal use during telecommunications sessions. We would optimize our science by using the flexibility of the airplane platform, generating context data and stereo pairs by flying and banking the AV instead of using gimbaled cameras. AVIATR would climb up to 14?km altitude and descend down to 3.5?km altitude once per Earth day, allowing for repeated atmospheric structure and wind measurements all over the globe. An initial Team-X run at JPL priced the AVIATR mission at FY10 $715M based on the rules stipulated in the recent Discovery announcement of opportunity. Hence we find that a standalone Titan airplane mission can achieve important science building on Cassini??s discoveries and can likely do so within a New Frontiers budget.  相似文献   

4.
The Input Catalogue of some 100000 stars that is presently prepared for observation by the astrometric satellite HIPPARCOS, will contain many double and multiple systems. Because of the Hipparcos observation technique, these systems have to be divided in a few particular categories that are described and discussed. Each of them leads to specific considerations concerning the contribution of the Hipparcos observations. The category of very close pairs to which Hipparcos will certainly add many systems newly discovered during the mission, is compared to that of the few astrometric pairs that have been discovered by groundbased techniques.Hipparcos appears finally as a very important tool in double star astronomy research and especially in the field of very close systems.Communication presented at the International Conference on Astrometric Binaries, held on 13–15 June, 1984, at the Remeis-Sternwarte Bamberg, Germany, to commemorate the 200th anniversary of the birth of Friedrich Wilhelm Bessel (1784–1846).  相似文献   

5.
6.
7.
This paper reports results of the improvement of orbital elements of the 62 minor planets included in the Hipparcos mission. The astrometric observations supplied by the Minor Planet Center and the meridian circles at La Palma and Bordeaux observatories were used by the author. The accuracy reached (RMS O-C) for each minor planet and for La Palma and Bordeaux observations are presented.  相似文献   

8.
综述了以下几个方面的工作:(1)依巴谷卫星30个月观测资料的初步处理结果;(2)空间望远镜精密导星传感器的性能测试;(3)依巴谷卫星和空间望远镜近期在观测和仪器改进上的进展;(4)我们开展空间天体测量工作的概况。  相似文献   

9.
Comparisons show agreement at the 0.1-mag level between the calibration of the Cepheid period–luminosity (P–L) relation by Feast & Catchpole (FC) using the early release of Hipparcos data and four previous ground-based calibrations, three of which are either largely or totally independent of the distance to the Large Magellanic Cloud (LMC). Each of the comparisons has the sense that the FC calibration is brighter, but only at the level of ≲0.1 mag. In contrast, FC argue that their Hipparcos recalibration leads to a 0.2-mag revision in the distance to the LMC, and thereby to a 10 per cent decrease in the Hubble constant. We argue differently. The comparison of the Hipparcos recalibration with others should be made using only local Galactic Cepheids, not based on Cepheids in the LMC that require a set of precepts that are not germane to the direct Hipparcos recalibration. The comparison made here, using only Galactic Cepheids, gives a correction of ∼4 per cent or less to our value of H 0 based on Type Ia supernovae, keeping all other factors and precepts the same.
  A second success of the Hipparcos mission is the calibration of the position of the main sequence in the Hertzsprung–Russell diagram as a function of metallicity using local subdwarfs. These data have been used by Reid and by Gratton et al. to obtain, similarly to FC, a brighter absolute magnitude of RR Lyrae stars by ∼0.3 mag from that often currently adopted. These new calibrations confirm the earlier brighter calibrations by Walker, by Sandage, and by Mazzitelli, D'Antona & Caloi, thereby reducing the ages of globular clusters by ∼30 per cent. This removes most of the cosmological time-scale problem if H 0∼55 km s−1 Mpc−1. A similar conclusion, based on pulsation theory and MACHO data, has been reached by Alcock et al.  相似文献   

10.
Summary The general concept of theHipparcos astrometric mission is first recalled as well as the problems related to the observation technique of this satellite. TheInca Data Base and theHipparcos Input Catalogue are described and the place of the double and multiple stars in the mission and in theInput Catalogue is discussed. The need of a specific catalogue for these celestialobjects (CCDM) is shown and its format is given. The contribution of theHipparcos mission and of the CCDM to double star astronomy and more precisely to wide double and multiple systems is finally detailed.  相似文献   

11.
We determine the velocity distribution and space density of a volume-complete sample of A and F stars, using parallaxes and proper motions from the Hipparcos satellite. We use these data to solve for the gravitational potential vertically in the local Galactic disc, by comparing the Hipparcos measured space density with predictions from various disc models. We derive an estimate of the local dynamical mass density of 0.102±0.010 pc−3, which may be compared with an estimate of 0.095 M pc−3 in visible disc matter. Our estimate is found to be in reasonable agreement with other estimates by Crézé et al. and Pham, also based on Hipparcos data. We conclude that there is no compelling evidence for significant amounts of dark matter in the disc.  相似文献   

12.
A search of the Hipparcos satellite photometry data for the star HD 209458 reveals evidence for a planetary transit signature consistent with the planetary properties reported by Henry et al. and Charbonneau et al. and allows further refinement of the planet's orbital period. The long time baseline (about 2926 days or 830 periods) from the best Hipparcos transit-like event to the latest transit reported by Henry et al. for the night of 1999 November 15 (UT) allows for an orbital period determination of 3.524736 days with an uncertainty of 0.000045 days (3.9 s). The transit events observed by Charbonneau et al. fall at the interim times expected to within the errors of this newly derived period. A series of statistical tests was performed to assess the likelihood of these events occurring by chance. This was crucial given the ill-conditioned problem presented by the sparse sampling of the light curve and the non-Gaussian distribution of the points. Monte Carlo simulations using bootstrap methods with the actual Hipparcos HD 209458 data set indicate that the transit-like signals of the depth observed would only be produced by chance in 21 out of 1 million trials. The transit durations and depths obtained from the Hipparcos data are also consistent with those determined by Charbonneau et al. and Henry et al. within the limitations of the sampling intervals and photometric precision of the Hipparcos data.  相似文献   

13.
In 2009, the Centre National d??Etudes Spatiales (CNES) carried out an assessment study on a ??Fresnel telescope?? concept based on a two-spacecraftformation flying configuration. This concept uses a binary Fresnel zone plate, and the principle of diffraction focusing, which allows high resolution optical imaging for astrophysics. In addition to CNES, the Laboratoire d??Astrophysique de Toulouse Tarbes (LATT) was deeply involved at two levels: through Research & Technology (R&T) studies to simulate and validate on a test bench the Fresnel concept performance, and through active participation in the CNES team for the optical aspects and to define the astrophysical fields of Fresnel-based space missions. The study was conducted within the technical limitations that resulted from a compromise between the R&T state of the art and the potential scientific domains of interest. The main technical limitations are linked to the size of the primary Fresnel array and to its usable spectral bandwidth. In this framework, the study covers ambitious architectures, correlating the technology readiness of the main critical components with the time-scale and programmatic horizons. The possible scientific topics arise from this range of missions. In this paper, I present a mission launched by a Soyuz, dedicated to astrophysics in the Ultra Violet (UV) band: 120 to 300 nm using a 4-m Fresnel array. It could be competitive in the next fifteen years, whereas a 10-m aperture mission in different bands; UV, visible or Infra Red (IR) (up to 6 ??m) could be achievable in the future. Larger missions, using a primary array larger than 20 m, request technologies not yet available but that will probably be based on new inflatable structures with membranes, as already tested in the USA for other ends.  相似文献   

14.
15.
Summary The present poster shows the main researches conduced at the Astronomical Observatory of Torino during this last decade in the field of the wide double stars. From the observational point of view, two different photographic techniques carried out with our 105 cm astrometric reflector over a selected sample of wide binaries are explained. With reference to the Hipparcos mission, we show two aspects of our collaboration with the INCA and FAST Consortiums. From the statistical point of view, a study concerning the systematic and accidental errors detected in visual double star observations is explained. We conclude the poster with the future foreseen researches concerning new observational techniques and new theoretical statistical studies on these wide objects.  相似文献   

16.
A long-standing controversy in studies of spiral structure has concerned the lifetimes of individual spiral patterns. Much theoretical work has sought quasi-stationary spiral modes while N-body simulations have consistently displayed recurrent, short-lived patterns. The simulations manifest a recurrent cycle of true instabilities related to small-scale features in the angular momentum distribution of particles, with the decay of each instability seeding the growth of the next. Data from the recent Hipparcos mission seem to offer support for the recurrent transient picture. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
Two methods are proposed for finding star groups in coordinate and velocity spaces, which were used to investigate stars of the Hipparcos Catalog with known radial velocities in the solar neighborhood with a radius of 125 pc. Thirteen probable nonrandom star groups in coordinate space and five moving groups in velocity space were found. These results are compared with the results of other authors.  相似文献   

18.
Optical UBV(RI) C and infrared JHK photometry is presented of a small sample of giant stars with short periods in the Hipparcos catalogue. Observations were limited, but were sufficient to rule out most of the Hipparcos periods. Radial velocity measurement were also made for a few stars, over six successive nights. Low-level variability was detected in a few stars. It is argued that in most cases the brightness variations are primarily due to temperature changes. These findings show that high-overtone pulsations in M giant stars occur, if at all, in a far more limited number of stars than proposed in the authors' previous discussion of the Hipparcos data alone.  相似文献   

19.
Galileo Galilei’s use of the newly invented telescope for astronomical observation resulted immediately in epochal discoveries about the physical nature of celestial bodies, but the advantage for astrometry came much later. The quadrant and sextant were pre-telescopic instruments for measurement of large angles between stars, improved by Tycho Brahe in the years 1570–1590. Fitted with telescopic sights after 1660, such instruments were quite successful, especially in the hands of John Flamsteed. The meridian circle was a new type of astrometric instrument, already invented and used by Ole Rømer in about 1705, but it took a hundred years before it could fully take over. The centuries-long evolution of techniques is reviewed, including the use of photoelectric astrometry and space technology in the first astrometry satellite, Hipparcos, launched by ESA in 1989. Hipparcos made accurate measurement of large angles a million times more efficiently than could be done in about 1950 from the ground, and it will soon be followed by Gaia which is expected to be another one million times more efficient for optical astrometry.  相似文献   

20.
叙述了测定大气折射对工作星表的要求和星表系统误差的影响,并通过FK5星表相对于依巴谷星表的系统误差,来说明以往的各种基本星表都不适用的原因;文章说明了依巴谷星表所列星位置不含随天区而异的系统误差的特性,分析了该星表问世时的精度和十多年后的今天仍能达到的精度,说明它可以作为这种测定的工作星表,从而为直接测定天文大气折射值和折射率差提供了一个重要的条件;文章还介绍了依巴谷星表的星等分布,认为只需选用亮于6mag的依巴谷星,这一星等范围,为制定专用测量仪器终端的设计方案提供了依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号