首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 60 毫秒
1.
全球陆地降水初步分析   总被引:11,自引:1,他引:11  
英国东安哥拉大学气候研究中心(CRU)Hulme博士最新的1900-1998年的全球降水量资料是目前年代最长的,对此格点资料进行了较全面的分析,提出季风区是降水变化率最大的地方,还给出了从该资料中读取全球几个著名的季风区降水量的方法;指出了所读资料的可靠程度;计算与分析了近百年全球陆面1月、7月降水序列,指出7月份降水无明显趋势,1月份降水有弱的上升趋势,序列中存在明显的2-7a、13a和20a左右的周期,为进一步使用该资料提供依据。  相似文献   

2.
Bruce  JP 马柱国 《大气情报》1995,15(1):20-24,29
1994年1月24日,在美国田纳西州的纳什维尔召开了国际减灾十年讨论会,该会与美国气象学会第七十四届年会联合召开,本文是向这次会议提交的三篇系列文章中的第三篇。  相似文献   

3.
全球长期减排目标与碳排放权分配原则   总被引:9,自引:1,他引:8       下载免费PDF全文
全球长期减排目标将对世界未来的碳排放形成严重制约,减排义务的分担原则涉及各国的发展空间,事关根本利益。部分发达国家倡导人均排放趋同原则,回避发达国家的历史责任,中国等发展中国家提出人均累积排放趋同原则,强调公平性。按人均累积排放量计算,发达国家自工业革命以来的CO2排放量已远超出其到2050年前应有的限额,其当前和今后相当长时期的高人均排放都将继续挤占发展中国家的排放空间。因此,发达国家在哥本哈根会议的中近期减排承诺中必须深度减排,以实现全球长期减排目标下的排放轨迹,并为发展中国家留有必要的发展空间。同时必须对发展中国家给予充足的资金和技术支持,作为对其过度挤占发展中国家发展空间的补偿,使发展中国家能够在可持续发展框架下,提高应对气候变化的能力。我国在对外坚持公平原则,努力争取合理的排放空间的同时,对内要加强向低碳经济转型,努力实现保护全球气候和国内可持续发展的双赢。  相似文献   

4.
为了适应气候变化,中国作为世界上产生碳排放最多的国家,正在从多方面制定减少碳排放的计划,并提出了2060年实现碳中和的目标。随着贸易全球化,全球其他国家消费的排放越来越多地在中国生产。国家间的贸易条件受政策影响很大,关税的高低会导致商品的贸易出现变化,进而导致进出口商品包含排放的变化。本文结合中美两国的贸易冲突,对中美两国加征关税后的贸易变化进行模拟,结合全球贸易分析模型的结果与投入产出分析法,定量地研究了关税变动后中国进出口隐含排放的变化。研究发现,在中美加征关税后,中美两国的贸易量大幅减少,并导致两国贸易涉及的排放变少,而中国向世界出口的排放反而有所增加。另外,由于进口市场被冲击,中国从全世界进口的排放明显变少,进而导致中国净出口的碳排放在加征关税后变多,且集中于能源密集型产业。从结果看,中国在贸易受限的情况下依旧向世界出口了大量排放,通过贸易合作来促进新能源产业的进步或许可以更好地解决减排需求。  相似文献   

5.
6.
近110年来全球地面气温变化   总被引:6,自引:0,他引:6  
近110年来全球地面气温变化吉村纯(东京航空地方气象台)1前言以二氧化碳为代表的温室效应气体增加所引起的地球变暖的危机正在扩大,但现在的科学对气候变化的理解尚不充分,为了预测今后的气候变化需要进行各种研究。在各种研究中对过去实际出现的气候变化的分析是...  相似文献   

7.
为去除全球变暖等压面抬升的影响、客观地反映西太平洋副热带高压的真实变化,本研究使用了1951~2017年NCEP/NCAR的月平均500hPa高度场再分析资料以及国家气候中心提供6~8月的大气环流指数,基于去除全球变暖影响的西太平洋副热带高压表征线,研究探讨了全球变暖背景下西太平洋副热带高压的变化。研究表明,去除全球变暖影响前(后)西太平洋副热带高压有面积指数增大(减小)、强度指数增强(减弱)和西伸脊点指数西伸(东退)的演变特征。可见,全球变暖可能是西太平洋副热带高压面积、强度和东西位置发生变化的原因之一。  相似文献   

8.
辽河三角洲湿地与全球变化   总被引:11,自引:7,他引:11       下载免费PDF全文
重点介绍了辽河三角洲湿地的类型、形成与发育的主导影响因子和全球变化的影响,阐述了盘锦湿地生态系统野外观测站建立的区域代表性与必要性,在此基础上提出了近期辽河三角洲湿地与全球变化相互作用的研究重点。  相似文献   

9.
1920-2000年全球陆地降水气候特征与变化   总被引:16,自引:0,他引:16  
分析了1920-2000年全球陆地降水场.指出降水量最大的区域主要在季风区,在季风降水区有明显的雨季和旱季之分.全球多年平均降水随纬向分布有着较好的连贯性,即热带地区比较湿润,从赤道向南向北递减,但是在南半球40°~50°S中高纬度降水量还比较多,故南半球降水随纬度分布呈双峰型.文中还分析了全球陆地平均的全年、各季降水序列的周期和趋势特征.指出全球降水序列中有明显的与2~7年ENSO周期相吻合的变化周期,也有年代际变化.在1920-2000年期间,除了冬季降水有一个弱的上升趋势外,其它季节降水量的变化趋势不很明显.分析比较了全球陆地年、各季降水长期趋势的地理分布差异,指出在南半球,赤道~10°S除了在春季降水表现为弱的负趋势外,其他季节都是正趋势,其中冬季最明显,但是并不显著.10°~25°S在冬、秋季是正趋势而夏季是负趋势,趋势都不显著.在20°~40°S夏、秋季的降水量正趋势达到0.01显著性水平.在北半球,25°N以南的热带地区的四季降水都是负趋势,在秋季尤为明显,达到0.01显著性水平.在30°N以北,除了在30°~40°N冬季表现为降水的负趋势外,其它季节降水为正趋势.在45°~55°N地区,降水的正趋势在春季表现的最为明显,在北半球更高的纬度上,冬季降水的正趋势表现的特别明显.  相似文献   

10.
气候变化的科学事实表明,人类活动导致了大气温室气体浓度增加,解决气候变化问题的根本措施就是减少或消除温室气体人为的过多排放。 碳排放权的分配问题是关系到各国的社会经济发展,以及人民生活、生存权的问题。以气候变化的实质问题为基础,分析了气候资源和碳排放权的基本属性;进一步探讨了碳排放权的分配方案,并对国外的碳排放权分配方案进行了对比评估。另外,还提出了影响碳排放权分配的重要因素。  相似文献   

11.
中国在第75届联合国大会一般性辩论上提出2060碳中和目标.考虑到已有研究较少关注碳中和或缺少对其国际形势的认识,文中梳理分析了全球31个碳中和承诺国的目标内容和政策法规文件.通过对国际碳中和行动的趋势分析和评述,认为碳中和正在成为全球气候行动关注的重要内容,对于推进全球应对气候变化具有积极意义;而欧盟等发达国家/地区...  相似文献   

12.
Projections of greenhouse gas (GHG) emissions are critical to enable a better understanding and anticipation of future climate change under different socio-economic conditions and mitigation strategies. The climate projections and scenarios assessed by the Intergovernmental Panel on Climate Change, following the Shared Socioeconomic Pathway (SSP)-Representative Concentration Pathway (RCP) framework, have provided a rich understanding of the constraints and opportunities for policy action. However, the current emissions scenarios lack an explicit treatment of urban emissions within the global context. Given the pace and scale of urbanization, with global urban populations expected to increase from about 4.4 billion today to about 7 billion by 2050, there is an urgent need to fill this knowledge gap. Here, we estimate the share of global GHG emissions driven by urban areas from 1990 to 2100 based on the SSP-RCP framework. The urban consumption-based GHG emissions are presented in five regional aggregates and based on a combination of the urban population share, 2015 urban per capita CO2eq carbon footprint, SSP-based national CO2eq emissions, and recent analysis of urban per capita CO2eq trends. We find that urban areas account for the majority of global GHG emissions in 2015 (61.8%). Moreover, the urban share of global GHG emissions progressively increases into the future, exceeding 80% in some scenarios by the end of the century. The combined urban areas in Asia and Developing Pacific, and Developed Countries account for 65.0% to 73.3% of cumulative urban consumption-based emissions between 2020 and 2100 across the scenarios. Given these dominant roles, we describe the implications for potential urban mitigation in each of the scenario narratives in order to meet the goal of climate neutrality within this century.  相似文献   

13.
Global greenhouse gas (GHG) emissions models generally project a downward trend in CO2 emissions from land use change, assuming significant crop yield improvements. For some crops, however, significant yield gaps persist whilst demand continues to rise. Here we examine the land use change and GHG implications of meeting growing demand for maize. Integrating economic and biophysical models at an unprecedented spatial resolution, we show that CO2 emissions from land conversion may rise sharply if future yield growth follows historical trends. Our results show that ~4.0 Gt of additional CO2 would be emitted from ~23 Mha agricultural expansion from 2015 to 2026, under historical yield improvement trends. If yield gaps are closed expeditiously, however, GHG emissions can be reduced to ~1.1 Gt CO2 during the period. Our results highlight the urgent need to close global yield gaps to minimize agricultural expansion and for continued efforts to constrain agricultural expansion in carbon-rich lands and forests.  相似文献   

14.
Global agroecosystems can contribute to both climate change mitigation and biodiversity conservation, and market mechanisms provide a highly prospective means of achieving these outcomes. However, the ability of markets to motivate the supply of carbon sequestration and biodiversity services from agricultural land is uncertain, especially given the future changes in environmental, economic, and social drivers. We quantified the potential supply of these services from the intensive agricultural land of Australia from 2013 to 2050 under four global outlooks in response to a carbon price and biodiversity payment scheme. Each global outlook specified emissions pathways, climate, food demand, energy price, and carbon price modeled using the Global Integrated Assessment Model (GIAM). Using a simplified version of the Land Use Trade-Offs (LUTO) model, economic returns to agriculture, carbon plantings, and environmental plantings were calculated each year. The supply of carbon sequestration and biodiversity services was then quantified given potential land use change under each global outlook, and the sensitivity of the results to key parameters was assessed. We found that carbon supply curves were similar across global outlooks. Sharp increases in carbon sequestration supply occurred at carbon prices exceeding 50 $ tCO2−1 in 2015 and exceeding 65 $ tCO2−1 in 2050. Based on GIAM-modeled carbon prices, little carbon sequestration was expected at 2015 under any global outlook. However, at 2050 expected carbon supply under each outlook differed markedly, ranging from 0 to 189 MtCO2 yr−1. Biodiversity services of 3.32% of the maximum may be achieved in 2050 for a 1 $B investment under median scenario settings. We conclude that a carbon market can motivate supply of substantial carbon sequestration but only modest amounts of biodiversity services from agricultural land. A complementary biodiversity payment can synergistically increase the supply of biodiversity services but will not provide much additional carbon sequestration. The results were sensitive to global drivers, especially the carbon price, and the domestic drivers of adoption hurdle rate and agricultural productivity. The results can inform the design of an effective national policy and institutional portfolio addressing the dual objectives of climate change and biodiversity conservation that is robust to future uncertainty in both national and global drivers.  相似文献   

15.
Global greenhouse gas emissions driven by European consumption increasingly occur outside European borders. These non-European sources of emissions remain linked to Europe via the international supply chains of European companies. Leading companies are now measuring their supply chain emissions and taking tentative steps to reduce them. If such activities were to become widespread, then an opportunity may exist for European industry to drive significant emissions abatement beyond European borders. This paper provides the first analysis into the maximum potential influence European industry has over its non-European supply chain emissions. The analysis is performed at the level of aggregate industry sectors using a global Multi-Regional Input–Output model. The Total Consumption Attribution method is used to estimate the potential influence of different European industries with detailed decompositions carried out using Structural Path Analysis techniques. The potential influence of European industry over non-European supply chain emissions is found to be greater than one gigatonne of carbon dioxide. The European manufacturing sector is found to have the greatest potential influence over non-European emissions via relatively short supply chains that entail few international border crossings. The results presented in this paper provide initial evidence in support of the development of European climate policies aimed at stimulating supply chain emissions reductions activities within European companies  相似文献   

16.
Seagrass meadows are natural carbon storage hotspots at risk from global change threats, and their loss can result in the remineralization of soil carbon stocks and CO2 emissions fueling climate change. Here we used expert elicitation and empirical evidence to assess the risk of CO2 emissions from seagrass soils caused by multiple human-induced, biological and climate change threats. Judgments from 41 experts were synthesized into a seagrass CO2 emission risk score based on vulnerability factors (i.e., spatial scale, frequency, magnitude, resistance and recovery) to seagrass soil organic carbon stocks. Experts perceived that climate change threats (e.g., gradual ocean warming and increased storminess) have the highest risk for CO2 emissions at global spatial scales, while direct threats (i.e., dredging and building of a marina or jetty) have the largest CO2 emission risks at local spatial scales. A review of existing peer-reviewed literature showed a scarcity of studies assessing CO2 emissions following seagrass disturbance, but the limited empirical evidence partly confirmed the opinion of experts. The literature review indicated that direct and long-term disturbances have the greatest negative impact on soil carbon stocks per unit area, highlighting that immediate management actions after disturbances to recover the seagrass canopy can significantly reduce soil CO2 emissions. We conclude that further empirical evidence assessing global change threats on the seagrass carbon sink capacity is required to aid broader uptake of seagrass into blue carbon policy frameworks. The preliminary findings from this study can be used to estimate the potential risk of CO2 emissions from seagrass habitats under threat and guide nature-based solutions for climate change mitigation.  相似文献   

17.
Future levels of water stress depend on changes in several key factors including population, climate-change driven water availability, and a carbon dioxide physiological-forcing effect on evaporation and run-off. In this study we use an ensemble of the HadCM3 climate model forced with a range of future emissions scenarios combined with a simple water scarcity index to assess the contribution of each of these factors to the projected population living in water stress over the 21st century.Population change only scenarios increase the number of people living in water stress such that at peak global population 65% of people experience some level of water stress. Globally, the climate model ensemble projects an increase in water availability which partially offsets some of the impacts of population growth. The result is 1 billion fewer people living in water stress by the 2080s under the high end emissions scenarios than if population increased in the absence of climate change.This study highlights the important role plant-physiological forcing has on future water resources. The effect of rising CO2 is to increase available water and to reduce the number of people living in high water stress by around 200 million compared to climate only projections. This effect is of a similar order of magnitude to climate change.  相似文献   

18.
IPCC AR6报告中控温1.5℃和2℃的低排放情景需要在21世纪中叶以后实现净负CO2排放,这需要在很大程度上依赖CO2移除措施。AR6对CO2移除的主要评估结论如下:CO2移除有潜力从大气中去除CO2(高信度);如果CO2移除量超过CO2排放量,将实现净负CO2排放,降低大气CO2浓度,减缓海洋酸化(高信度);通过CO2移除方法从大气中去除的CO2会部分被海洋和陆地释放的CO2抵消(非常高信度);如果净负CO2排放可以实现并且持续,CO2引起的全球升温趋势将会逐渐扭转,但是气候系统的其他变化(例如海平面升高)仍会在未来的几十年到千年尺度上持续(高信度);不同CO2移除方法会对生物化学循环和气候产生广泛的影响,这些影响会加强或减弱CO2移除的降温潜力,并且影响水资源、食物生产和生物多样性(高信度)。  相似文献   

19.
Integrated estimates of global terrestrial carbon sequestration   总被引:1,自引:0,他引:1  
Assessing the contribution of terrestrial carbon sequestration to climate change mitigation requires integration across scientific and disciplinary boundaries. A comprehensive analysis incorporating ecologic, geographic and economic data was used to develop terrestrial carbon sequestration estimates for agricultural soil carbon, reforestation and pasture management. These estimates were applied in the MiniCAM integrated assessment model to evaluate mitigation strategies within policy and technology scenarios aimed at achieving atmospheric greenhouse gas stabilization by 2100. Terrestrial sequestration reaches a peak rate of 0.5–0.7 GtC yr−1 in mid-century with contributions from agricultural soils (0.21 GtC yr−1), reforestation (0.31 GtC yr−1) and pasture (0.15 GtC yr−1). Sequestration rates vary over time and with different technology and policy scenarios. The combined contribution of terrestrial sequestration over the next century ranges from 23 to 41 GtC.  相似文献   

20.
Fires and their associated carbon and air pollutant emissions have a broad range of environmental and societal impacts, including negative effects on human health, damage to terrestrial ecosystems, and indirect effects that promote climate change. Previous studies investigated future carbon emissions from the perspective of response to climate change and population growth, but the compound effects of other factors like economic development and land use change are not yet well known. We explored fire carbon emissions throughout the 21st century by changing five factors (meteorology, biomass, land use, population density, and gross domestic product [GDP] per capita). Compared to the historical period (2006–2015), global future fire carbon emissions decreased, mainly caused by an increase in GDP per capita, which leads to improvement in fire management and capitalized agriculture. We found that the meteorological factor has a strong individual effect under higher warming cases. Fires in boreal forests were particularly expected to increase because of an increase in fuel dryness. Our research should help climate change researchers consider fire-carbon interactions. Incorporating future spatial changes under diverse scenarios will be helpful to develop national mitigation and adaptation plans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号