首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
前寒武系,虽然不是一个正式的地层单位,但是,却简单明了地代表了形成于寒武纪开始(显生宙起始时)之前的所有岩石,因而就囊括了可以追索到地球形成的所有时间阶段的物质记录。遵循现代地层学的概念体系,要建立一个更加精确的前寒武纪地质年代表将面临着很多挑战。与寒武纪以来的显生宙相对应,前寒武纪曾经被称为"隐生宙"。随着研究的深入,尤其是地质学家在前寒武纪地层中发现了许多生命活动的痕迹,被称为"隐生宙"的前寒武纪就进一步划分为冥古宙、太古宙和元古宙,这代表了前寒武纪地层学研究的第一次概念进步。现行的前寒武纪年代地层划分,主要基于不同克拉通上的可对比的地质事件,而且基于合适的计时性(大致为整数的)时间界限来划分前寒武系,这个划分方案已经服务地球科学界三十余年,尤其是基于大范围的构造活动与沉积特征尝试性地建立了元古宙的纪(埃迪卡拉纪除外),代表了前寒武纪年代地层划分的第二次概念进步。随着对地球前寒武纪演变历史的深入研究而识别出许多不同时代的重要事件,以及更为重要的是从岩石记录的背景变化中识别出造成这些事件的成因,这不但导致了对前寒武纪地球的更加深入的了解,而且为今天重新修订一个新的前寒武纪地质年代表提供了一个难得的机会,从而产生了前寒武纪年代地层划分的第三次概念进步。在新修订的前寒武纪地质年代表中,表现出以下重要的进展:1)运用现代地层学的理念,重新定义了冥古宙、太古宙和元古宙;2)明确了具有特殊地质学涵义的太古宙的底界;3)明确并修订了太古宙-元古宙界线;4)尝试性地进行太古宇的建系。一个修订了的太古宙,可以定义为前寒武纪历史进程中具有以下特征的时间段,即地表上保存的最古老岩石的首次出现(4030 Ma的Acasta片麻岩)、大致在2420 Ma广泛的冰川沉积、变冷的地球条件和大气圈氧气上升的首次出现,据此太古宙还可以进一步划分成三个代和六个纪。太古宙的这个修订和进一步划分,强调了一个基本的科学理念,即太古宙代表了地壳形成与生物圈确立的早期主要阶段,以高度还原性的大气圈为特征。因此,太古宇的建系,是前寒武纪地层学研究一个大胆的尝试,也是一个重要的进展。本文通过详述这一重要进展,为深入理解地球早期复杂的演变历史提供重要的思考途径和研究线索,同时也希望能够为激发研究热情而起到抛砖引玉的作用。  相似文献   

2.
梅冥相 《古地理学报》2016,18(3):315-334
在塑造我们的星球环境的过程之中,分子氧起着关键的作用。大气圈和海洋中氧气的出现及其浓度随着时间的变化,与地球上的主要变化存在强烈关联,诸如构造重组、气候波动和生物进化。针对地球大气圈氧气含量的上升,多年研究的结果肯定了2个基本事实:(1)地球最早期的大气圈是缺乏氧气的;(2)今天的大气圈则为21%的氧气所组成。由于地质历史时期大气圈氧气水平的大多数地质标志,只是意味着存在与缺乏,这就为确定大气圈氧气含量上升的时间进程带来很多困难。即使如此,一系列地质证据已经表明,一个从缺氧的到含氧的大气圈的转变,大致发生在2.5—2.0,Ga,这个转变被定义为巨型氧化作用事件(GOE)。近年来的深入研究发现,几个主要证据表明,在前寒武纪—寒武纪过渡时期的大约850—540,Ma,发生了“第二次巨型氧化作用事件(GOE-Ⅱ)”,还被进一步定义为新元古代巨型氧化作用事件(NOE)。再者,大气圈氧气水平在显生宙还存在着一个特别的上升,这次变化在石炭纪晚期接近一个峰值为150% PAL(现代大气圈氧气含量水平),所以,也可以定义为一次巨型氧化作用事件,即显生宙的巨型氧化作用事件(POE)。因为蓝细菌光合作用造成的氧气生产,曾经导致了大气圈与海洋的氧化作用,反过来为需氧呼吸作用和大型而且复杂的、最终富有智慧的生物进化,提供了基本条件;因此,大气圈氧气上升,是与地球动力学过程紧密相关的地球生物学过程的作用结果,从而成为了解漫长的地质历史时期古地理背景演变的重要线索。从古元古代的GOE,经过新元古代的NOE,到显生宙的POE,这些巨型氧化作用事件的内在特征、作用结果与基本属性,尽管存在着较大的差异,但是,从这些概念的出现到对它们的形成机理的探索性研究,涌现出了许多新概念和新认识;追索这些新概念和新认识,将为了解地球大气圈氧气上升的复杂历史所代表的一个特别的地球上生物学过程,提供一些有益的重要线索和思考途径。  相似文献   

3.
两种气体,氮气和氧气,以压倒优势的状态主导着地球的大气圈。氮气是原生的,而且其存在和丰度不是生物过程所驱动的;相反,氧气是生物通过水的氧化作用而连续产生的,这个氧化作用得到了太阳光的能量驱动。氧气,一种对动物生命进化最为关键的气体,是如何变成大气圈中丰度第2的气体?问题并非以前所设想的那么简单;为了了解大气圈氧化的时间进程,我们不但要知道氧气是什么时候而且是如何第1次出现的,而且还要知道氧气是如何在大气圈中保持一个高浓度的。可以肯定的2个事实是:地球最早期的大气圈是缺乏氧气的,而今天的大气圈则为21%的氧气所组成。需要特别强调的是,大多数古代大气圈氧气水平的地质标志,只是意味着存在与缺乏,而且发生在以下2个时间点的大多数事件是高度不肯定的;但是,一系列地质证据已经表明,大气圈氧气含量水平上升的时间进程发生在2个时间点上:(1)一个从缺氧的到含氧的大气圈的转变,大致发生在2.0~2.5,Ga期间,这个转变就是著名的巨型氧化作用事件(GOE);(2)发生在前寒武纪-寒武纪过渡时期的大约540~850,Ma的第2次巨型氧化作用事件(GOE-Ⅱ),被进一步命名为新元古代氧化作用事件(NOE)。GOE与NOE,就得出了地球大气圈氧气含量水平上升三段式的盛行图像。随着研究的深入,得到了以下重要认识:如果说大气圈氧气含量的总体增加,从太古宙微不足道的水平增加到今天21%,是由于氧气生产作用增强的结果而代表了一个复杂的地球生物学过程的话,那么,这个过程则发生在随着侵蚀作用与沉积作用相对于火山活动而变得更加重要的状况下,更进一步讲,叠加在这个总体趋势下的则是一系列的阶梯式的氧气含量水平上升,这与超大陆聚合作用之后异常高的沉积作用周期是相联系的,从而进一步说明了大气圈氧气含量水平上升是与地球动力学过程紧密相关的地球生物学过程的作用结果。大气圈氧气含量水平一系列的阶梯式的上升,被总结为7个事件而与超大陆汇聚事件得到了良好的对比,从而提供了一个更加清晰的图像;也就是说,在超大陆汇聚作用之后,得到增强的沉积作用促进了大部分有机碳和黄铁矿的埋藏,因而阻碍了它们与自由氧的反应,结果就是大气圈氧气含量水平的实质性上升。新颖的观点和重要的认识,为深入理解地球大气圈氧气含量水平上升这一个重要的地球生物学过程,提供了重要的思考途径和研究线索;追索这些研究进展,将有助于揭开地球大气圈演变历史的神秘面纱并寻找出更多的科学研究生长点。  相似文献   

4.
在塑造我们的星球环境的过程之中,分子氧起着关键的作用。大气圈和海洋中氧气的出现及其浓度随着时间的变化,与地球上的主要变化存在强烈关联,诸如构造重组、气候波动和生物进化。针对地球大气圈氧气含量的上升,多年研究的结果肯定了2个基本事实:(1)地球最早期的大气圈是缺乏氧气的;(2)今天的大气圈则为21%的氧气所组成。由于地质历史时期大气圈氧气水平的大多数地质标志,只是意味着存在与缺乏,这就为确定大气圈氧气含量上升的时间进程带来很多困难。即使如此,一系列地质证据已经表明,一个从缺氧的到含氧的大气圈的转变,大致发生在2.5—2.0 Ga,这个转变被定义为巨型氧化作用事件(GOE)。近年来的深入研究发现,几个主要证据表明,在前寒武纪—寒武纪过渡时期的大约850—540 Ma,发生了"第二次巨型氧化作用事件(GOE-Ⅱ)",还被进一步定义为新元古代巨型氧化作用事件(NOE)。再者,大气圈氧气水平在显生宙还存在着一个特别的上升,这次变化在石炭纪晚期接近一个峰值为150%PAL(现代大气圈氧气含量水平),所以,也可以定义为一次巨型氧化作用事件,即显生宙的巨型氧化作用事件(POE)。因为蓝细菌光合作用造成的氧气生产,曾经导致了大气圈与海洋的氧化作用,反过来为需氧呼吸作用和大型而且复杂的、最终富有智慧的生物进化,提供了基本条件;因此,大气圈氧气上升,是与地球动力学过程紧密相关的地球生物学过程的作用结果,从而成为了解漫长的地质历史时期古地理背景演变的重要线索。从古元古代的GOE,经过新元古代的NOE,到显生宙的POE,这些巨型氧化作用事件的内在特征、作用结果与基本属性,尽管存在着较大的差异,但是,从这些概念的出现到对它们的形成机理的探索性研究,涌现出了许多新概念和新认识;追索这些新概念和新认识,将为了解地球大气圈氧气上升的复杂历史所代表的一个特别的地球上生物学过程,提供一些有益的重要线索和思考途径。  相似文献   

5.
该文论述了地球演出的方向性和周期性、大气圈和水圈(及生物圈)形成演化、前寒武纪构造作用及其与地球功力学初成矿作用的关系,提出了前寒武纪划分成矿时代的几条值得重视的地质界线.对太古宙成矿期、古元古代成矿期、中元古代成矿期和新元古代成矿期的成矿作用进行了深入讨论。  相似文献   

6.
前寒武纪地球动力学(Ⅲ):前寒武纪地质基本特征   总被引:1,自引:0,他引:1  
地球45.6~5.43亿年处于前寒武纪,具有很多独特的古气候、沉积、岩浆、变质、变形等地质特征,地幔和岩石圈的动力学机制也非常不同。本文通过总结前寒武纪地球动力学进展,系统介绍了前寒武纪地壳和岩石圈物质组成与性质、地壳生长的幕式增生特征、太古宙地幔温度和黏度变化、地壳和岩石圈厚度变化、地壳和岩石圈强度与流变结构演变。地球38~25亿年期间的热流值是现今热流值的2.5~4倍,在热的早期地球期间,下地幔热的积累比上地幔热损失快,导致周期性循环翻转,即上升的下地幔穿过干的橄榄岩固相线,并在大于150km深处经历大规模熔融。这就是太古宙大陆岩石圈地幔形成的机制和能量背景,但在太古宙以后,因地球的长期冷却,这种机制终结了。太古宙高热流值也说明太古宙热地幔难以支撑较大的地形高差,太古宙岩石圈强度也不大,在重力作用下会发生快速地形响应。但是,随着巨型基性岩墙群(大约2.75和2.45Ga)首次出现以及表壳岩系的出现,又意味着太古宙晚期地壳逐步足够刚性,允许熔体上升穿过地壳并冷却固化。前寒武纪重大地质事件的根本原因都是因为地球热振荡衰减的结果,前寒武纪地壳生长(增生)、超大陆形成、岩浆作用、成矿作用等都是不等周期、非线性的幕式演化,从TTG大规模短时间集中式形成,表明早期大陆生长模式可能以垂向增生为主。最后,探讨了冥古宙特征,大陆起源、生长和保存机制,前寒武纪超大陆重建与机制和早期地球环境-生命协同演化等前寒武纪关键科学问题和前沿。  相似文献   

7.
条带状铁建造(BIF)与地球大氧化事件   总被引:10,自引:0,他引:10       下载免费PDF全文
地球大氧化事件是指约24亿年前的地球大气圈中开始出现氧并连续增加。到20世纪末对地球大氧化事件的形成和演化模型可概括为两类:22亿年前为缺氧大气圈,22~19亿年大气圈中O_2明显增加,而后逐渐增加到现代大气圈O_2含量水平的C-W-K-H模型;大气圈中O_2含量自40亿年来近于常数,在现代大气圈O_2含量水平的50%范围内变化的D-K-O模型。21世纪开始实施了太古宙生物圈钻探计划(ABDP),在太古宙—元古宙页岩、条带状铁矿建造中微生物、S、C同位素分馏、稀土元素及过渡族金属Ni、Fe、Mo等含量变化等方面取得了许多新成果,建立了大气圈游离氧产生机理及含量变化的不同模型,将大气圈中氧的出现时间至少提前到25亿年前。中国前寒武纪条带状铁矿建造BIF广泛发育,特别是特有的稀土铁建造及其稀土地球化学初步研究成果表明,稀土元素的含量、轻重稀土的分异及变价元素Eu的相对富集与亏损,均显示明显的对时间的依赖。文中提出,应对其开展系统地质地球化学研究,可为大气圈、水圈的演化,特别是对研究中国铁矿的形成和分布规律研究提供重要参考资料。  相似文献   

8.
以生氧光合作用为主造成的大气圈氧气上升,与生物进化存在着密切的成因联系。在大气圈氧气含量明显上升之前,微生物在地球大气圈演化中可能起着主要作用,形成了埃迪卡拉纪之前的微生物世界;甚至到今天,这些细菌以及其他的微体藻类,一直在向地球的大气圈提供氧气,而且在海洋中进行着艰苦的固氮作用。早期很少受到动物影响的生物圈,与现代动物所占据的生物圈(后生动物世界)明显不同,这个转变随着埃迪卡拉纪—寒武纪器官级别的动物辐射而发生,动物辐射造成了宏观生态和宏观进化表现的根本性变化。因此,地球大气圈的氧气上升,实际上是一个复杂的地球生物学过程;追索这个复杂的地球生物学过程所产生的环境变化及其与生物进化与革新之间的成因联系,对深入了解地球复杂的演变历史将提供一些重要线索和思考途径。  相似文献   

9.
海南岛前寒武纪地壳构造演化   总被引:28,自引:1,他引:28       下载免费PDF全文
张业明  张仁杰 《地球科学》1997,22(4):395-400
在系统总结和分析前人成果的基础上,运用前寒武纪地质学新理论和同位素代学方法,对海南岛前寒武纪地壳的组成,时代和演化进行了研究和讨论,初步将海南岛前寒武纪基底岩系划分为中新太古宙紫苏花岗岩-片麻岩系,琼西古中元古宙绿岩系和中元古宙花岗岩类以及石绿新元古宙变质沉积-火山岩系等3种地质实体,并将前寒武纪构造演化划分为新太古宙结晶基底形成,古中元古宙陆壳断裂,中元古宙俯冲造山和新元古宙裂陷-冰川事件4大演  相似文献   

10.
自从威尔逊首次发现岩石圈的板块构造以来,前寒武纪地质工作者慢慢地但基本上都认识到,没有必要考虑现在和显生宙期间发生活动的与从地球上保存得最老岩石(约3.8Ga)形成以来曾经活动的构造样式差别,这一认识对前寒武纪地质的研究产生了释放性影响。因为已经停止用“硅铝壳造山运动”之类的ad hoc作用解释前寒武纪岩石和构造这一似乎有道理的企图,鉴定前寒武纪岩石中表现的现代环境的试图就变得十分重要,进行这些鉴定有助于揭示地球历史中的细微变化,尤其是与热状态有关的变化,例如,(1)太古宙绿岩带中巨大的枕状玄武岩层代表的是弧岛和海盆的环境,这是很清楚的,但是,与这些玄武岩普遍伴生的体积在10%之上的超基性科马提岩却可能归结为较热的太古宙普通地幔(约100°~300℃)。(2)从现代洋底热液脉型矿床和以阿尔戈马型铁矿体为代表的太古宙矿床的对比可以推断,太古宙洋底水温比现代洋底水温高。(3)太古代铁矿床的幔源同位素标志(丰度高于以后的铁矿床)也解释为太古宙强烈热液活动(4)的指示剂。  相似文献   

11.
The ocean and atmosphere were largely anoxic in the early Precambrian, resulting in an Fe cycle that was dramatically different than today’s. Extremely Fe-rich sedimentary deposits—i.e., Fe formations—are the most conspicuous manifestation of this distinct Fe cycle. Rare Earth Element (REE) systematics have long been used as a tool to understand the origin of Fe formations and the corresponding chemistry of the ancient ocean. However, many earlier REE studies of Fe formations have drawn ambiguous conclusions, partially due to analytical limitations and sampling from severely altered units. Here, we present new chemical analyses of Fe formation samples from 18 units, ranging in age from ca. 3.0 to 1.8 billion years old (Ga), which allow a reevaluation of the depositional mechanisms and significance of Precambrian Fe formations. There are several temporal trends in our REE and Y dataset that reflect shifts in marine redox conditions. In general, Archean Fe formations do not display significant shale-normalized negative Ce anomalies, and only Fe formations younger than 1.9 Ga display prominent positive Ce anomalies. Low Y/Ho ratios and high shale-normalized light to heavy REE (LREE/HREE) ratios are also present in ca. 1.9 Ga and younger Fe formations but are essentially absent in their Archean counterparts. These marked differences in Paleoproterozoic versus Archean REE + Y patterns can be explained in terms of varying REE cycling in the water column.Similar to modern redox-stratified basins, the REE + Y patterns in late Paleoproterozoic Fe formations record evidence of a shuttle of metal and Ce oxides across the redoxcline from oxic shallow seawater to deeper anoxic waters. Oxide dissolution—mainly of Mn oxides—in an anoxic water column lowers the dissolved Y/Ho ratio, raises the light to heavy REE ratio, and increases the concentration of Ce relative to the neighboring REE (La and Pr). Fe oxides precipitating at or near the chemocline will capture these REE anomalies and thus evidence for this oxide shuttle. In contrast, Archean Fe formations do not display REE + Y patterns indicative of an oxide shuttle, which implies an absence of a distinct Mn redoxcline prior to the rise of atmospheric oxygen in the early Paleoproterozoic. As further evidence for reducing conditions in shallow-water environments of the Archean ocean, REE data for carbonates deposited on shallow-water Archean carbonate platforms that stratigraphically underlie Fe formations also lack negative Ce anomalies. These results question classical models for deposition of Archean Fe formations that invoke oxidation by free oxygen at or above a redoxcline. In contrast, we add to growing evidence that metabolic Fe oxidation is a more likely oxidative mechanism for these Fe formations, implying that the Fe distribution in Archean oceans could have been controlled by microbial Fe uptake rather than the oxidative potential of shallow-marine environments.  相似文献   

12.
Bitumens extracted from 2.7 to 2.5 billion-year-old (Ga) shales of the Fortescue and Hamersley Groups in the Pilbara Craton, Western Australia, contain traces of molecular fossils. Based on a combination of molecular characteristics typical of many Precambrian bitumens, their consistently and unusually high thermal maturities, and their widespread distribution throughout the Hamersley Basin, the bitumens can be characterized as ‘probably of Archean age’. Accepting this interpretation, the biomarkers open a new window on Archean biodiversity. The presence of hopanes in the Archean rocks confirms the antiquity of the domain Bacteria, and high relative concentrations of 2α-methylhopanes indicate that cyanobacteria were important primary producers. Oxygenic photosynthesis therefore evolved > 2.7 Ga ago, and well before independent evidence suggests significant levels of oxygen accumulated in the atmosphere. Moreover, the abundance of cyanobacterial biomarkers in shales interbedded with oxide-facies banded iron formations (BIF) indicates that although some Archean BIF might have been formed by abiotic photochemical processes or anoxygenic phototrophic bacteria, those in the Hamersley Group formed as a direct consequence of biological oxygen production. Biomarkers of the 3β-methylhopane series suggest that microaerophilic heterotrophic bacteria, probably methanotrophs or methylotrophs, were active in late Archean environments. The presence of steranes in a wide range of structures with relative abundances like those from late Paleoproterozoic to Phanerozoic sediments is convincing evidence for the existence of eukaryotes in the late Archean, 900 Ma before visible fossil evidence indicates that the lineage arose. Sterol biosynthesis in extant eukaryotes requires molecular oxygen. The presence of steranes together with biomarkers of oxygenic photosynthetic cyanobacteria suggests that the concentration of dissolved oxygen in some regions of the upper water column was equivalent to at least ∼1% of the present atmospheric level (PAL) and may have been sufficient to support aerobic respiration.  相似文献   

13.
近年的研究表明,地球生命可能起源于距今39~36亿年之间。除了碳元素以外,水、氮、氢、磷等元素也是生命起源的必备条件,黏土矿物和金属硫化物是有机质合成的重要催化剂,有热液活动的碱性热水环境是最有利生命发生的孵化场。自原核生物在约3.5 Ga出现之后,生命就一直表现为与环境的协同进化关系。大气圈氧化是地球史上最重大的地质事件之一,它不仅改变了地球表层环境条件、加速了表生地质过程和新矿物的产生,而且改变了海洋化学条件和元素循环。大气圈氧化事件的根本在于产氧蓝细菌的出现,元古宙中期海洋化学性质的整体转换也与微生物过程密切相关。新元古代多细胞生物的繁盛和末期后生动物的出现及其在寒武纪初期的快速多样化是生物圈演化的重大飞跃。这个过程也与海洋氧化增强及其导致的海洋化学变化密切相关,其中硫化水域消失和减弱以及海水中微营养元素可得性增加可能是重要因素,这也与微生物过程直接相关。  相似文献   

14.
Systematic geochronologic, geochemical, and Nd isotopic analyses were carried out for an early Paleoproterozoic high-K intrusive complex exposed in southwestern Tarim, NW China. The results provide a better understanding of the Paleoproterozoic tectonic evolution of the Tarim Block. Zircon U–Pb age dating indicates two Paleoproterozoic magmatic episodes occurring at ca. 2.41 Ga and ca. 2.34 Ga respectively, which were followed by a ca. 1.9 Ga metamorphic event. The 2.41 Ga granodiorite–adamellite suite shares characteristics of late to post-orogenic metaluminous A-type granites in its high alkalinity (Na2O + K2O = 7.6–9.3%), total REE (410–788 ppm), Zr (370–660 ppm), and Y (21.7–58.4 ppm) contents. εNd(t) values for the suite range from − 3.22 to − 4.71 and accordingly the Nd modal ages (T2DM) vary between 3.05 Ga and 3.17 Ga. Based on geochemical data, the 2.34 Ga suite can be subdivided into two sub-suites, namely A-type and S-type. However, both types have comparable Nd isotope compositions (εNd(t) ≈ − 0.41 to − 2.08) and similar narrow T2DM ranges (2.76–2.91 Ga).Geochemical and Nd isotopic data for the high-K intrusive complex, in conjunction with the regional geological setting, suggest that both the 2.41 Ga suite and the 2.34 Ga A-type sub-suite might have been produced by partial melting of the Archean mafic crust in a continental rift environment. The S-type sub-suite is thought to have formed by partial melting of felsic pelites and/or metagreywackes recycled from Archean crust (TTG?). Gabbro enclaves with positive εNd(t) value (2.15) have been found to be intermingling within the 2.34 Ga suite; ca. 2.34–2.36 Ga gabbroic dykes and adamellites have previously been documented in eastern Tarim. These observations indicate that the high-K intrusions may reflect the emergence of depleted mantle upwelling beneath the Tarim Block at that time. We suggest a three-stages model for the Precambrian crustal evolution in the Tarim Block: (1) the formation of proto-crust (TTG) by ca. 2.5 Ga, (2) episodes of felsic magmatism possibly occurring in continental rift environments at ca. 2.41 Ga and ca. 2.34–2.36 Ga, and (3) ca. 1.9 Ga metamorphism that may represent the solidification of the Precambrian basement of the Tarim Block.  相似文献   

15.
地质历史中板块构造启动时间   总被引:1,自引:0,他引:1  
地质历史中板块构造是何时开始启动的长期存在着激烈的争论,最极端的一是认为板块构造在新元古代的800 Ma前开始,二是在冥古宙4.3 Ga就已启动,多数学者认为在太古宙末开始启动。确定板块构造启动时间主要依据以下几方面:(1)地球动力学特点,如地幔的热状态以及粘塑性地幔对流模拟表明,板块构造可能是在地球热和冷停滞状态之间演化的一个相。在太古宙较热的地球中,板片强度低,板片的频繁断离阻止了形成类似现代样式的长期俯冲体系,太古宙的板块构造是短期的、阵发性的;(2)代表俯冲的标志的蛇绿岩、蓝片岩和超高压(UHP)变质地体;(3)具有弧特征的岩石组合,如拉斑玄武岩-安山岩-英安岩-流纹岩及英云闪长岩-奥长花岗岩-花岗闪长岩(TTG)岩套;(4)增生楔中混杂岩和大洋板块地层、前陆盆地、大陆裂谷、双变质带、造山带;(5)与俯冲带关系密切的造山型Au矿、斑岩Cu矿和浅成热液矿床、火山岩型块状硫化物矿床(VHMS),它们最早出现的年龄一致在3.5~3.1 Ga,指示了板块构造的开始;(6)世界不同地区大陆的Ni/Co、Cr/Zn比值随沉积年龄变年轻而降低,陆壳从3.0 Ga前的镁铁质转变为2.5 Ga时的长英质,表明全球板块构造的启动应在3.0 Ga的古中太古代;(7)冥古宙锆石、太古宙金刚石中矿物包裹体及Hf、O、C、N同位素组成研究表明,冥古宙地球表面存在类似板块汇聚边缘,太古宙含有大陆沉积物的海洋岩石圈俯冲进入地幔。  相似文献   

16.
Supriya Roy 《Earth》2006,77(4):273-305
The concentration of manganese in solution and its precipitation in inorganic systems are primarily redox-controlled, guided by several Earth processes most of which were tectonically induced. The Early Archean atmosphere-hydrosphere system was extremely O2-deficient. Thus, the very high mantle heat flux producing superplumes, severe outgassing and high-temperature hydrothermal activity introduced substantial Mn2+ in anoxic oceans but prevented its precipitation. During the Late Archean, centered at ca. 2.75 Ga, the introduction of Photosystem II and decrease of the oxygen sinks led to a limited buildup of surface O2-content locally, initiating modest deposition of manganese in shallow basin-margin oxygenated niches (e.g., deposits in India and Brazil). Rapid burial of organic matter, decline of reduced gases from a progressively oxygenated mantle and a net increase in photosynthetic oxygen marked the Archean-Proterozoic transition. Concurrently, a massive drawdown of atmospheric CO2 owing to increased weathering rates on the tectonically expanded freeboard of the assembled supercontinents caused Paleoproterozoic glaciations (2.45-2.22 Ga). The spectacular sedimentary manganese deposits (at ca. 2.4 Ga) of Transvaal Supergroup, South Africa, were formed by oxidation of hydrothermally derived Mn2+ transferred from a stratified ocean to the continental shelf by transgression. Episodes of increased burial rate of organic matter during ca. 2.4 and 2.06 Ga are correlatable to ocean stratification and further rise of oxygen in the atmosphere. Black shale-hosted Mn carbonate deposits in the Birimian sequence (ca. 2.3-2.0 Ga), West Africa, its equivalents in South America and those in the Francevillian sequence (ca. 2.2-2.1 Ga), Gabon are correlatable to this period. Tectonically forced doming-up, attenuation and substantial increase in freeboard areas prompted increased silicate weathering and atmospheric CO2 drawdown causing glaciation on the Neoproterozoic Rodinia supercontinent. Tectonic rifting and mantle outgassing led to deglaciation. Dissolved Mn2+ and Fe2+ concentrated earlier in highly saline stagnant seawater below the ice cover were exported to shallow shelves by transgression during deglaciation. During the Sturtian glacial-interglacial event (ca. 750-700 Ma), interstratified Mn oxide and BIF deposits of Damara sequence, Namibia, was formed. The Varangian (≡ Marinoan; ca. 600 Ma) cryogenic event produced Mn oxide and BIF deposits at Urucum, Jacadigo Group, Brazil. The Datangpo interglacial sequence, South China (Liantuo-Nantuo ≡ Varangian event) contains black shale-hosted Mn carbonate deposits. The Early Paleozoic witnessed several glacioeustatic sea level changes producing small Mn carbonate deposits of Tiantaishan (Early Cambrian) and Taojiang (Mid-Ordovician) in black shale sequences, China, and the major Mn oxide-carbonate deposits of Karadzhal-type, Central Kazakhstan (Late Devonian). The Mesozoic period of intense plate movements and volcanism produced greenhouse climate and stratified oceans. During the Early Jurassic OAE, organic-rich sediments host many Mn carbonate deposits in Europe (e.g., Úrkút, Hungary) in black shale sequences. The Late Jurassic giant Mn Carbonate deposit at Molango, Mexico, was also genetically related to sea level change. Mn carbonates were always derived from Mn oxyhydroxides during early diagenesis. Large Mn oxide deposits of Cretaceous age at Groote Eylandt, Australia and Imini-Tasdremt, Morocco, were also formed during transgression-regression in greenhouse climate. The Early Oligocene giant Mn oxide-carbonate deposit of Chiatura (Georgia) and Nikopol (Ukraine) were developed in a similar situation. Thereafter, manganese sedimentation was entirely shifted to the deep seafloor and since ca. 15 Ma B.P. was climatically controlled (glaciation-deglaciation) assisted by oxygenated polar bottom currents (AABW, NADW). The changes in climate and the sea level were mainly tectonically forced.  相似文献   

17.
本文为笔者根据第三十一届国际地质大会的200余篇与沉积学相关的论文摘要综合编写而成。评述了当代沉积学研究的最新进展与发展主要,主要包括:碎屑岩、碳酸盐岩及混合沉积的环境变化及其演变;沉积盆地分析与大地构造沉积学;层序地层学;冰川事件沉积学;全球变化沉积学;环境沉积学;资源沉积学;生物礁及白云岩成因;碳酸盐成岩作用等。重点阐述了现代沉积学研究应向多学科交叉渗透、多种高新技术的引用和多领域应用的方向发展。未来沉积学研究以人类的生存与发展所依托的环境、气候和资源为服务对象,才会有更加旺盛的生命力和美好的未来。  相似文献   

18.
S.H. Richardson  S.B. Shirey  J.W. Harris   《Lithos》2004,77(1-4):143-154
Major element and Re–Os isotope analysis of single sulfide inclusions in diamonds from the 240 Ma Jwaneng kimberlite has revealed the presence of at least two generations of eclogitic diamonds at this locality, one Proterozoic (ca. 1.5 Ga) and the other late Archean (ca. 2.9 Ga). The former generation is considered to be the same as that of eclogitic garnet and clinopyroxene inclusion bearing diamonds from Jwaneng with a Sm–Nd isochron age of 1.54 Ga. The latter is coeval with the 2.89 Ga subduction-related generation of eclogitic sulfide inclusion bearing diamonds from Kimberley formed during amalgamation of the western and eastern Kaapvaal craton near the Colesberg magnetic lineament.

The Kimberley, Jwaneng, and Premier kimberlites are key localities for characterizing the relationship between episodic diamond genesis and Kaapvaal craton evolution. Kimberley has 3.2 Ga harzburgitic diamonds associated with creation of the western Kaapvaal cratonic nucleus, and 2.9 Ga eclogitic diamonds resulting from its accretion to the eastern Kaapvaal. Jwaneng has two main eclogitic diamond generations (2.9 and 1.5 Ga) reflecting both stabilization and subsequent modification of the craton. Premier has 1.9 Ga lherzolitic diamonds that postdate Bushveld–Molopo magmatism (but whose precursors have Archean Sm–Nd model ages), as well as 1.2 Ga eclogitic diamonds. Thus, Jwaneng provides the overlap between the dominantly Archean vs. Proterozoic diamond formation evident in the Kimberley and Premier diamond suites, respectively. In addition, the 1.5 Ga Jwaneng eclogitic diamond generation is represented by both sulfide and silicate inclusions, allowing for characterization of secular trends in diamond type and composition. Results for Jwaneng and Kimberley eclogitic sulfides indicate that Ni- and Os-rich end members are more common in Archean diamonds compared to Proterozoic diamonds. Similarly, published data for Kimberley and Premier peridotitic silicates show that Ca-rich (lherzolitic) end members are more likely to be found in Proterozoic diamonds than Archean diamonds. Thus, the available diamond distribution, composition, and age data support a multistage process to create, stabilize, and modify Archean craton keels on a billion-year time scale and global basis.  相似文献   


19.
The Archean North China craton is divided into the Western and Eastern blocks along the Central Orogenic belt. A 1600 km long Archean foreland basin and thrust belt fringes the eastern side of the Central Orogenic belt. Rocks in the orogen form tectonically-stacked east-vergent fold and thrust sheets including foreland basin sediments, 2.50 Ga ophiolitic mélange, and an island arc complex. Foreland basin sediments overlie a passive margin sequence, and include a 2.50 Ga deep-water turbidite sequence that grades upward and westward into shallow-water molasse, now disposed in structurally imbricated east-verging thrusts and asymmetric folds that gradually migrated craton-ward with deformation, uplift, and erosion of the orogen. There is a strong linked relationship of the formation of the foreland basin to collision of the east and west blocks of the North China craton along the Central Orogenic belt at 2.50 Ga. The Qinglong foreland basin and Central Orogenic belt of the North China craton represents one of the best-preserved Archean orogen-to-craton transitions in the world. Its classic internal to external zonation, and flexural response to loading, demonstrate that convergent tectonics in the Archean were broadly similar to Phanerozoic convergent margin processes.  相似文献   

20.
The Cristalândia do Piauí Block, located in the northwestern margin of the São Francisco Craton, represents the basement of the Rio Preto Fold Belt. It is composed of Archean orthogneisses of ca. 3.2 Ga reworked at 2.81 and 2.68 Ga with juvenile to moderately juvenile εHf values between −1.51 and −8.07, and high-K syenogranites dated at 2.65 Ga with crustal εHf values between −10.37 and −19.54, both with model ages (TDMc) varying from 3.57 to 4.33 Ga, indicating cryptic Paleo- to Eoarchean and even Hadean sources. Metamafic-ultramafic rocks, iron formations, metacherts, and graphite schists occur in association with the Archean orthogneiss. The whole set is intruded by Paleoproterozoic (ca. 2.2 Ga) metagranitoids with compositions varying from granodioritic with sanukitoid-type signatures to monzogranitic, and alkali-feldspar granitic with crustal signatures. They are related to the Rhyacian-Orosirian orogeny, responsible for the complex deformation patterns printed in the Archean basement. Orosirian metasedimentary rocks are represented by garnet-biotite paragneiss with maximum depositional age of ca. 1.95 Ga. Intrusive mafic dikes in the complex show ages of ca. 2.07 Ga and isotopic features of mantle-derived magmas. Considering the presented data, the Cristalândia do Piauí Block represents a metacratonic domain corresponding to part of the Guanambi-Correntina Paleoplate, wich had been involved in crustal accretion and reworking from the Archean to the Paleoproterozoic. Many of the elements of the evolutionary stages wich are present in the São Francisco-Congo Paleocontinent can be recognized, suggesting an evolution of this crustal segment amounts to the Eoarchean era and disclosing the existence of cryptic Paleoarchean or even Hadean nuclei, reworked in at least three metamorphic events during the Rhyacian-Orosirian orogeny.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号