首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider a cosmological model in which part of the Universe, Ωh~10?5, is in the form of primordial black holes with masses of ~ 105 M . These primordial black holes were the centers for growing protogalaxies, which experienced multiple mergers with ordinary galaxies and with each other. The galaxy formation is accompanied by the merging and growth of central black holes in the galactic nuclei. We show that the recently discovered correlations between central black hole masses and galactic bulge parameters naturally arise in this scenario.  相似文献   

2.
From published ground-base, spacecraft, and rocket photometry and polarimetry of the zodiacal light, a number of optical and physical parameters have been derived. It was assumed that the number density, mean particle size, and albedo vary with heliocentric distance, and shown that average individual interplanetary particles have a small but definite opposition effect, a mean single-scattering albedo in the V band at 1-AU heliocentric distance of 0.09 ± 0.01, and a zero-phase geometric albedo of 0.04. Modeled by a power law, both albedos decrease with increasing heliocentric distance as r?0.54. The corresponding exponents for changes in mean particle size and number density are related in a simple way. The median orbital inclination of zodiacal light particles with respect to the ecliptic is 12°, close to the observed median value for faint asteroids and short-period comets. Furthermore, the color of dust particles and its variation with solar phase angle closely resemble those of C asteroids. These findings are, at least, consistent with the zodiacal cloud originating primarily from collisions among asteroids. Finally, a value of ?1018?ErmE g was derived for the mass of the zodiacal cloud, where ?E is the mean particle radius (in micrometers) at 1-AU-heliocentric distance. For extinction in the ecliptic, Δm = 10?5??12mag was obtained, where ? is the solar elongation in degrees.  相似文献   

3.
Disruptive collisions in the main belt can liberate fragments from parent bodies ranging in size from several micrometers to tens of kilometers in diameter. These debris bodies group at initially similar orbital locations. Most asteroid-sized fragments remain at these locations and are presently observed as asteroid families. Small debris particles are quickly removed by Poynting-Robertson drag or comminution but their populations are replenished in the source locations by collisional cascade. Observations from the Infrared Astronomical Satellite (IRAS) showed that particles from particular families have thermal radiation signatures that appear as band pairs of infrared emission at roughly constant latitudes both above and below the Solar System plane. Here we apply a new physical model capable of linking the IRAS dust bands to families with characteristic inclinations. We use our results to constrain the physical properties of IRAS dust bands and their source families. Our results indicate that two prominent IRAS bands at inclinations ≈2.1° and ≈9.3° are byproducts of recent asteroid disruption events. The former is associated with a disruption of a ≈30-km asteroid occurring 5.8 Myr ago; this event gave birth to the Karin family. The latter came from the breakup of a large >100-km-diameter asteroid 8.3 Myr ago that produced the Veritas family. Using an N-body code, we tracked the dynamical evolution of ≈106 particles, 1 μm to 1 cm in diameter, from both families. We then used these results in a Monte Carlo code to determine how small particles from each population undergo collisional evolution. By computing the thermal emission of particles, we were able to compare our results with IRAS observations. Our best-fit model results suggest the Karin and Veritas family particles contribute by 5-9% in 10-60-μm wavelengths to the zodiacal cloud's brightness within 50° latitudes around the ecliptic, and by 9-15% within 10° latitudes. The high brightness of the zodiacal cloud at large latitudes suggests that it is mainly produced by particles with higher inclinations than what would be expected for asteroidal particles produced by sources in the main belt. From these results, we infer that asteroidal dust represents a smaller fraction of the zodiacal cloud than previously thought. We estimate that the total mass accreted by the Earth in Karin and Veritas particles with diameters 20-400 μm is ≈15,000-20,000 tons per year (assuming 2 g cm−3 particles density). This is ≈30-50% of the terrestrial accretion rate of cosmic material measured by the Long Duration Exposure Facility. We hypothesize that up to ≈50% of our collected interplanetary dust particles and micrometeorites may be made up of particle species from the Veritas and Karin families. The Karin family IDPs should be about as abundant as Veritas family IDPs though this ratio may change if the contribution of third, near-ecliptic source is significant. Other sources of dust and/or large impact speeds must be invoked to explain the remaining ≈50-70%. The disproportional contribution of Karin/Veritas particles to the zodiacal cloud (only 5-9%) and to the terrestrial accretion rate (30-50%) suggests that the effects of gravitational focusing by the Earth enhance the accretion rate of Karin/Veritas particles relative to those in the background zodiacal cloud. From this result and from the latitudinal brightness of the zodiacal cloud, we infer that the zodiacal cloud emission may be dominated by high-speed cometary particles, while the terrestrial impactor flux contains a major contribution from asteroidal sources. Collisions and Poynting-Robertson drift produce the size-frequency distribution (SFD) of Karin and Veritas particles that becomes increasingly steeper closer to the Sun. At 1 AU, the SFD is relatively shallow for small particle diameters D (differential slope exponent of particles with D?100 μm is ≈2.2-2.5) and steep for D?100 μm. Most of the mass at 1 AU, as well as most of the cross-sectional area, is contributed by particles with D≈100-200 μm. Similar result has been found previously for the SFD of the zodiacal cloud particles at 1 AU. The fact that the SFD of Karin/Veritas particles is similar to that of the zodiacal cloud suggests that similar processes shaped these particle populations. We estimate that there are ≈5×1024 Karin and ≈1025 Veritas family particles with D>30 μm in the Solar System today. The IRAS observation of the dust bands may be satisfactorily modeled using ‘averaged’ SFDs that are constant with semimajor axis. These SFDs are best described by a broken power-law function with differential power index α≈2.1-2.4 for D?100 μm and by α?3.5 for 100 μm?D?1 cm. The total cross-sectional surface area of Veritas particles is a factor of ≈2 larger than the surface area of the particles producing the inner dust bands. The total volumes in Karin and Veritas family particles with 1 μm<D<1 cm correspond to D=11 km and D=14 km asteroids with equivalent masses ≈1.5×1018 g and ≈3.0×1018 g, respectively (assuming 2 g cm−3 bulk density). If the size-frequency and radial distribution of particles in the zodiacal cloud were similar to those in the asteroid dust bands, we estimate that the zodiacal cloud represents ∼3×1019 g of material (in particles with 1 μm<D<1 cm) at ±10° around the ecliptic and perhaps as much as ∼1020 g in total. The later number corresponds to about a 23-km-radius sphere with 2 g cm−3 density.  相似文献   

4.
《Icarus》1986,66(2):280-287
Whereas the inner planets' perturbations on meteoroids' and larger interplanetary bodies' orbits have been studied extensively, they are usually neglected in studies of the dynamics of smaller particles producing the zodiacal light through scattering of sunlight. Forces acting on these dust particles are fairly well known and include radiation forces and interaction with the solar wind. This article is the first in a series aimed at improving our knowledge of the dynamical evolution of dust in interplanetary space by studying the combined effects of these perturbations including gravitational perturbations by the planets Venus, Earth, Mars, and Jupiter. The necessity of including effects of the inner planets in dust dynamics investigations is established. Sample trajectories are presented to illustrate commonly occurring phenomenae, such as nonmonotonic changes in semimajor axis, eccentricity, inclination, and in the line of nodes. These perturbations are shown to be due to the inner planets as opposted to Jupiter or nongravitational forces.  相似文献   

5.
William T. Reach 《Icarus》2010,209(2):848-850
Interplanetary dust particles from comets and asteroids pervade the Solar System and become temporarily trapped into orbital resonances with Earth, leading to a circumsolar dust ring. Using the unique vantage point of the Spitzer Space Telescope from its Earth-trailing solar orbit, we have measured for the first time the azimuthal structure of the Earth’s resonant dust ring. There is a relative paucity of particles within 0.1 AU of the Earth, followed by an enhancement in a cloud that is centered 0.2 AU behind Earth with a width of 0.08 AU along the Earth’s orbit. The North ecliptic pole is ∼3% brighter at 8 μm wavelength when viewed from inside the enhancement. The presence of azimuthal asymmetries in debris disks around other stars is considered strong evidence for planets. By measuring the properties of the Earth’s resonant ring, we can provide “ground truth” to models for interactions of planets and debris disks, possibly leading to improved predictions for detectability of life-bearing planets. The low amplitude of the azimuthal asymmetry in the Earth’s circumsolar ring suggests significant contributions to the zodiacal light from particles that are large (>30 μm) or have large orbital eccentricity that makes capture into mean motion resonances inefficient.  相似文献   

6.
The accumulation and distribution of rare-light elements in the Galaxy is investigated according to a model of the galaxy at which center there exists a pulsating active nucleus with decreasing activity with time. The abundances of rare-light elements rapidly decrease with approaching to the galactic center whereas the most abundant region of these elements is the annular region of the radial distance ofr=8~14 kpc from the galactic center. In the inner region ofr?8 kpc the abundances of these elements have varied by two to three orders of magnitude from the early days of the galactic history till now, but inr?8 kpc they have been almost constant within a factor of 2. It has become clear that if the nuclides D,3He,7Li,10B and11B have been produced mainly by the shock process taking place in the outer envelope of type-II supernova, they must have been created by the mass fractions of the supernova of some 2.7×10?3, 1.7×10?4, 6.9×10?8, 1.7×10?7 and 7.9×10?7, respectively, to account for the solar system abundances.  相似文献   

7.
The solar system's position in the Galaxy is an exclusive one, since the Sun is close to the corotation circle, which is the place where the angular velocity of the galactic differential rotation is equal to that of density waves displaying as spiral arms. Each galaxy contains only one corotation circle; therefore, it is an exceptional place. In the Galaxy, the deviation of the Sun from the corotation is very small — it is equal to ΔR/R ≈0.03, where ΔR=R c ?R ,R c is the corotation distance from the galactic center andR is the Sun's distance from the galactic center. The special conditions of the Sun's position in the Galaxy explain the origin of the fundamental cosmogony timescalesT 1≈4.6×109 yr,T 2?108 yr,T 3?106 yr detected by the radioactive decay of various nuclides. The timescaleT 1 (the solar system's ‘lifetime’) is the protosolar cloud lifetime in a space between the galactic spiral arms. The timescaleT 2 is the presolar cloud lifetime in a spiral arm.T 3 is a timescale of hydrodynamical processes of a cloud-wave interaction. The possibility of the natural explanation of the cosmogony timescales by the unified process (on condition that the Sun is near the state of corotation) can become an argument in favour of the fact that the nearness to the corotation is necessary for the formation of systems similar to the Solar system. If the special position of the Sun is not incidental, then the corotation circles of our Galaxy, as well as those of other galaxies, are just regions where situations similar to ours are likely to be found.  相似文献   

8.
Investigations of the zodiacal dust cloud give evidence for a significant contribution of asteroidal dust to the interplanetary dust cloud, a result which can now be compared to measurements of the ULYSSES dust detector during its passage of the asteroid belt. Especially we discuss the ULYSSES data with respect to the IRAS dust bands and consider geometric selection effects for the detector. From calculations of radiation pressure forces, we conclude that particles in the IRAS dust bands with massesm≥ 10−12g will stay in bound orbits after their release from asteroid fragmentation. This is already in the mass range (10−16–10−7g) of particles detectable with the dust detector onboard ULYSSES. The absence of these particles in the ULYSSES data cannot be explained exclusively in terms of their small detection probability. Thus we conclude that the size distribution of particles in the IRAS dust bands most probably cannot be continued to the submicrometer range. Concerning the global structure of the inner zodiacal cloud (i.e., about solar distancer< 3.5 AU) the ULYSSES data are not inconsistent with present models. Recent estimates of the total mass of the interplanetary cloud require a dust production rate of about 1014g/year of which a significant amount is assumed to result from the asteroids. Our estimate for the production of dust particles in an IRAS dust band, based on the assumption that the dust band results from a single destruction of an asteroid of 100 km size, yields a production rate of 1010g/year. Other models of the IRAS dust bands suggest production rates up to 1012g/year and also cannot provide a significant source of the dust cloud.  相似文献   

9.
The radiogenic and primordial noble gas content of the atmospheres of Venus, Earth, and Mars are compared with one another and with the noble gas content of other extraterrestial samples, especially meteorites. The fourfold depletion of 40Ar for Venus relative to the Earth is attributed to the outgassing rates and associated tectonics and volcanic styles for the two planets diverging significantly within the first billion or so years of their history, with the outgassing rate for Venus becoming much less than that for the Earth at subsequent times. This early divergence in the tectonic style of the two planets may be due to a corresponding early onset of the runaway greenhouse on Venus. The 16-fold depletion of 40Ar for Mars relative to the Earth may be due to a combination of a mild K depletion for Mars, a smaller fraction of its interior being outgassed, and to an early reduction in its outgassing rate. Venus has lost virtually all of its primordial He and some of its radiogenic He. The escape flux of He may have been quite substantial in Venus' early history, but much diminished at later times, with this time variation being perhaps strongly influenced by massive losses of H2 resulting from efficient H2O loss processes.Key trends in the primordial noble gas content of terrestial planetary atmospheres include (1) a several orders of magnitude decrease in 20Ne and 36Ar from Venus to Earth to Mars; (2) a nearly constant 20Ne/36Ar ratio which is comparable to that found in the more primitive carbonaceous chondrites and which is two orders of magnitude smaller than the solar ratio; (3) a sizable fractionation of Ar, Kr, and Xe from their solar ratios, although the degree of fractionation, especially for 36Ar/132Xe, seems to decrease systematically from carbonaceous chondrites to Mars to Earth to Venus; and (4) large differences in Ne and Xe isotopic ratios among Earth, meteorites, and the Sun. Explaining trends (2), (2) and (4), and (1) pose the biggest problems for the solar-wind implantation, primitive atmosphere, and late veneer hypotheses, respectively. It is suggested that the grain-accretion hypothesis can explain all four trends, although the assumptions needed to achieve this agreement are far from proven. In particular, trends (1), (2), (3), and (4) are attributed to large pressure but small temperature differences in various regions of the inner solar system at the times of noble gas incorporation by host phases; similar proportions of the host phases that incorporated most of the He and Ne on the one hand (X) and Ar, Kr, and Xe on the other hand (Q); a decrease in the degree of fractionation with increasing noble-gas partial pressure; and the presence of interstellar carriers containing isotopically anomalous noble gases.Our analysis also suggests that primordial noble gases were incorporated throughout the interior of the outer terrestial planets, i.e., homogeneous accretion is favored over inhomogeneous accretion. In accord with meteorite data, we propose that carbonaceous materials were key hosts for the primordial noble gases incorporated into planets and that they provided a major source of the planets' CO2 and N2.  相似文献   

10.
A model of galaxy with an active nucleus is investigated; The cloud in the galactic disc accretes on the core. The core temperature and hence the core luminosity becomes high because of the kinetic energy release by the accreting gas cloud. Then the gas and dust in the core is ejected outward by the radiation pressure from resonance line scattering, forms a sort of halo around the core and subsequently falls on the galactic plane. The gas and dust subsisted from star formation accretes again on the nucleus to provoke another explosion. So these processes are cyclic throughout the life of the galaxy.According to this model, the period of explosion depends only on the temperatureT of the system in such a manner as(y)=2.7×106 T 1/2. This relation can well explain the observed time scales for galactic explosions. On the other hand, the time dependence of heavy elements abundance, of the redshift of distant galaxy and of galactic luminosity is investigated. The redshift dependence of galactic distribution is also examined. It has become clear that this model can lead the inconsistent results with observational facts. The other problems concerning with galaxies or metagalaxies should be treated along this line.  相似文献   

11.
The propagation and modulation of electrons in the heliosphere play an important part in improving our understanding and assessment of the modulation processes. A full three-dimensional numerical model is used to study the modulation of galactic electrons, from Earth into the inner heliosheath, over an energy range from 10 MeV to 30 GeV. The modeling is compared with observations of 6–14 MeV electrons from Voyager 1 and observations at Earth from the PAMELA mission. Computed spectra are shown at different spatial positions. Based on comparison with Voyager 1 observations, a new local interstellar electron spectrum is calculated. We find that it consists of two power-laws: In terms of kinetic energy E, the results give E ?1.5 below ~500 MeV and E ?3.15 at higher energies. Radial intensity profiles are computed also for 12 MeV electrons, including a Jovian source, and compared to the 6–14 MeV observations from Voyager 1. Since the Jovian and galactic electrons can be separated in the model, we calculate the intensity of galactic electrons below 100 MeV at Earth. The highest possible differential flux of galactic electrons at Earth with E=12 MeV is found to have a value of 2.5×10?1 electrons m?2?s?1?sr?1?MeV?1 which is significantly lower (a factor of 3) than the Jovian electron flux at Earth. The model can also reproduce the extraordinary increase of electrons by a factor of 60 at 12 MeV in the inner heliosheath. A lower limit for the local interstellar spectrum at 12 MeV is estimated to have a value of (90±10) electrons m?2?s?1?sr?1?MeV?1.  相似文献   

12.
We present the results of measurements of the total X-ray flux from the Andromeda galaxy (M31) in the 3-100 keV band based on data from the RXTE/PCA, INTEGRAL/ISGRI, and SWIFT/BAT space experiments. We show that the total emission from the galaxy has a multicomponent spectrum whose main characteristics are specified by binaries emitting in the optically thick and optically thin regimes. The galaxy’s luminosity at energies 20–100 keV gives about 6% of its total luminosity in the 3–100 keV band. The emissivity of the stellar population in M31 is L 2–20 keV ~ 1.1 × 1029 erg s?1 M ?1 in the 2–20 keV band and L 20–100 keV ~ 8 × 1027 erg s?1 M ?1 in the 20–100 keV band. Since low-mass X-ray binaries at high luminosities pass into a soft state with a small fraction of hard X-ray emission, the detection of individual hard X-ray sources in M31 requires a sensitivity that is tens of times better (up to 10?13 erg s?1 cm?2) than is needed to detect the total hard X-ray emission from the entire galaxy. Allowance for the contribution from the hard spectral component of the galaxy changes the galaxy’s effective Compton temperature approximately by a factor of 2, from ~1.1 to ~2.1 keV.  相似文献   

13.
Our 8-year-long JHKLM photometry of the Seyfert galaxy NGC 1068 has confirmed its IR variability. The amplitudes of the brightness variations in the J (1.25 μm) and K (2.2 μm) bands are within 0 . m 15 and 0 . m 3, respectively, and exceed the observational errors by more than a factor of 5. The nucleus of NGC 1068 is a variable source and can be at different phases of activity. The brightness of the galaxy in all bands except J decreased from 1998 until 2004. In this period, there was a tendency for the J brightness to increase. The variable source in NGC 1068 is a complex structured object. At least two sources radiate in the wavelength range 1.25–5 μm: a hot source whose radiation shows up in the range 1.25–1.65 μm and a cold source radiating at long wavelengths (2.2–5 μm). The color temperature of the hot source increased from 2300 K (the beginning of our observations) to ∼2700 K (the end of our observations). In contrast, the temperature of the cold source decreased by several tens of degrees (in the temperature range 800–900 K). The IR brightness and color variations observed in 1998–2004 are attributable to the dispersal of the dust envelope that formed around the galactic nucleus some 30 years ago and reached its maximum density in 1994–1995. Our analysis of the spectral energy distributions for the galaxy has shown that the observed radiation in the range 1.25–5 μm can be represented as the sum of radiations from two blackbody sources. For the first period of our observations (JD 2451400), the temperatures of the hot and cold sources are ∼3100 and 760 K, respectively. For the second period (JD 2453230), they are ∼3200 and 720 K, respectively. The hot source is relatively compact; it is smaller in size than the cold source by several tens of times. The mean sizes of the hot and cold sources are ∼2.35 × 1016 and ∼7.8 × 1017 cm, respectively. The total mean luminosity of the two sources did not change between the beginning and the end of our observations. The optical depth of the dust envelope averaged over the spectrum of the hot source is τ ∼ 1.5. In 2004, the state of the dust envelope almost returned to its 1974 level, i.e., the dust envelope formation and dispersal cycle was ∼11 000 days (∼30 yr). Original Russian Text ? O.G. Taranova, V.I. Shenavrin, 2006, published in Pis’ma v Astronomicheskiĭ Zhurnal, 2006, Vol. 32, No. 7, pp. 489–496.  相似文献   

14.
The formation, evolution and properties of noctilucent clouds are studied using a timedependent one-dimensional model of ice particles at mesospheric altitudes. The model treats ice crystals, meteoric dust, water vapor and air ionization as fully interactive cloud elements. For ice particles, the microphysical processes of nucleation, condensation, coagulation and sedimentation are included; the crystal habits of ice are also accounted for. Meteoric dust is analyzed in the manner of Hunten et al. (1980). The simulated particle sizes range from 10 Å to 2.6μm. The chemistry of water vapor and the charge balance of the mesosphere are also analyzed in detail.Based on model calculations, including numerous sensitivity tests, several conclusions are reached. Extremely cold mesopause temperatures (<140K) are necessary to form noctilucent clouds; such temperatures only exist at high latitudes in summer. A water vapor concentration of 4–5 ppmv is sufficient to form a visible cloud. However, a subvisible cloud can exist in the presence of only 1 ppmv of H2O. Ample cloud condensation nuclei are always present in the mesosphere; at very low temperatures, either meteoric dust or hydrated ions can act as cloud nuclei. To be effective, meteoric dust particles must be larger than 10–15 Å in radius. When dust is present, water vapor supersaturations may be held to such low values that ion nucleation is not possible. Ion nucleation can occur, however, in the absence of dust or at extremely low temperatures (<130K). While dust nucleation leads to a small number (<10cm?3) of large ice particles (>0.05 μm radius) and cloud optical depths (at 550 nm) ~10?4, ion nucleation generally leads to a large number (~103cm?3) of smaller particles and optical depths ~10?5). However, because calculated nucleation rates in noctilucent clouds are highly uncertain, the predominant nucleus for the clouds (i.e., dust or ions) cannot be unambiguously established. Noctilucent clouds require several hours-up to a day-to materialize. Once formed, they may persist for several days, depending on local meteorological conditions. However, the clouds can disappear suddenly if the air warms by 10–20 K. The environmental conditions which exist at the high-latitude summer mesopause, together with the microphysics of small ice crystals, dictate that particle sizes will be ? 0.1 μm radius. The ice crystals are probably cubic in structure. It is demonstrated that particles of this size and shape can explain the manifestations of noctilucent clouds. Denser clouds are favored by higher water vapor concentrations, more rapid vertical diffusion and persistent upward convection (which can occur at the summer pole). Noctilucent clouds may also condense in the cold “troughs” of gravity wave trains. Such clouds are bright when the particles remain in the troughs for several hours or more; otherwise they are weak or subvisible.Model simulations are compared with a wide variety of noctilucent cloud data. It is shown that the present physical model is consistent with most of the measurements, as well as many previous theoretical results. Ambient noctilucent clouds are found to have a negligible influence on the climate of Earth. Anthropogenic perturbations of the clouds that are forecast for the next few decades are also shown to have insignificant climatological implications.  相似文献   

15.
Some two decades ago, Hoyle and Wickramasinghe (1976) proposed that the physical conditions inside dense molecular clouds favour the formation of amino acids and complex organic polymers. There now exists both astronomical and laboratory evidence supporting this idea. Recent millimeter array observations have discovered the amino acid glycine (NH2CH2COOH) in the gas phase of the dense star-forming cloud Sagittarius B2. These observations would pose serious problems for present-day theories of molecule formation in space because it is unlikely that glycline can form by the gas-phase reaction schemes normally considered for dense cloud chemistry. Several laboratory experiments suggest a new paradigm in which amino acids and other large organic molecules are chemically manufactured inside the bulk interior of icy grain mantles photoprocessed by direct and scattered ultraviolet starlight. Frequent chemical explosions of the processed mantles would eject large fragments of organic dust into the ambient cloud. Large dust fragments break up into smaller ones by sputtering and ultimately by photodissociation of individual molecules. Hence, a sizeable column density (N≈ 1010−1015 cm-2) of amino acids would be present in the gaseous medium as a consequence of balancing the rate of supply from exploding mantles with the rate of molecule destruction. Exploding mantles can therefore solve the longstanding molecule desorption problem for interstellar dense cloud chemistry. A sizeable fraction of the organic dust population can survive destruction and seed primitive planetary systems throughout our galaxy with prebiological organic molecules needed for proteins and nucleic acids in living organisms. This possibility provides fresh grounds for a new version of the old panspermia hypothesis first introduced by Anaxagoras. It is shown that panspermia is more important than asteroid and cometary organic depositions onto primitive Earth. Furthermore, no appeal to Miller-Urey synthesis in a nonoxidizing atmosphere of primitive Earth is then needed to seed terrestrial life. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
Eyles  C.J.  Simnett  G.M.  Cooke  M.P.  Jackson  B.V.  Buffington  A.  Hick  P.P.  Waltham  N.R.  King  J.M.  Anderson  P.A.  Holladay  P.E. 《Solar physics》2003,217(2):319-347
We describe an instrument (SMEI) which has been specifically designed to detect and forecast the arrival of solar mass ejections and other heliospheric structures which are moving towards the Earth. Such events may cause geomagnetic storms, with resulting radiation hazards and disruption to military and commercial communications; damage to Earth-orbiting spacecraft; and also terrestrial effects such as surges in transcontinental power transmission lines. The detectors are sensitive over the optical wave-band, which is measured using CCD cameras. SMEI was launched on 6 January 2003 on the Coriolis spacecraft into a Sun-synchronous polar orbit as part of the US DoD Space Test Programme. The instrument contains three cameras, each with a field of view of 60°×3°, which are mounted onto the spacecraft such that they scan most of the sky every 102-min orbit. The sensitivity is such that changes in sky brightness equivalent to a tenth magnitude star in one square degree of sky may be detected. Each camera takes an image every 4 s. The normal telemetry rate is 128 kbits s–1. In order to extract the emission from a typical large coronal mass ejection, stellar images and the signal from the zodiacal dust cloud must be subtracted. This requires accurate relative photometry to 0.1%. One consequence is that images of stars and the zodiacal cloud will be measured to this photometric accuracy once per orbit. This will enable studies of transient zodiacal cloud phenomena, flare stars, supernovae, comets, and other varying point-like objects.  相似文献   

17.
The timing and extent to which the initial interstellar material was thermally processed provide fundamental constraints for models of the formation and early evolution of the solar protoplanetary disk. We argue that the nonsolar (solar Δ17O ≈ ?29‰) and near‐terrestrial (Δ17O ≈ 0‰) O‐isotopic compositions of the Earth and most extraterrestrial materials (Moon, Mars, asteroids, and comet dust) were established very early by heating of regions of the disk that were modestly enriched (dust/gas ≥ 5–10 times solar) in primordial silicates (Δ17O ≈ ?29‰) and water‐dominated ice (Δ17O ≈ 24‰) relative to the gas. Such modest enrichments could be achieved by grain growth and settling of dust to the midplane in regions where the levels of turbulence were modest. The episodic heating of the disk associated with FU Orionis outbursts were the likely causes of this early thermal processing of dust. We also estimate that at the time of accretion the CI chondrite and interplanetary dust particle parent bodies were composed of ~5–10% of pristine interstellar material. The matrices of all chondrites included roughly similar interstellar fractions. Whether this interstellar material avoided the thermal processing experienced by most dust during FU Orionis outbursts or was accreted by the disk after the outbursts ceased to be important remains to be established.  相似文献   

18.
The determination of the origin of cosmic rays with observed energies in excess of 1017 eV that exceed the expected energies of cosmic rays accelerated by supernova remnants in the galaxy is a pressing problem in modern astrophysics. Hypernova remnants are one of the possible galactic sources of cosmic rays with energies of up to 1019 eV. Hypernovae constitute a class of extremely powerful supernova explosions, whose supposed progenitors are massive Wolf-Rayet stars. We analyze the special aspects of acceleration of cosmic rays in hypernova remnants that expand in wind bubbles of Wolf-Rayet progenitor stars. We show that these cosmic rays may attain maximum energies of 1018 eV even with a relatively conservative choice of acceleration parameters and account for tens of percent of the total cosmic ray flux observed in the vicinity of the earth in the energy range of 1016–1018 eV if the galactic hypernova explosion rate in the modern epoch reaches ? S ~ 10?4 year?1.  相似文献   

19.
The two basic components of the neutral hydrogen, cool dense clouds merged in a hotter tenuous medium, are studied using 21 cm absorption data of the Parkes Survey. The mean parameters obtained for the typical clouds next to the galactic plane are τp = 1.7, velocity half-width=3.3 km s?1. Their temperatures areT sc ≥40 K with a meanT sc =63±12 K and the obtained hot gas density isn HH=(0.15±0.05) atom cm?3. Theoretical analysis following Giovanelli and Brown (1973) reveals that the pressure equilibrium condition (n HH+2n e T SHn HC·T sc is compatible with the quoted values if it is assumed that the cosmic abundances in the interstellar medium are below the adopted normal solar abundance. This lack of heavy elements suggests accretion to grains which is consistent with the observed narrow concentration of the dark matter on the galactic layer (≤100 pc halfwidth). The same pressure condition leads to a mean cool cloud density ofn HC~30 atom cm?3 and a hot gas temperature ofT SH~10 500 K. Comparison with data from Hii regions suggests that the cool clouds are somewhat denser and less extensive than such regions. An explanation for it is the expansion that the Hii regions went through in their origin. Comparison with 21 cm emission data shows that the cloud galactic layer is only about a quarter as thick as the hot gas layer. All the present results suggest that only such clouds can be spatially related with the typical I population associated with the spiral structure.  相似文献   

20.
Existing instruments are unable to detect planets about stars other than the Sun but such detection would be important for the theory of origin of our solar system and in the search for extraterrestrial intelligence. Infrared offers an advantage of about 105 over visible light as regards the ratio of power received from star and planet. Infrared interferometry from Earth orbit would allow discrimination against the stellar infrared by the placement of an interference null on the star and a spinning infrared interferometer would modulate the planetary emission to permit extraction by synchronous detection from the background level. The limit to sensitivity will be set by thermal emission from the zodiacal light particles near the Earth's orbit unless the interferometer is launched out of the ecliptic or out to the orbit of Jupiter, in which case instrumental limitations will dominate. Technological developments in several fields will be required as also with astrometry, spectroscopic radial velocity measurement, and direct photography from orbit, three approaches with which infrared interferometry should be carefully compared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号