首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.
Synthetic images of the dust tail are presented for a comet which has a rotating nucleus with one predominant dust source fixed to it. The images have been generated using a new computer model which, unlike similar models, allows for the study of dust tails caused by a rotating nucleus with an anisotropic distribution of sources.The dust tail is studied in the post-perihelion phase of a parabolic comet with a perihelion distance of 0.5 AU. One finds that in the case of a rotating nucleus with anisotropic emission characteristics streamers caused solely by the dynamics of the dust particles are forming in the dust tail even if there is no dependence between the solar irradiation angle of the source and the amount of dust emitted. If the dust emission depends on the solar irradiation angle of the dust source, then the brightest tail regions do not necessarily coincide with the synchrones for the times of maximum dust emission.As a consequence, a thorough analysis of streamer patterns in a cometary dust tail requires assumptions on the rotational state and the dust source distribution of the nucleus. Otherwise, it seems not possible to discern between streamers which are caused dynamically by nucleus rotation and others which reflect variations in the emission activity.  相似文献   

2.
《Planetary and Space Science》2007,55(10):1464-1469
The ion-acoustic instability in a dusty negative ion plasma is investigated, focusing on the parameter regime in which the negative ion density is much larger than the electron density. The dynamics of the massive dust grains are neglected, but collisions of electrons and ions with dust grains in addition to other collisional processes are taken into account. The presence of a population of charged dust can change the frequency of the fast wave, lead to additional damping due to ion–dust collisions, and change the conditions for wave growth. Applications to dusty negative ion plasmas in the laboratory and in space are discussed.  相似文献   

3.
Linear and nonlinear propagation of dust drift waves are investigated in the presence of Cairns and Kappa distributed ion population and Boltzmannian electrons. It is found the frequency of the dust drift wave is greatest for the Cairns, intermediate for Kappa and the least for the Maxwellian distributed ions. Using the drift approximation, a nonlinear equation is derived for the dust drift shock waves which reduces to a Korteweg-de Vries-Burgers (KdVB)-like equation in the comoving frame of reference. The solution of the KdVB-like equation is obtained using the tanh method. It is found that the non-Maxwellian ion population, dust neutral collision frequency as well as the inverse dust density scale length inhomogeneity alter the propagation characteristics of the nonlinear dust drift shock waves. Interestingly, it is found that the non-Maxwellian ion population modifies the scale lengths over which the nonlinear structures are formed. The work presented here may be useful to understand the low frequency electrostatic shock waves in inhomogeneous dusty plasmas such as those found in planetary environments.  相似文献   

4.
The magnetorotational instability (MRI) in axisymmetric rotating dusty plasmas with viscous effects is investigated by means of a three-component model MRI with a vertical weak magnetic field. Starting from the three-fluid equations and Maxwell’s equations, I derive the general linear dispersion relation governing local MRI. The dust rotational flow is assumed to have the same angular velocity as ions and electrons. The dispersion relation of two special cases, without viscosity and dust effects respectively, is discussed in detail by taking into account the high-frequency approximation in order to make the perturbation frequency larger than the ion cyclotron frequency. The numerical results demonstrate that both the viscosity and dust effects can prevent the MRI growth, and the dust-induced effects are shown to be especially significant.  相似文献   

5.
The time fractional modified KdV, the so-called TFMKdV equation is solved to study the nonlinear propagation of the dust acoustic (DA) solitary waves in un-magnetized four components dusty plasma. This plasma consists of positively charged warm adiabatic dust, negatively charged cold dust, non-isothermal electrons and Maxwellian ions. The TFMKdV equation is derived by using semi-inverse and Agrawal’s method and solved by the Laplace Adomian decomposition method (LADM). The effects of the time fractional order (β), the ratio of dust to ion temperature (δ d ), the time (τ), the mass and charge ratio (α), the non-isothermal parameter (γ) and wave velocity (v) on the DA solitary wave are studied. Our results show that the variations of the amplitude of DA solitary wave versus (γ) are in agreement with the results obtained previously. Moreover, the time fractional order plays a role of higher order perturbation in modulating the soliton shape. The achievements of this research for the DA solitary waves may be applicable in space plasma environments and laboratory plasmas.  相似文献   

6.
The properties of arbitrary amplitude dust ion-acoustic (DIA) solitary waves (SWs) in a dusty plasma containing warm adiabatic ions, electrons following flat-topped velocity distribution, and arbitrarily (positively or negatively) charged immobile dust is studied by the pseudo-potential approach. The effects of ion temperature, resonant electrons, and dust number density are found to significantly modify the basic features of the DIA-SWs as well modify the parametric regime for the existence of compressive DIA-SWs. The pseudo-potential for small but finite amplitude limit is also analytically analyzed.  相似文献   

7.
Nonlinear ion acoustic solitary wave structures in electron-positron-ion (e-p-i) magnetized rotating plasmas is studied. The electron and positron species are assumed to be nonthermal and follow the kappa distribution function. The Korteweg de Vries (kdV) equation is derived by employing the reductive perturbation technique for solitary wave in the nonlinear regime. The variation in the amplitude and width of the solitary wave are discussed with the effects of positron concentration, temperature ratio of kappa distributed electrons to positrons, spectral index of the positrons, direction of propagation of the wave with magnetic field and effective gyrofrequency of the rotating nonthermal plasmas. The numerical results are also presented for illustration.  相似文献   

8.
Nonlinear properties of small amplitude dust acoustic waves, incorporatingboth the ion inertial effect and dust drift effect have been studied.The effect of dust charge variation is also incorporated. It is seen thatdue to the dust charge variation, a Korteweg-de Vries (KdV) equationwith positive or negative damping term depending on the wave velocityand the ring parameters governes the nonlinear dust acoustic wave. It isseen that the damping or growth arises due to the assumption that dusthydrodynamical time scale is much smaller than that of the dust chargingscale. This assumption is valid only for planetary rings such as Saturn'sF, G and E rings. Numerical investigations reveal thatall the three rings in F, G and E, dust acoustic solitary wave admits both negative and positive potentials. Instability arises from the available freeenergy of drift motion of dust grains only for the wave with wave velocity 0, the drift velocity of the dust.  相似文献   

9.
Using particle aspect approach, the effect of multi-ions densities on the dispersion relation, growth rate, perpendicular resonant energy and growth length of electromagnetic ion cyclotron wave with general loss-cone distribution function in hot anisotropic multi-ion plasma is presented for auroral acceleration region. It is observed that higher He+ and O+ ions densities enhance the wave frequency closer to the H+ ion cyclotron frequency and growth rate of the wave. The differential heating of He+ ions perpendicular to the magnetic field is enhanced at higher densities of He+ ions. The waves require longer distances to achieve observable amplitude by wave-particle interactions mechanism as predicted by growth length. It is also found that electron thermal anisotropy of the background plasma enhances the growth rate and reduces the growth length of multi-ions plasma. These results are determined for auroral acceleration region.  相似文献   

10.
A theoretical investigation has been made of propagating electrostatic waves in a four-component adiabatic dusty plasma, whose constituents are adiabatic electrons, adiabatic ions, adiabatic positively and as well as negatively charged warm dust. The basic features of the solitary structures in such a four-component adiabatic dusty plasma are studied by the reductive perturbation method. It is found that the presence of the positive dust component does not only significantly modify the basic properties of the solitary waves, but also causes the existence of the positive solitary potential structures, which is an interesting feature shown in an adiabatic dusty plasma with the dust of opposite polarity. It is also observed that the basic properties (polarity, speed, amplitude and width) of the DA SWs are significantly modified by the effects of adiabaticity (γ>1) of electrons, ions, negatively as well as positively charged warm dust. The present investigation can be of relevance to the electrostatic solitary structures observed in various dusty space plasma environments (viz. cometary tails, upper mesosphere, Jupiter’s magnetosphere, etc.).  相似文献   

11.
A general expression for the tensor of the dielectrical susceptibility in an anisotropic plasma with particle drifts is derived, and the dispersion equation is found for waves propagating in arbitrary direction with respect to the mean magnetic field. The dispersion equation is solved for the case of electromagnetic ion‐cyclotron waves. It is found that in the plasma of the auroral magnetosphere strong plasma instability may occur so that the value of the growth rate of the waves is of the order of the wave frequency. Besides, the plasma instability is excited at less values of the wave number if the magnetospheric altitude becomes larger.  相似文献   

12.
Bifurcation behavior of nonlinear dust ion acoustic travelling waves in a magnetized quantum dusty plasma has been studied. Applying the reductive perturbation technique (RPT), we have derived a Kadomtsev-Petviashili (KP) equation for dust ion acoustic waves (DIAWs) in a magnetized quantum dusty plasma. By using the bifurcation theory of planar dynamical systems to the KP equation, we have proved that our model has solitary wave solutions and periodic travelling wave solutions. We have derived two exact explicit solutions of the above travelling waves depending on different parameters.  相似文献   

13.
In order to understand the observed oscillations in sunspots we present a new method for calculating the resonant response of a realistic semi-empirical model of the sunspot umbral atmosphere and subphotosphere to magneto-atmospheric waves in a vertical magnetic field. The depth dependence of both the adiabatic coefficient and the turbulent pressure is taken into account. This requires an extension of the wave equations by Ferraro & Plumpton (1958). We compare the coefficients of wave transmission, re flection, and conversion between fast mode and slow mode waves for different assumptions, compare the results with those from earlier modelling efforts, and point out possible sources of mistakes. The depth dependence of the adiabatic coefficient strongly influences the resulting spectrum of resonance frequencies. The condition of a conservation of wave flux is violated if the depth dependence of the turbulent pressure is not properly considered.  相似文献   

14.
The nonlinear properties of solitary waves structure in a hot magnetized dusty plasma consisting of a negatively charged, extremely massive hot dust fluid, positively charged hot ion fluid and vortex-like distributed electrons, are reported. A modified Korteweg de Vries equation (mKdV) which admits a solitary wave solution for small but finite amplitude is derived using a reductive perturbation theory. The modifications in the amplitude and width of the solitary wave structures due to the inclusion of an external magnetic field and dust and ions temperature are investigated. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
The concept of ion nonthermality is generalized within the theoretical framework of the Tsallis thermostatistics. In this connection, a physically meaningful ion distribution function is outlined. As the nonextensive character of the nonthermal ions increases, the distribution shoulders may become less or more prominent and high energy states are less or more probable than in the extensive nonthermal case. Variable charge dust acoustic waves are then addressed. We first consider the case of adiabatic dust charge variation and discuss later the case when the nonadiabatic charge variations are self-consistently included. Our results may complement and provide new insight into previously published work in nonthermal space plasmas.  相似文献   

16.
Subsequent to Paper I, the evolution and fragmentation of a rotating magnetized cloud are studied with use of three-dimensional magnetohydrodynamic nested grid simulations. After the isothermal runaway collapse, an adiabatic gas forms a protostellar first core at the centre of the cloud. When the isothermal gas is stable for fragmentation in a contracting disc, the adiabatic core often breaks into several fragments. Conditions for fragmentation and binary formation are studied. All the cores which show fragmentation are geometrically thin, as the diameter-to-thickness ratio is larger than 3. Two patterns of fragmentation are found. (1) When a thin disc is supported by centrifugal force, the disc fragments into a ring configuration (ring fragmentation). This is realized in a rapidly rotating adiabatic core as  Ω > 0.2τ−1ff  , where Ω and  τff  represent the angular rotation speed and the free-fall time of the core, respectively. (2) On the other hand, the disc is deformed to an elongated bar in the isothermal stage for a strongly magnetized or rapidly rotating cloud. The bar breaks into 2–4 fragments (bar fragmentation). Even if a disc is thin, the disc dominated by the magnetic force or thermal pressure is stable and forms a single compact body. In either ring or bar fragmentation mode, the fragments contract and a pair of outflows is ejected from the vicinities of the compact cores. The orbital angular momentum is larger than the spin angular momentum in the ring fragmentation. On the other hand, fragments often quickly merge in the bar fragmentation, since the orbital angular momentum is smaller than the spin angular momentum in this case. Comparison with observations is also shown.  相似文献   

17.
This study investigates the stability of a class of radiating viscous self-gravitating stars with axial symmetry having anisotropic pressure. We use perturbation technique to establish the perturbed form of the Einstein field equations and dynamical equations. The instability range in the Newtonian and post-Newtonian eras has been analyzed by constructing the collapse equation. It is found that the adiabatic index has a key role in the discussion of instability ranges which depends upon the physical parameters, i.e., energy density, anisotropic pressure and shear viscosity of the fluid and heat flux. We conclude that the shear viscosity decreases the instability range and makes the system more stable.  相似文献   

18.
The propagation of the nonlinear electrostatic ion acoustic solitary wave structures in two component, non relativistic, homogenous, magneto rotating plasma are studied. The inertialess electrons are assumed to follow nonextensive q velocity distribution. Small amplitude reductive perturbation technique is applied to derive Korteweg de Vries (KdV) equation and its analytical solution is presented. The effects of variation of different plasma parameters on propagation characteristics of solitary wave structure in the presence of the Coriolis force are discussed. It is observed that nonextensive parameter q modifies the structure of solitary wave structures in rotating plasmas.  相似文献   

19.
A model is proposed of a collapsing radiating star consisting of an isotropic fluid with shear viscosity undergoing radial heat flow with outgoing radiation. The pressure of the star, at the beginning of the collapse, is isotropic but owing to the presence of the shear viscosity the pressure becomes more and more anisotropic. The behaviour of the density, pressure, mass, luminosity and the effective adiabatic index is analysed. Our work is compared to the case of a collapsing shearing fluid of a previous model, for a star with 6 M.  相似文献   

20.
The propagation of dust ion acoustic waves is studied in plasmas composed of superthermal distributed electrons and stationary dust particles. The nonlinear Schrödinger equation is derived using the reductive perturbation technique and the modulational instability of dust ion acoustic waves is analyzed. Parametric investigations indicate that the presence of superthermal distributed electrons significantly modify the modulational instability and its growth rate. The effect of particle relative density on the wave characters is also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号