首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bianchi Type III massive string cosmological model for perfect fluid distribution in the presence of magnetic field, is investigated. It is assumed that the universe is filled with barotropic perfect fluid. We have attempted to investigate Bianchi Type III string cosmological model incorporating perfect fluid with magnetic field. To get the deterministic model in terms of cosmic time, we have assumed that the expansion (θ) in the model is proportional to the shear. We have also assumed that F 12 is the only non-vanishing component of electromagnetic field tensor F ij . The behaviour of the model in presence and absence of magnetic field together with singularities in these models are also discussed.  相似文献   

2.
An LRS Bianchi Type V bulk viscous fluid dust distribution string cosmological model in General Relativity is investigated. It has been shown that if coefficient of bulk viscosity (ζ) is proportional to the expansion (θ) in the model then string cosmological model for Bianchi Type V space-time is possible. In absence of bulk viscosity(ζ) i.e. when ζ → 0 then there is no string cosmological model for Bianchi Type V space-time. The physical and geometrical aspects are also discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
In this study, we build up a general formalism for tilted N-component fluid form to investigate the isotropization features of the Bianchi-type models excluding Bianchi-IX. We applied this formalism to Bianchi type I and V models analytically and numerically using the metric approach of Einstein field equations. It is found that only the stiff fluid for Bianchi I model does not isotropize, in the absence of cosmological constant. Other Bianchi type I and V models become isotropic regardless of the type of the fluid or how much component it has. The result does not change with the existence of a cosmological constant.  相似文献   

4.
We study Bianchi type I cosmological model in the presence of magnetized anisotropic dark energy. The energy-momentum tensor consists of anisotropic fluid with anisotropic EoS p=ω ρ and a uniform magnetic field of energy density ρ B . We obtain exact solutions to the field equations using the condition that expansion is proportional to the shear scalar. The physical behavior of the model is discussed with and without magnetic field. We conclude that universe model as well as anisotropic fluid do not approach isotropy through the evolution of the universe.  相似文献   

5.
We present exact solutions of a Bianchi type VI0 viscous fluid cosmological model. It is a generalization of the model proposed by Banerjee and Santos (1983) for Bianchi type I.  相似文献   

6.
The paper consists of some exact solutions for a homogeneous Bianchi type VI0 universe. The material distribution is taken to be a magnetized bulk viscous fluid in presence of massive cosmological string. We assume that current is flowing along x-direction. Therefore, the magnetic field is in yz-plane. For deterministic model of the universe, we assume that shear (σ) is proportional to the expansion (θ) and ζ θ=constant=ξ where ζ the coefficient of bulk viscosity and θ the expansion in the model. The physical and kinematical parameters of the models thus formed are discussed.  相似文献   

7.
Spatially-homogeneous and anisotropic Bianchi type-III, V, VI0 cosmological models in Rosen's (1973) bimetric theory of gravitation are considered. It is shown that, in each case, when the soure of the gravitation field is a perfect fluid distribution Bianchi type cosmological models do not exist. Hence vacuum models are presented and studied. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
In this paper, we have investigated Bianchi type VI h , II and III cosmological model with wet dark fluid in scale invariant theory of gravity, where the matter field is in the form of perfect fluid and with a time dependent gauge function (Dirac gauge). A non-singular model for the universe filled with disorder radiation is constructed and some physical behaviors of the model are studied for the feasible VI h (h=1) space-time.  相似文献   

9.
Bianchi Type-V bulk viscous fluid string dust cosmological model in General Relativity is investigated. It has been shown that if coefficient of bulk viscosity (ζ) is inversely proportional to the expansion (θ) in the model then string cosmological model for Bianchi Type-V space-time is possible. In absence of bulk viscosity (ζ), i.e. when ζ → 0, then there is no string cosmological model for Bianchi Type-V space-time. The physical and geometrical aspects of the model are also discussed.  相似文献   

10.
In this paper, we have investigated Bianchi type VI h cosmological model filled with perfect fluid in the framework of f(R,T) gravity, where R is the Ricci scalar and T is the trace of the energy-momentum tensor proposed by Harko et al. (Phys. Rev. D 84:024020, 2011). We have obtained the cosmological models by solving the field equations. Some physical behaviors of the model are also studied.  相似文献   

11.
In this paper, we have investigated a tilted Bianchi Type-III stiff fluid cosmological model in general relativity. To get a determinate solution, we have assumed a condition A=(BC) n between metric potentials. The various physical and geometrical aspects of the model are discussed.  相似文献   

12.
We discuss spatially homogeneous and anisotropic Bianchi type VI 0 cosmological model with anisotropic fluid and magnetic field. The energy-momentum tensor consists of anisotropic fluid with anisotropic EoS and a uniform magnetic field of energy density ρ B . Exact solution of the field equations is obtained by using the condition that expansion is proportional to the shear scalar. We focus on the future evolution of the model both in the presence and absence of magnetic field. In particular, we address the question whether these models approach to isotropy.  相似文献   

13.
We have investigated magnetized stiff fluid Bianchi Type I anisotropic tilted cosmological model for perfect fluid distribution in General Relativity. It has been assumed that the expansion in the model is only in two directions i.e. one of the Hubble parameter (H1 = A4/A); is zero. It has been shown that tilted nature of the model is preserved due to magnetic field. The various physical and geometrical aspects of the model is also discussed.  相似文献   

14.
Some Bianchi type IX viscous fluid cosmological models are investigated. To get a solution, a supplementary condition between metric potentials is used. The viscosity coefficient of bulk viscous fluid is assumed to be a power function of mass density, whereas the coefficient of shear viscosity is considered as proportional to scale of expansion in the model. The cosmological constant Λ is found to be positive and is a decreasing function of time, which is supported by results from recent supernovae observations. Some physical and geometric properties of the models are also discussed.  相似文献   

15.
The present study deals with spatially homogeneous and anisotropic axially symmetric Bianchi type-I cosmological model with time variable cosmological term Λ in the presence of bulk viscous fluid. The Einstein’s field equations are solved explicitly by time varying deceleration parameter q. Consequences of the four cases of phenomenological decay of Λ have been discussed which are consistent with observations. Physical and kinematical parameters of the models are discussed.  相似文献   

16.
Some Bianchi type I viscous fluid cosmological models with a variable cosmological constant are investigated in which the expansion is considered only in two direction i.e. one of the Hubble parameter is zero. The viscosity coefficient of bulk viscous fluid is assumed to be a power function of mass density whereas the coefficient of shear viscosity is considered as constant in first case whereas in other case it is taken as proportional to scale of expansion in the model. The cosmological constant Λ is found to be positive and is a decreasing function of time which is supported by results from recent supernovae Ia observations. Some physical and geometric properties of the models are also discussed.  相似文献   

17.
We study Bianchi type-III cosmological model filled with perfect fluid in the presence of cosmological constant Λ(t). The Hubble law utilised yields a constant value of deceleration parameter. Physical and Kinematical properties of the model have also studied.   相似文献   

18.
This paper presents anisotropic, homogeneous two-fluid cosmological models in a Bianchi type I space–time with a variable gravitational constant G and cosmological constant Λ. In the two-fluid model, one fluid represents the matter content of the universe and another fluid is chosen to model the CMB radiation. We find a variety of solutions in which the cosmological parameter varies inversely with time t. We also discuss in detail the behavior of associated fluid parameters and kinematical parameters. This paper pictures cosmic history when the radiation and matter content of the universe are in an interactive phase. Here, Ω is closing to 1 throughout the cosmic evolution.   相似文献   

19.
Four- and five-dimensional Bianchi type-III cosmological model in Rosen (1980) bimetric theory of gravitation is considered. Restricting to a particular type of background metric, it is observed that the Bianchi type-III cosmological model does not exist in case of both meson field and mesonic perfect fluid. Hence only vacuum model can be obtained.  相似文献   

20.
The present study deals with spatially homogeneous and totally anisotropic locally rotationally symmetric (LRS) Bianchi type I cosmological model with variable G and Λ in presence of imperfect fluid. To get the deterministic model of Universe, we assume that the expansion (θ) in the model is proportional to shear (σ). This condition leads to A=ℓB n , where A, B are metric potential. The cosmological constant Λ is found to be decreasing function of time and it approaches a small positive value at late time which is supported by recent Supernovae Ia (SN Ia) observations. Also it is evident that the distance modulus curve of derived model matches with observations perfectly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号