共查询到17条相似文献,搜索用时 93 毫秒
1.
一个热动力海冰模式的改进与实验 总被引:2,自引:0,他引:2
影响海冰变化的物理因素中热力和动力部分是同等重要的,但多数热动力海冰模式的热力部分考虑得较为简单。针对Hibler热动力海冰模式的不足,以1个3层热力模式为基础改进了其热力部分。比较了原模式中的零层热力模式和用于改进的3层热力模式;并应用改进前后的两种热动力模式对1983年的北极海冰进行了模拟。模拟结果表明,海冰厚度比原模式厚,季节变化减弱,海冰密集度与观测资料更为符合。 相似文献
2.
3.
海冰模式CICE4.0与LASG/IAP气候系统模式的耦合试验 总被引:1,自引:2,他引:1
利用美国Los Alamos国家实验室发展的最新海冰模式(CICE4.0)替代了LASG/IAP气候系统模式(FGOALS_g1.1)中的海冰模式(CSIM4), 形成新的耦合模式。在此基础上, 利用新的耦合模式对20世纪中后期的全球气候进行了模拟, 来检验CICE4.0对耦合模式中海冰和海洋模拟结果的改进。结果表明CICE4.0对于FGOALS_g1.1的极地气候模拟有一定改进作用, 主要表现在:(1) 南北极海冰边缘碎冰区显著减少; (2) 南大洋海表温度和海冰的模拟明显改善, 分布特征与观测非常吻合。但是新耦合模式也存在如下不足: (1) 北大西洋海冰相对偏多, 北大西洋经圈翻转环流大大减弱, 这主要是由于北大西洋海表面温度的冷误差造成的; (2) 南北极大气环流场的模拟无明显改善。此外, 本文还比较了采用不同短波辐射方案对于耦合模拟结果的影响, 结果表明, 相对于CCSM3短波辐射方案, Delta-Eddington方案模拟的海表面温度偏冷, 海冰厚度偏厚, 北大西洋经圈翻转环流略有偏弱。 相似文献
4.
5.
利用PW1979海冰热力模式,考虑渤海的地理特点和气候特征,假设渤海为薄层海洋,引入二分法求解海冰表面温度。用该地区气候平均的云量、湿度、海平面气压和风速以及附近4站的月平均气温资料作为强迫场,模拟了渤海海冰的气候变化。模拟结果与逐年的海冰级数资料具有一致的变率,表明气温对海冰年际变化有重要影响。 相似文献
6.
国家气候中心气候系统模式BCC_CSM2.0最新耦合了美国Los Alamos国家实验室发展的海冰模式CICE5.0,为试验模式中与反照率相关参数的敏感性及其对模拟结果的影响,提高模式对北极海冰的模拟能力,选取海冰模式中3个主要参数进行了敏感性试验。利用以BCC_CSM2.0耦合框架为基础建立的海冰-海洋耦合模式,选取CORE资料为大气强迫场开展试验,试验的3个参数分别为冰/雪表面反射率、雪粒半径和雪粒半径参考温度。结果表明,参数取值的不同对北极海冰的模拟有显著的影响,优化后的取值组合极大提高了模式的模拟能力,主要表现在:(1)改善了对北极冬季海冰厚度的模拟,海冰厚度增大,与观测资料更为吻合;(2)显著提高了对北极夏季海冰密集度的模拟能力,从而模拟的北极海冰范围年际循环与观测更为一致。参数取值的优化改进了模式对海冰反照率的模拟,进而影响了冰面短波辐射的吸收和海冰表层的融化,最终提高了模式对海冰密集度和厚度的模拟效果。 相似文献
7.
2005年渤海海冰冰厚热力增长特征实验的个例研究 总被引:2,自引:0,他引:2
认识渤海海冰冰厚热力增长特征,是开发利用海冰资源的理论基础.本文通过2005年1月12日-27日在辽东湾鲅鱼圈和渤海湾黄骅海冰现场实验个例研究得出:鲅鱼圈的累积冰厚平均日增量1.33 em/d,平均冰厚日变化为3 cm;黄骅的累计冰厚平均日增量为0.54 cm/d,平均冰厚变化22.3 cm;冰厚从0 cm增长到10 cm所需的时间为鲅鱼圈5 d左右,黄骅10 d左右;冰厚日变化与日平均气温和日平均冰温与之间相关性显著,但冰厚对气温和冰温降低的反应有一定的滞后性;当环境温度持续下降时,累积冰厚与累积气温之间有显著的正相关,当环境温度上升时,累积冰厚与累积气温之间相关性逆转. 相似文献
8.
9.
BCC_CSM对全球海冰面积和厚度模拟及其误差成因分析 总被引:3,自引:0,他引:3
本文评估了国家气候中心发展的BCC_CSM模式对全球海冰的模拟能力,结果表明:该气候系统模式能够较好地模拟出全球海冰面积和厚度的时空分布特征,且南半球海冰模拟能力优于北半球。通过对比分析发现:年平均海冰面积模拟误差最大的区域位于鄂霍次克海、白令海和巴伦支海等海区,年平均海冰厚度分布与观测相近,在北半球冬季模拟的厚度偏薄;从海冰季节变化来看,模拟的夏季海冰面积偏低,冬季偏高;从海冰年际变化来看,近60年南北半球海冰面积模拟都比观测偏多,但南半球偏多幅度较小,然而北半球海冰年际变化趋势的模拟却好于南半球。另外,通过对海冰模拟误差成因分析,发现模拟的净辐射能量收入偏低使得海温异常偏冷,是导致北半球冬季海冰模拟偏多的主要原因。 相似文献
10.
[研究目的]海冰模式CICE (Los Alamos sea ice model)作为当前国际上的主流海冰模式之一,已被耦合进了大部分地球系统模式,对该模式模拟能力的评估工作是发展地球系统模式的重要参考依据.[创新点]通过观测数据与不同版本CICE模式对北极海冰数值模拟结果进行对比分析,研究了最新版本CICE6.0模拟... 相似文献
11.
This paper evaluates the simulation of Arctic sea ice states using an ocean-ice coupled model that employs LASG/IAP(the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics/the Institute of Atmospheric Physics) Climate Ocean Model(LICOM) and the sea-ice model from the Bergen Climate Model(BCM).It is shown that the coupled model can reasonably reproduce the major characteristics of the mean state,annual cycle,and interannual variability of the Arctic sea ice concentration.The coupled model also shows biases that were generally presented in other models,such as the underestimation of summer sea ice concentration and thickness as well as the unsatisfactory sea ice velocity.Sensitivity experiments indicate that the insufficient performance of the ocean model at high latitudes may be the main reason for the biases in the coupled model.The smoother and the fake island,which had to be used due to the model’s grid in the North Pole region,likely caused the ocean model’s weak performance.Sea ice model thermodynamics are also responsible for the sea ice simulation biases.Therefore,both the thermodynamic module of the sea ice component and the model grid of the ocean component need to be further improved. 相似文献
12.
Modeling of Arctic Sea Ice Variability During 1948–2009: Validation of Two Versions of the Los Alamos Sea Ice Model(CICE) 下载免费PDF全文
The Los Alamos sea ice model(CICE) is used to simulate the Arctic sea ice variability from 1948 to 2009. Two versions of CICE are validated through comparison with Hadley Centre Global Sea Ice and Sea Surface Temperature(Had ISST) observations. Version 5.0 of CICE with elastic-viscous-plastic(EVP) dynamics simulates a September Arctic sea ice concentration(SASIC) trend of –0.619 × 1012 m2 per decade from 1969 to 2009, which is very close to the observed trend(-0.585 × 1012 m2 per decade). Version 4.0 of CICE with EVP dynamics underestimates the SASIC trend(-0.470 × 1012 m2 per decade). Version 5.0 has a higher correlation(0.742) with observation than version 4.0(0.653). Both versions of CICE simulate the seasonal cycle of the Arctic sea ice, but version 5.0 outperforms version 4.0 in both phase and amplitude. The timing of the minimum and maximum sea ice coverage occurs a little earlier(phase advancing) in both versions. Simulations also show that the September Arctic sea ice volume(SASIV) has a faster decreasing trend than SASIC. 相似文献
13.
一个海-冰-气耦合模式中格陵兰海海冰年际变异及其成因的个例分 总被引:3,自引:1,他引:3
利用一个全球海-冰-气耦合模式模拟结果, 选取冬季年际变率最大的海冰区--格陵兰海海冰区中的一个4年海冰剧烈变化过程展开分析, 试图探讨此个例过程中海冰剧烈变化的原因.结果表明, 在此个例中, 该区域海冰年际变异主要是由大气环流异常驱动的, 海表面温度和海冰密集度变化主要是对大气环流变化的响应.海表面温度变化决定着海冰范围及海冰密集度的变化, 但海冰变化时通过相变潜热的释放或吸收反过来对海表面温度变化有一定影响. 相似文献
14.
15.
WANG Xuezhong SUN Zhaobo HU Banghui TAN Yanke ZENG Gang 《Acta Meteorologica Sinica》2012,26(2):189-204
Based on the simulated ice thickness data from 1949 to 1999, monthly mean temperature data from 160stations, and monthly mean 1°×1° precipitation data reconstructed from 749 stations in China from 1951 to2000, the relationship between the Arctic sea ice thickness distribution and the climate of China is analyzedby using the singular value decomposition method. Climate patterns of temperature and precipitation areobtained through the rotated empirical orthogonal function analysis. The results are as follows. (1) Sea icein Arctic Ocean has a decreasing trend as a whole, and varies with two major periods of 12-14 and 16-20yr, respectively. (2) When sea ice is thicker in central Arctic Ocean and Beaufort-Chukchi Seas, thinner inBarents-Kara Seas and Baffin Bay-Labrador Sea, precipitation is less in southern China, Tibetan Plateau,and the north part of northeastern China than normal, and vice versa. (3) When sea ice is thinner in thewhole Arctic seas, precipitation is less over the middle and lower reaches of Yellow River and north part ofnortheastern China, more in Tibetan Plateau and south part of northeastern China than normal, and thereverse is also true. (4) When sea ice is thinner in central Arctic Ocean, East Siberian Sea, Beaufort-ChukchiSeas, and Greenland Sea; and thicker in Baffin Bay-Labrador Sea, air temperature is higher in northeasternChina, southern Tibetan Plateau, and Hainan Island than normal. (5) When sea ice is thicker in EastSiberian Sea 5 months earlier, thinner in Baffin Bay-Labrador Sea 7-15 months earlier, air temperature islower over the north of Tibetan Plateau and higher in the north part of northwestern China than normal,and a reverse correlation also exists. 相似文献
16.
17.
The simulated Arctic sea ice drift and its relationship with the near-surface wind and surface ocean current during 1979-2014 in nine models from China that participated in the sixth phase of the Coupled Model Intercomparison Project(CMIP6)are examined by comparison with observational and reanalysis datasets.Most of the models reasonably represent the Beaufort Gyre(BG)and Transpolar Drift Stream(TDS)in the spatial patterns of their long-term mean sea ice drift,while the detailed location,extent,and strength of the BG and TDS vary among the models.About two-thirds of the models agree with the observation/reanalysis in the sense that the sea ice drift pattern is consistent with the near-surface wind pattern.About the same proportion of models shows that the sea ice drift pattern is consistent with the surface ocean current pattern.In the observation/reanalysis,however,the sea ice drift pattern does not match well with the surface ocean current pattern.All nine models missed the observational widespread sea ice drift speed acceleration across the Arctic.For the Arctic basin-wide spatial average,five of the nine models overestimate the Arctic long-term(1979-2014)mean sea ice drift speed in all months.Only FGOALS-g3 captures a significant sea ice drift speed increase from 1979 to 2014 both in spring and autumn.The increases are weaker than those in the observation.This evaluation helps assess the performance of the Arctic sea ice drift simulations in these CMIP6 models from China. 相似文献