首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 15 毫秒
1.
《Journal of Geodynamics》2008,45(3-5):149-159
Locations of the Eger Rift, Cheb Basin, Quaternary volcanoes, crustal earthquake swarms and exhalation centers of CO2 and 3He of mantle origin correlate with the tectonic fabric of the mantle lithosphere modelled from seismic anisotropy. We suggest that positions of the seismic and volcanic phenomena, as well as of the Cenozoic sedimentary basins, correlate with a “triple junction” of three mantle lithospheres distinguished by different orientations of their tectonic fabric consistent within each unit. The three mantle domains most probably belong to the originally separated microcontinents – the Saxothuringian, Teplá-Barrandian and Moldanubian – assembled during the Variscan orogeny. Cenozoic extension reactivated the junction and locally thinned the crust and mantle lithosphere. The rigid part of the crust, characterized by the presence of earthquake foci, decoupled near the junction from the mantle probably during the Variscan. The boundaries (transitions) of three mantle domains provided open pathways for Quaternary volcanism and the ascent of 3He- and CO2-rich fluids released from the asthenosphere. The deepest earthquakes, interpreted as an upper limit of the brittle–ductile transition in the crust, are shallower above the junction of the mantle blocks (at about 12 km) than above the more stable Saxothuringian mantle lithosphere (at about 20 km), probably due to a higher heat flow and presence of fluids.  相似文献   

2.
The Variscan Bohemian Massif is disrupted by the NW-SE striking Elbe Fault System in its northern part. The increased tectonic activity associated with this structure is manifested by increased seismicity in the eastern part of the Sudetes. With the use of a temporary local seismic network, the total number of micro-earthquakes located in this region increased to 153 for the period 1996–2003. The local magnitudes vary between −0.6 and 1.8 and the seismic energy was often released in swarm-like sequences. Five seismic events with well-defined P-onset polarities at five or six stations enabled the estimation of focal mechanisms. The present-day activity of the WNW-ESE to NNW-SSE fault systems is discussed on the basis of source mechanisms, the alignment of the epicentres, as well as morphological and geological evidence. The majority of the recent seismic activity is concentrated in a 40–60 km wide zone of a generally NW-SE trend. This structure represents a regional zone of weakness within the SE termination of the Elbe Fault System, defined by a mesh of interconnected faults, of which many are deep-seated and highly permeable and some are associated with light to moderate historical earthquakes. Both in the areas due south and due north of this zone the present-day seismic activity is very low. The increased tectonic activity can be interpreted as a result of the abundance of suitably oriented faults and their interconnection into major fault systems, the proximity of the Outer Carpathian indentor and the Cainozoic volcanic and associated recent post-volcanic activity. The similar character of swarms and their coincidence with the post-volcanic activity in the southeastern part of the Elbe Fault System and in some focal zones of the western Bohemian seismically active area suggests that overpressurized fluids may represent a potential swarm-triggering mechanism.  相似文献   

3.
Our objective is to look for deep paths of Cenozoic volcanism and migration routes of active mantle volatiles through the lithosphere of the western Bohemian Massif. We show that the rejuvenated junction of three mantle domains, delimited by different orientation of seismic anisotropy and belonging to originally separated microplates — the Saxothuringian (ST), Moldanubian (MD) and Teplá-Barrandian (TB) — can provide the easiest upward routes of fluids through the deep lithosphere. Geographic distribution of mantle-fluid escapes at the surface suggests fluid migration through the ductile lower crust and through partly open faults in the rigid upper crust, which is locally detached and shifted from its lower part and from the mantle lithosphere. Present-day escapes of mantle-derived helium and CO2 concentrate mainly in two tectonically different crust edifices — in the Cheb Basin (CHB) and in an allochtonous block called the Mariánské Lázně Complex (MLC). Crystalline basement of the CHB developed above the Variscan ‘triple junction’ of the mantle lithosphere domains. The basement was extended during the Cenozoic and dissected by systems of faults into small partly sunken blocks. Thanks to buoyancy the mantle fluids migrate upwards along the lithosphere junction into the faulted basement of the CHB. The highest CO2 flow and the highest 3He/4He ratios are observed at intersections of major normal faults and along the southern boundary of the Smrčiny (Fichtelgebirge) granite Pluton. The fluid escapes are separated from the earthquake swarm epicentres. Routes of the fluids to the MLC are longer and more complicated. Surface escapes tap the mantle fluids mainly from the Mariánské Lázně Fault (MLF) and from the tectonic boundaries along which the MLC block of the TB lower crust was thrust over the ST complexes. Hypocentres of earthquake swarms of the two major focal areas at Novy Kostel and Lazy, located mainly at depths of 6–13 km, reside either in granite or in underlying gneiss, while the escapes of mantle fluids follow major faults or boundaries of crystalline units outside the Smrčiny and Karlovy Vary granite Plutons. We suggest that primarily those parts of faults in the upper crust, which is strengthened by granite magmatism and rigid enough to selectively accumulate stresses, are seismoactive. On the other hand, other parts of the faults tapping ascending mantle volatiles are ‘lubricated’ by the fluids and secondary mineralogical changes, and thus they cannot accumulate sufficient stresses to be released by earthquakes. A comparison of the most probable paths of the mantle fluids with the space-time distribution of the Novy Kostel hypocentres does not seem to support the model of the earthquake swarms triggered by pressurized fluids of mantle origin.  相似文献   

4.
We are proposing a hypothesis that earthquake swarms in the West Bohemia/Vogtland seismoactive region are generated by magmatic activity currently transported to the upper crustal layers. We assume that the injection of magma and/or related fluids and gases causes hydraulic fracturing which is manifested as an earthquake swarm at the surface. Our statements are supported by three spheres of evidence coming from the western part of the Bohemian Massif: characteristic manifestations of recent geodynamic activity, the information from the neighbouring KTB deep drilling project and from the 9HR seismic reflection profile, and the detailed analysis of local seismological data. (1) Recent manifestations of geodynamic activity include Quaternary volcanism, rich CO 2 emissions, anomalies of mantle-derived 3 He, mineral springs, moffets, etc. (2) The fluid injection experiment in the neighbouring KTB deep borehole at a depth of 9 km induced hundreds of micro-earthquakes. This indicates that the Earth's crust is near frictional failure in the western part of the Bohemian Massif and an addition of a small amount of energy to the tectonic stress is enough to induce an earthquake. Some pronounced reflections in the closely passing 9HR seismic reflection profile are interpreted as being caused by recent magmatic sills in the crust. (3) The local broadband seismological network WEBNET provides high quality data that enable precise localization of seismic events. The events of the January 1997 earthquake swarm are confined to an extremely narrow volume at depths of about 9 km. Their seismograms display pronounced reflections of P- and S-waves in the upper crust. The analysis of the process of faulting has disclosed a considerable variability of the source mechanism during the swarm. We conclude that the mechanism of intraplate earthquake swarms generated by magma intrusions is similar to that of induced seismicity. As the recent tectonic processes and manifestations of geodynamic activity are similar in European areas with repeated earthquake swarm occurrence (Bohemian Massif, French Massif Central, Rhine Graben), we assume that magma intrusions and related fluid and gas release at depths of about 10 km are the universal cause of intraplate earthquake swarm generation  相似文献   

5.
6.
Summary Statistical evaluation of palaeomagnetic data from the Early Carboniferous to the Middle Triassic rocks in Europe, north of the Alpine tectonic belt, confirmed previously defined palaeotectonic stability of the whole European Plate since the Early Permian. The Trans-European Suture Zone represents a plate boundary, SW of which the Early Variscan and pre-Variscan formations show different degrees of palaeotectonic rotations, predominantly rotations of clockwise sense. A theoretical model simulating the translation and rotation movements was proposed showing that the West European Variscides underwent Hercynian palaeotectonic rotations comparable with the rotations derived for the Alpine tectonic belt.  相似文献   

7.
tWe analyse continuous measurements of groundwater level in two deep wells VS-3 and V-28 at the experimental hydro-meteorological station situated on the NE margin of the Bohemian Massif, central Europe, characterized by the weak intraplate seismic activity. The aim of our study is to examine the relationships between changes in the groundwater level and earthquake occurrence. Based on the tidal and barometric response of the water level, we estimated selected elastic parameters of the observed aquifers: the shear modulus G, the Skempton ratio B, the drained matrix compressibility β and the undrained compressibility βu. Using these parameters and assuming the homogeneous poroelastic material, we derived the sensitivity of the wells to the crustal volume strain. During the observation period from November 1998 to December 2005 we detected in the VS-3 well two pre-seismic steps, related to August 10, 2005 (M = 2.4) and October 25, 2005 (M = 3.3) earthquakes. Amplitudes of the recorded precursory changes (+6 cm and +15 cm) are several times higher than the values predicted from the theoretical precursory crustal strain and the strain sensitivity of the well. Therefore, we presume that the observed pre-seismic water level steps can be attributed to heterogeneity of poroelastic material. We consequently propose the hypothesis of the origin of precursory events based on the presumption of a sensitive site, at which the well is situated.  相似文献   

8.
We summarise the results of seismological studies related to triggering mechanisms, driving forces and source processes of the West Bohemia/Vogtland earthquake swarms with the aim to disclose the role of crustal fluids in the preparation, triggering and governing of the swarms. We present basic characteristics distinguishing earthquake swarms from tectonic mainshock-aftershock sequences and introduce existing earthquakes swarm models. From the statistical characteristics and time-space distribution of the foci we infer that self-organization is a peculiarity of West Bohemia/Vogtland swarms. We discuss possible causes of the foci migration in these swarms from the viewpoint of co-seismic and/or post-seismic stress changes and diffusion of the pressurized fluids, and we summarize hitherto published models of triggering the 2000-swarm. Attention is paid to the source mechanisms, particularly to their non-shear components. We consider possible causes of different source mechanisms of the 1997-and 2000-swarms and infer that pure shear processes controlled solely by the regional tectonic stress prevail in them, and that additional tensile forces may appear only at unfavourably oriented faults. On data from the fluid injection experiment at the HDR site Soultz (Alsace), we also show that earthquakes triggered by fluids can represent purely shear processes. Thus we conclude that increased pore pressure of crustal fluids in the region plays a key role in bringing the faults from the subcritical to critical state. The swarm activities are mainly driven by stress changes due to co-seismic and post-seismic slips, which considerably depend on the frictional conditions at the fault; crustal fluids keep the fault in a critical state. An open question still remains the cause of the repeatedly observed almost simultaneous occurrence of seismic activity in different focal zones in a wider area of West Bohemia/Vogtland. The analysis of the space-time relations of seismicity in the area between 1991 and 2007 revealed that during a significant part of this time span the seismicity was switching among distant focal zones. This indicates a common triggering force which might be the effect of an increase of crustal-fluid pore-pressure affecting a wider epicentral region.  相似文献   

9.
This study uses Sr isotope composition (87Sr/86Sr) and Sr content of waters of the Oder, one of the largest rivers in central Europe, to fingerprint natural and anthropogenic contributions to its Sr budget and to evaluate water mixing processes in its hydrological system. It also demonstrates a simple method of quantifying natural and anthropogenic Sr inputs in the watershed. The method has potential for environmental and archaeological research because past Sr geochemistry of river water can easily be reconstructed. For the first time, a catchment‐scale impact of anthropogenic sources on the Sr budget of a middle‐size river is shown in a quantitative way. The water of the Oder is characterized by a relatively uniform Sr isotope composition, from 0.7100 to 0.7108, contrasting with strong variations in Sr concentration, from 0.25 to 1.27 mg/L. There is a general seasonal trend in variability, with waters becoming more radiogenic and dilute with respect to the Sr in the spring time. This Sr systematics differs significantly from the Sr budgets of the majority of the Oder tributaries that exhibit more radiogenic composition and systematically lower Sr concentrations. A mixing scenario in the Oder involves Sr contribution from four principal water sources: (a) shallow ground waters with Sr derived from near‐surface weathering of silicates, (b) moderately radiogenic mine waters from the Upper Silesian Coal Basin, (c) unradiogenic mine waters from the Permian sequence of the copper district, and (d) unradiogenic ground waters from shallow‐seated Palaeogene, Neogene, and Mesozoic aquifers. The Sr budget of the Oder is primarily controlled by inputs of dissolved Sr from anthropogenic sources, which overprint the natural background, controlled by geology. Thus, about 47.5% of Sr originates from agriculture, industrial, and municipal additions, 31.5% from mine water inputs, and only 21% from natural sources, that is, rock weathering and atmospheric precipitation. Reconstruction of the past Sr chemistry of the Oder reveals that its present‐day Sr isotope composition is temporary and significantly different from that of the preindustrial times.  相似文献   

10.
The central route of the South–North Water Transfer Project (CTP) is designed to divert approximately 9.5 billion m3 of water per year from the Han River, a major tributary of the Yangtze River, to the Hai River basin in the north China. The main purpose of this study is to assess the impact of CTP on groundwater table in the Hai River basin. Our study features a large‐scale distributed hydrological model that couples a physically based groundwater module, which is sub‐basin‐based, with a conceptual surface water module, which is grid‐based. There are several grids in each sub‐basin and water exchange among grid that are considered. Our model couples surface water module and groundwater module and calculates human water use at the same time. The simulation results indicate that even with the water supply by CTP, the groundwater table will continue to decline in the Hai River basin. However, the CTP water can evidently reduce the decline rate, helping alleviate groundwater overexploitation in Hai River region. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
U–Pb Sensitive High‐Resolution Ion MicroProbe (SHRIMP) dating of zircon in combination with (U–Th)/He dating of zircon and apatite is applied to constrain the emplacement and exhumation history of the youngest granitic rocks in the Western Carpathians collected in the Central Slovakian Neovolcanic Field. Two samples of diorite from the locality Banky, and granodiorite from Banská Hodru?a yield the U–Pb zircon concordia ages of 15.21 ±0.19 Ma and 12.92 ±0.27 Ma, respectively, recording the time of zircon crystallization and the intrusions’ emplacement. Zircon (U–Th)/He ages of 14.70 ±0.94 (Banky) and 12.65 ±0.61 Ma (Banská Hodru?a), and apatite (U–Th)/He ages of 14.45 ±0.70 Ma (diorite) and 12.26 ±0.77 Ma (granodiorite) are less than 1 Myr younger than the corresponding zircon U–Pb ages. For both diorite and granodiorite rocks their chronological data thus document a simple cooling process from magmatic crystallization/solidification temperatures to near‐surface temperatures in the Middle Miocene, without subsequent reheating. Geospeedometry data suggest for rapid cooling at an average rate of 678 ±158 °C/Myr, and the exhumation rate of 5 mm/year corresponding to active tectonic‐forced exhumation. The quick cooling is interpreted to record the exhumation of the studied granitic rocks complex that closely followed its emplacement, and was likely accompanied by a drop in the paleo‐geothermal gradient due to cessation of volcanic activity in the area.  相似文献   

12.
Phenocrystic chrome spinel crystallized in normal MORB‐type greenstones in the East Takayama area. Associated phenocryst minerals show a crystallization sequence that was olivine first, followed by plagioclase, and finally clinopyroxene. Chrome spinel ranges from 0.54 to 0.77 in Mg/(Mg+Fe2+) and 0.21 to 0.53 in Cr/(Cr+Al); the Fe3+ content varies from 0.07 to 0.22 p.f.u. (O = 4). Significant compositional differences of spinel were observed among the phenocryst mineral assemblages. Chrome spinel in the olivine–spinel assemblage shows a wide range in Cr/(Cr+Al), and is depleted in Fe2+ and Fe3+. Chrome spinel in the olivine–plagioclase–clinopyroxene–spinel assemblage is Fe2+‐ and Fe3+‐rich at relatively high Cr/(Cr+Al) ratios. Basalt with the olivine–plagioclase–spinel assemblage contains both aluminous spinel and Fe2+‐ and Fe3+‐rich spinel. The assumed olivine–spinel equilibrium suggests that chrome spinel in the olivine–spinel assemblage changed in composition from Cr‐ and Fe2+‐rich to Al‐ and Mg‐rich with the progress of fractional crystallization. Chrome spinel in the olivine–plagioclase–clinopyroxene–spinel assemblage, on the other hand, exhibits the reversed variations in Mg/(Mg+Fe2+) and in Cr/(Cr+Al) ratios that decrease and increase with the fractional crystallization, respectively. The entire crystallization course of chrome spinel, projected onto the Mg/(Mg+Fe2+)–Cr/(Cr+Al) diagram, exhibits a U‐turn, and appears to be set on a double‐lane route. The U‐turn point lies in the compositional field of chrome spinel in the olivine–plagioclase–spinel assemblage, and may be explained by plagioclase fractionation that began during the formation of the olivine–plagioclase–spinel assemblage.  相似文献   

13.
Riffle–pool sequences are maintained through the preferential entrainment of sediment grains from pools rather than riffles. This preferential entrainment has been attributed to a reversal in the magnitude of velocity and shear stress under high flows; however the Differential Sediment Entrainment Hypothesis (DSEH) postulates that differential entrainment can instead result from spatial sedimentological contrasts. Here we use a novel suite of in situ grain‐scale field measurements from a riffle–pool sequence to parameterize a physically‐based model of grain entrainment. Field measurements include pivoting angles, lift forces and high resolution digital elevation models (DEMs) acquired using terrestrial laser scanning, from which particle exposure, protrusion and surface roughness were derived. The entrainment model results show that grains in pools have a lower critical entrainment shear stress than grains in either pool exits or riffles. This is because pool grains have looser packing, hence greater exposure and lower pivoting angles. Conversely, riffle and pool exit grains have denser packing, lower exposure and higher pivoting angles. A cohesive matrix further stabilizes pool exit grains. The resulting predictions of critical entrainment shear stress for grains in different subunits are compared with spatial patterns of bed shear stress derived from a two‐dimensional computational fluid dynamics (CFD) model of the reach. The CFD model predicts that, under bankfull conditions, pools experience lower shear stresses than riffles and pool exits. However, the difference in sediment entrainment shear stress is sufficiently large that sediment in pools is still more likely to be entrained than sediment in pool exits or riffles, resulting in differential entrainment under bankfull flows. Significantly, this differential entrainment does not require a reversal in flow velocities or shear stress, suggesting that sedimentological contrasts alone may be sufficient for the maintenance of riffle–pool sequences. This finding has implications for the prediction of sediment transport and the morphological evolution of gravel‐bed rivers. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
Based on the precipitation data obtained through GEWEX Asian Monsoon Experiment–Tibet fieldwork from May to September 1998, this study investigated the features of the summer monsoon precipitation on the northern and southern slopes of the huge Tanggula Mountains in the Qinghai–Xizang (Tibetan) Plateau. The results show that the precipitation on the southern slope is about 50% higher than on the northern slope, whereas the frequency and diurnal pattern of the precipitation are very similar. The mean precipitation intensity on the southern slope is larger than on the northern slope. In most cases, the daily precipitation showed similar variation on both slopes, demonstrating that the precipitation processes might be similar. In the summer monsoon period, the local convective precipitation contributed to the total precipitation on both slopes and such a contribution on the southern slope is larger. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
Extreme heterogeneity of karst systems makes them very challenging to study. Various processes within the system affect its global response, usually measured at karst springs. Research conducted in caves provides a unique opportunity for in situ analysis of separate processes in karst underground. The aim of the present study was to research the water and air dynamics within a deep karst system. Air and water basic physical parameters across the Lukina jama–Trojama cave system (?1,431 m) were continuously monitored during a 1‐year period. Recorded hydrograph of the siphon lake at the bottom of the cave was used to interpret the characteristics of an unexplored phreatic/epiphreatic conduit network. Water origin in the siphon was determined based on temperature and electrical conductivity. Air temperature and humidity monitoring revealed a strong inflow of air of sub‐zero temperature into the upper portion of the cave during winter. Cave passage morphology was interpreted as the main determinant of air dynamics, which caused ice to accumulate extensively in the upper portions of the cave and caused the temperature on the top of the homothermic zone to be significantly below the mean outside temperature. Air dynamics also lowered the temperature of water flowing through the cave vadose zone and feeding the phreatic zone of the massif. The pronounced temperature difference between the phreatic zone and the top of the homothermic zone probably contributed to the thermal gradient observed in the cave, which is steeper than in ice‐free caves in the area. Our results enabled the development of a conceptual model that describes coupling between air and water dynamics in the cave system and its surroundings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号