共查询到5条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Maria Wlodarska-Kowalczuk Michael A. Kendall Jan Marcin Weslawski Michael Klages Thomas Soltwedel 《Deep Sea Research Part I: Oceanographic Research Papers》2004,51(12):1903-1914
High-latitude seas are mostly covered by multi-year ice, which impacts processes of primary production and sedimentation of organic matter. Because of the warming effect of West Spitsbergen Current (WSC), the waters off West Spitsbergen have only winter ice cover. That is uncommon for such a high latitude and enables to separate effects of multiyear-ice cover from the latitudinal patterns. Macrofauna was sampled off Kongsfjord (79°N) along the depth gradient from 300 to 3000 m. The density, biomass and diversity at shallow sites situated in a canyon were very variable. Biomass was negatively correlated with depth (R=-0.86, p<0.001), and ranged from 61 g ww m−2 (212 m) to 1 g ww m−2 (2025 m). The biomasses were much higher than in the multiyear-ice covered High Arctic at similar depths, while resembling those from temperate and tropical localities. Species richness (expressed by number of species per sample and species–area accumulation curves) decreased with depth. There was no clear depth-related pattern in diversity measures: Hurbert rarefaction, Shannon–Wiener or Pielou. The classic increase of species richness and diversity with depth was not observed. Species richness and diversity of deep-sea macrofauna were much lower in our study than in comparable studies of temperate North Atlantic localities. That is related to geographic isolation of Greenland–Icelandic–Norwegian (GIN) seas from the Atlantic pool of species. 相似文献
5.
Evaluating the relationship between spatial heterogeneity and temporal variability of larval fish assemblages in a coastal marine ecosystem (Haizhou Bay,China) 总被引:1,自引:0,他引:1 下载免费PDF全文
Zengguang Li Zhenjiang Ye Rong Wan Yong Chen Yongjun Tian Yiping Ren Hong Liu Haisheng Hu Robert Boenish 《Marine Ecology》2017,38(6)
In coastal marine ecosystems, spatial patterns of larval fish assemblages (LFAs) tend to exhibit geographic stability because of relatively stable spawning site selection and predictable oceanographic phenomena such as eddies. To evaluate the relationship between spatial heterogeneity and temporal variability of LFAs, we conducted a high spatiotemporal resolution ichthyoplankton survey from April to July in 2013 in the shallow waters (<20 m) of Haizhou Bay, China. Our analysis indicated three distinct assemblages, which were stable geographically but exhibited a gradual and directional change of species composition and abundance over our study period. Sea surface temperature was the most important environmental co‐variate for determining temporal variability of LFAs, likely owing to temperature effects of species composition and spawning period selection of adult fish, along with known temperature‐dependent survival rates of larval fish. Study of LFA spatiotemporal dynamics is essential for improved understanding of adult fish spawning behavior, and has potential to inform design and implementation of conservation and management measures (e.g. marine protected areas) in coastal systems. 相似文献