首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, an artificial neural network model was developed to predict storm surges in all Korean coastal regions, with a particular focus on regional extension. The cluster neural network model (CL-NN) assessed each cluster using a cluster analysis methodology. Agglomerative clustering was used to determine the optimal clustering of 21 stations, based on a centroid-linkage method of hierarchical clustering. Finally, CL-NN was used to predict storm surges in cluster regions. In order to validate model results, sea levels predicted by the CL-NN model were compared with results using conventional harmonic analysis and the artificial neural network model in each region (NN). The values predicted by the NN and CL-NN models were closer to observed data than values predicted using harmonic analysis. Data such as root mean square error and correlation coefficient varied only slightly between CL-NN and NN model results. These findings demonstrate that cluster analysis and the CL-NN model can be used to predict regional storm surges and may be used to develop a forecast system.  相似文献   

2.
3.
This paper establishes various advancements for the application of surrogate modeling techniques for storm surge prediction utilizing an existing database of high-fidelity, synthetic storms (tropical cyclones). Kriging, also known as Gaussian process regression, is specifically chosen as the surrogate model in this study. Emphasis is first placed on the storm selection for developing the database of synthetic storms. An adaptive, sequential selection is examined here that iteratively identifies the storm (or multiple storms) that is expected to provide the greatest enhancement of the prediction accuracy when that storm is added into the already available database. Appropriate error statistics are discussed for assessing convergence of this iterative selection, and its performance is compared to the joint probability method with optimal sampling, utilizing the required number of synthetic storms to achieve the same level of accuracy as comparison metric. The impact on risk estimation is also examined. The discussion then moves to adjustments of the surrogate modeling framework to support two implementation issues that might become more relevant due to climate change considerations: future storm intensification and sea level rise (SLR). For storm intensification, the use of the surrogate model for prediction extrapolation is examined. Tuning of the surrogate model characteristics using cross-validation techniques and modification of the tuning to prioritize storms with specific characteristics are proposed, whereas an augmentation of the database with new/additional storms is also considered. With respect to SLR, the recently developed database for the US Army Corps of Engineers’ North Atlantic Comprehensive Coastal Study is exploited to demonstrate how surrogate modeling can support predictions that include SLR considerations.  相似文献   

4.

Surrogate models are becoming increasingly popular for storm surge predictions. Using existing databases of storm simulations, developed typically during regional flood studies, these models provide fast-to-compute, data-driven approximations quantifying the expected storm surge for any new storm (not included in the training database). This paper considers the development of such a surrogate model for Delaware Bay, using a database of 156 simulations driven by synthetic tropical cyclones and offering predictions for a grid that includes close to 300,000 computational nodes within the geographical domain of interest. Kriging (Gaussian Process regression) is adopted as the surrogate modeling technique, and various relevant advancements are established. The appropriate parameterization of the synthetic storm database is examined. For this, instead of the storm features at landfall, the features when the storm is at closest distance to some representative point of the domain of interest are investigated as an alternative parametrization, and are found to produce a better surrogate. For nodes that remained dry for some of the database storms, imputation of the surge using a weighted k nearest neighbor (kNN) interpolation is considered to fill in the missing data. The use of a secondary, classification surrogate model, combining logistic principal component analysis and Kriging, is examined to address instances for which the imputed surge leads to misclassification of the node condition. Finally, concerns related to overfitting for the surrogate model are discussed, stemming from the small size of the available database. These concerns extend to both the calibration of the surrogate model hyper-parameters, as well as to the validation approaches adopted. During this process, the benefits from the use of principal component analysis as a dimensionality reduction technique, and the appropriate transformation and scaling of the surge output are examined in detail.

  相似文献   

5.
公路软基沉降函数干涉神经网络预测模型   总被引:3,自引:0,他引:3  
樊琨  杨涛  李国维 《岩土力学》2004,25(2):301-303
建立了基于函数干涉神经网络的公路软基沉降预测模型。工程实例表明,所建议的模型外延性好,而且,可以由较短预压期内沉降观测资料预测远期沉降发展,与传统沉降预测模型相比具有显著的优越性,工程应用前景广阔。  相似文献   

6.
Natural Hazards - Nowadays, floods have become the widest global environmental and economic hazard in many countries, causing huge loss of lives and materials damages. It is, therefore, necessary...  相似文献   

7.
袁颖  谭丁  于少将  李杨  韩冰 《地质与勘探》2019,55(4):1082-1091
页岩气总有机碳(TOC)含量是评价岩性气藏的关键指标,受复杂地质及岩芯采集等多种因素的影响,常规室内测试分析获得的TOC含量的数据有限且结果有失准确。为合理准确预测页岩气TOC含量,本文首先通过对页岩气储层TOC含量测井资料综合分析选取8条测井曲线,并结合主成分分析法(Principal Component Analysis,PCA)提取四个主成分;其次基于贝叶斯正则化(Bayesian Regularization)改进的BP神经网络方法建立页岩气TOC含量预测的BR-BP模型;最后利用该模型对研究区A区页岩气TOC含量进行预测,并与常规的LM-BP神经网络模型的预测结果进行对比。结果表明:BR-BP模型有较强的非线性拟合能力,能够真实地反映出页岩气TOC含量与各测井参数之间的非线性关系,其模型预测结果与实际值基本吻合,与常规的LM-BP神经网络模型相比,其数据敏感性增强,预测精度有所提高,该研究方法具有一定的理论意义和参考价值,为我国TOC含量预测提供了一种新的技术方法和手段。  相似文献   

8.
近年来,软计算技术被用作替代的统计工具。如人工神经网络(ANN)被用于开发预测模型来估计所需的参数。在本研究中,通过利用冲击钻进过程中的一些钻进参数(气压、推力、钻头直径、穿透率)和所产生的声级,建立了预测岩石性质的神经网络模型。在实验室中所产生的数据,用于开发预测岩石特性(如单轴抗压强度、耐磨性、抗拉强度和施密特回弹数)的神经网络模型,并使用各种预测性能指标对所建模型进行检验,结果表明人工神经网络模型适用于岩石性质的预测。  相似文献   

9.
The aim of this study was to validate an artificial neural network model at Youngin, Janghung, and Boeun, Korea, using the geographic information system (GIS). The factors that influence landslide occurrence, such as the slope, aspect, curvature, and geomorphology of topography, the type, material, drainage, and effective thickness of soil, the type, diameter, age, and density of forest, distance from lineament, and land cover were either calculated or extracted from the spatial database and Landsat TM satellite images. Landslide susceptibility was analyzed using the landslide occurrence factors provided by the artificial neural network model. The landslide susceptibility analysis results were validated and cross-validated using the landslide locations as study areas. For this purpose, weights for each study area were calculated by the artificial neural network model. Among the nine cases, the best accuracy (81.36%) was obtained in the case of the Boeun-based Janghung weight, whereas the Janghung-based Youngin weight showed the worst accuracy (71.72%).  相似文献   

10.
Factures caused by deformation and destruction of bedrocks over coal seams can easily lead to water flooding(inrush)in mines,a threat to safety production.Fractures with high hydraulic conductivity are good watercourses as well as passages for inrush in mines and tunnels.An accurate height prediction of water flowing fractured zones is a key issue in today's mine water prevention and control.The theory of leveraging BP artificial neural network in height prediction of water flowing fractured zones is analysed and applied in Qianjiaying Mine as an example in this paper.Per the comparison with traditional calculation results,the BP artificial neural network better reflects the geological conditions of the research mine areas and produces more objective,accurate and reasonable results,which can be applied to predict the height of water flowing fractured zones.  相似文献   

11.
Factures caused by deformation and destruction of bedrocks over coal seams can easily lead to water flooding (inrush) in mines, a threat to safety production. Fractures with high hydraulic conductivity are good watercourses as well as passages for inrush in mines and tunnels. An accurate height prediction of water flowing fractured zones is a key issue in today's mine water prevention and control. The theory of leveraging BP artificial neural network in height prediction of water flowing fractured zones is analysed and app-lied in Qianjiaying Mine as an example in this paper. Per the comparison with traditional calculation results, the BP artificial neural network better reflects the geological condi-tions of the research mine areas and produces more objective, accurate and reasonable results, which can be applied to predict the height of water flowing fractured zones.  相似文献   

12.
为研究银川平原普遍存在的土壤盐渍化问题,文章对银川平原的土壤盐渍化程度及潜在的发展趋势作出预测。利用Landsat 8 OLI数据与野外实测数据,选取地面高程、地下水位埋深、地下水溶解性总固体、植被指数、盐分指数及干旱指数为预测指标并提取指标值建立数据集,结合野外实测样点数据,建立基于异质支持向量机(Support Vector Machine,SVM)神经网络算法的盐渍化灾害预测模型。结果表明:(1)建立预测模型时,选择Radial Basis Funciton作为模型的核函数,c=100且g=3时预测精度最高可达85%;(2)研究区轻度盐渍化土壤面积约854 km2,中度盐渍化土壤面积约985 km2,重度盐渍化土壤面积约231 km2,主要分布在平罗县西大滩、银川芦花和吴忠苦水河地区;(3)银川平原北部的土壤盐渍化情况较严重且多分布于耕地周围的撂荒地以及地下水位埋藏较浅的地区,耕地资源中土壤盐渍化状况较严重,应注重耕地的合理灌溉与排水,增加土壤的可持续利用性。  相似文献   

13.
现有的堰塞坝稳定性预测模型多为线性模型,无法充分考虑堰塞坝稳定性与其形态特征和水域条件之间的复杂非线性关系.鉴于此,结合反向传播神经网络模型和樽海鞘优化算法,提出了一种新型的堰塞坝稳定性预测模型SSA-Adam-BP.该模型通过网格搜索法选取确定模型结构的最佳超参数组合,进而利用交叉验证和绘制ROC曲线的方式分别对采用...  相似文献   

14.
The assessment of copper and chromium concentrations in plants requires the quantification of a large number of soil factors that affect their potential availability and subsequent toxicity and a mathematical model that predicts their relative concentrations in plants. While many soil characteristics have been implicated as altering copper and chromium availability to plants in soil, accurate, rapid and simple predictive models of metal concentrations are still lacking for soil and plant analysis. In the current study, an artificial neural network model was developed and applied to predict the exposure of bean leaves (BL) to high concentrations of copper and chromium versus some selected soil properties (pH, soil electrical conductivity and dissolved organic carbon). A series of measurements was performed on soil samples to assess the variation of copper and chromium concentrations in BL versus the soil inputs. The performance of the artificial neural network model was then evaluated using a test data set and applied to predict the exposure of the BL to the metal concentration versus the soil inputs. Correlation coefficients of 0.99981 and 0.9979 for Cu and 0.99979 and 0.9975 for Cr between the measured and artificial neural networks predicted values were found, respectively, during the testing and validation procedures. Results showed that the artificial neural network model can be successfully applied to the rapid and accurate prediction of copper and chromium concentrations in BL.  相似文献   

15.
基于免疫RBF神经网络的深基坑施工变形预测   总被引:2,自引:0,他引:2  
基坑工程由于受多种因素的影响,目前已成为岩土工程中的重点和难点。在基坑工程施工中,需要根据现场实际情况、周围环境、建筑安全等级等对变形进行严格控制。通过现场量测的深基坑围护结构变形信息资料,对实测数据进行整理和分析,利用神经网络对支护结构的变形作出预测,以保证基坑安全施工。研究了一种基于免疫识别原理的径向基函数神经网络学习算法,该算法将所识别的数据作为抗原,抗体为抗原的压缩映射并作为神经网络模型的隐层中心,采用最小二乘法确定权值,提高了RBF神经网络收敛速度和精度,将人工免疫RBF神经网络应用于时间序列预测中,工程实例计算证明了算法的有效性和可行性,为时间序列预测提供了一种新途径。  相似文献   

16.
闫滨  高真伟 《岩土力学》2006,27(Z2):548-552
将粒子群算法(PSO)引入大坝监测领域,提出一种基于粒子群神经网络(PSONN)的大坝监控预报模型。该模型充分发挥PSO的全局寻优能力和BP神经网络局部细致搜索优势,给BP神经网络提供了良好的初始权值。对逐一粒子群(SPSONN)、整体粒子群(WPSONN)、逐一BP(SBPNN)及整体BP(WBPNN)4种预报模型的对比分析表明:逐一预报模型(SPSONN和SBPNN)的预报精度明显高于对应的整体预报模型(WPSONN和WBPNN)的预报精度;与BP神经网络模型相比,PSONN模型不仅收敛速度明显加快,而且预报精度也有较大提高,尤其是SPSONN模型,其高精度和短历时性完全满足实时预报的需要,可以准确、有效地应用于大坝监测量的实时预报。  相似文献   

17.
王焕弟  李明  赵一民 《铀矿地质》2001,17(1):48-55,33
有监督的人工神经网络预测是20世纪90年代发展起来的一种新兴技术,由于它具有算法快、精度高的特点,在油气预测中得到广泛使用。本文介绍了该方法的原理及其与地震属性的关系,应用实际资料进行了计算,证明效果良好,是一种油气预测有利工具。  相似文献   

18.
在大数据和人工智能背景下,基于已有的传统地质找矿模型建立与应用基础,提出基于循环神经网络的找矿模型构建与预测方法,实现对地质数据的深入分析和理解。针对地质找矿模型构建与预测的需求,结合数据清洗理论,对传统地质找矿模型进行归纳与总结,建立地质找矿知识库,为深度学习算法提供训练数据。通过分类算法研究,综合对比结果的准确率与分类所用时间,最终选用RNN分类算法对找矿概念模型进行分类。在建立研究区找矿模型中,通过关键词与控矿要素完成模型匹配,利用模型计算对模型匹配结果进行数据分析,实现区域地质找矿模型的构建与矿产资源的预测评价和分析。以大水金矿为例,快速准确地实现了找矿模型的构建,有效地对矿产资源预测工作提供了指导,验证了该方法的可行性。  相似文献   

19.
基于神经网络的混沌时间序列预测   总被引:8,自引:0,他引:8  
应用混沌方法对时间序列观测数据进行处理,计算出最大lyapunov指数,得到最大可预报时间尺度。在此基础上,建立人工神经网络预测预报混沌时间序列的模型。结合实例,对该预测方法进行了计算验证。  相似文献   

20.
Hsiao  Cheng-Hsi  Chen  Albert Y.  Ge  Louis  Yeh  Fu-Hsuan 《Acta Geotechnica》2022,17(12):5801-5811
Acta Geotechnica - The random finite element method has been widely used to evaluate slope uncertainty and reliability. To determine the probability of failure, the safety factor sampling often...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号