首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Constraints on gold and copper ore grades in porphyry-style Cu–Au ± Mo deposits are re-examined, with particular emphasis on published fluid pressure and formation depth as indicated by fluid inclusion data and geological reconstruction. Defining an arbitrary subdivision at a molar Cu/Au ratio of 4.0 × 104, copper–gold deposits have a shallower average depth of formation (2.1 km) compared with the average depth of copper–molybdenum deposits (3.7 km), based on assumed lithostatic fluid pressure from microthermometry. The correlation of Cu/Au ratio with depth is primarily influenced by the variations of total Au grade. Despite local mineralogical controls within some ore deposits, the overall Cu/Au ratio of the deposits does not show a significant correlation with the predominant type of Cu–Fe sulfide, i.e., chalcopyrite or bornite. Primary magma source probably contributes to metal endowment on the province scale and in some individual deposits, but does not explain the broad correlation of metal ratios with the pressure of ore formation. By comparison with published experimental and fluid analytical data, the observed correlation of the Cu/Au ratio with fluid pressure can be explained by dominant transport of Cu and Au in a buoyant S-rich vapor, coexisting with minor brine in two-phase magmatic hydrothermal systems. At relatively shallow depth (approximately <3 km), the solubility of both metals decreases rapidly with decreasing density of the ascending vapor plume, forcing both Cu and Au to be coprecipitated. In contrast, magmatic vapor cooling at deeper levels (approximately >3 km) and greater confining pressure is likely to precipitate copper ± molybdenum only, while sulfur-complexed gold remains dissolved in the relatively dense vapor. Upon cooling, this vapor may ultimately contract to a low-salinity epithermal liquid, which can contribute to the formation of epithermal gold deposits several kilometers above the Au-poor porphyry Cu–(Mo) deposit. These findings and interpretations imply that petrographic inspection of fluid inclusion density may be used as an exploration indicator. Low-pressure brine + vapor systems are favorable for coprecipitation of both metals, leading to Au-rich porphyry–copper–gold deposits. Epithermal gold deposits may be associated with such shallow systems, but are likely to derive their ore-forming components from a deeper source, which may include a deeply hidden porphyry–copper ± molybdenum deposit. Exposed high-pressure brine + vapor systems, or stockwork veins containing a single type of intermediate-density inclusions, are more likely to be prospective for porphyry–copper ± molybdenum deposits.  相似文献   

3.
斑岩型矿床作为全球Cu、Mo等金属的主要来源,蕴藏着巨大的经济价值,一直是矿业公司的重点勘查目标。本文从岩石化学和矿物化学两方面,综述了有关斑岩矿床成矿潜力评价与矿体定位方面的研究进展,总结了相应的勘查指标,以期促进该类矿床的找矿突破。研究证实,成矿岩体一般为富H2O、高氧逸度的浅成中酸性斑岩体,发育角闪石 磁铁矿 榍石等矿物组合,显示埃达克(质)岩的地球化学性质(如高Sr、低Y和Yb、Eu异常不明显等)。斑岩体Al2O3/TiO2、Sr/Y、La/Yb、V/Sc和Sr/MnO等比值可以用来反映其成矿潜力。黑云母中Cu的含量、Cl/F比值以及特殊结构的石英(如UST、石英眼)等也可作为成矿潜力评价的重要指标。近年来,锆石、磷灰石和榍石等副矿物的化学组成被广泛用来评价岩浆的温度、压力、氧逸度以及H2O含量,进而反映其成矿潜力。此外,某些岩石化学和矿物化学参数还是岩浆成矿专属性的灵敏指标。斑岩矿床独特的蚀变 矿化 元素分带模式是找矿勘查的基本准则。针对不同蚀变带发育的特征矿物(如钾化带的金红石、青磐岩化带的绿泥石和绿帘石、绢英岩化带的绢云母等)开展原位微区成分分析和(或)短波红外光谱分析,不仅能够明确勘查方向,还有助于确定主矿体的位置。鉴于不同矿区成矿母岩的成分、侵位深度、围岩性质、蚀变分带模式等可能均存在明显差异,因此在找矿实践中应综合考虑各项找矿指标,进而提升发现新矿产的能力和效率。  相似文献   

4.
岛弧-陆缘弧环境斑岩Cu±Mo±Au矿床勘查:地质标志应用   总被引:1,自引:1,他引:0  
斑岩Cu±Mo±Au矿床(以下简称斑岩铜矿)因其巨大的经济价值而倍受勘查界重视。文章基于国内外,尤其是国外斑岩型铜-金(多金属)矿床最新勘查和研究进展,系统总结了岛弧-陆缘弧环境斑岩铜矿勘查地质标志及其找矿应用实践,包括:①大地构造环境分析,宏观上确定斑岩铜矿勘查选区。弧环境斑岩铜矿勘查应重点部署在与大洋俯冲有关的岛弧、陆缘弧等增生造山火山岩浆弧环境;②区域及矿田构造解析,不断缩小找矿靶区。与弧/造山带形成演化应力有关的超壳深大断裂系统控制矿带空间展布,断裂、褶皱、火山(地层)以及岩浆侵入等矿田构造体系控制矿床(体)分布;③岩石化学成分、矿物组成以及岩石结构等含矿斑岩体特征及成矿专属性判断,确定斑岩铜矿找矿目标体;④蚀变分带对成矿斑岩体和富矿区(矿体)指向。从深部到浅部、从核心到外围,钙碱性斑岩铜矿蚀变类型分别为钠-钙(硅酸盐)化、钾(硅酸盐)化、青磐岩化(细化为高温阳起石内带、中温绿帘石中带和低温绿泥石外带)、绢英岩化和泥化;碱性斑岩铜矿蚀变组合为钙-钾化、钾化、内青磐岩化带(阳起石-赤铁矿-绿帘石带)、外青磐岩化带(钠长石-阳起石带)和远青磐岩化带(绿泥石带);⑤岩帽特征对深部斑岩体和潜在富矿中心指向。钙碱性斑岩铜矿形成的岩帽由多孔状(晶洞发育)的硅质核,外侧高级泥化带(石英-明矾石带)和泥化带(高岭石±迪开石带)组成;碱性斑岩铜矿形成以钠长石化为核心、外围(上部)为钠长石-绢云母带的碱性岩帽;⑥脉体和角砾岩(筒)时空分布及其对勘查靶区(位)指向。A、B、D型脉以及C、M型脉等脉体类型、密度以及石英中残余硫化物详细填图是矿区勘查靶区定位和矿石品位预测有效指标之一;3大类、7种主要类型角砾岩在斑岩铜矿中时、空间分布可作为找矿评价的参考标志;⑦矿化元素、金属矿物和矿化类型分带及其找矿相互指示。从矿化中心到外围(浅部),出现[Mo-Cu→Cu-Mo(Au)→Cu-S(Au)]→[Pb-Zn(Au)]→Au-Ag(Mn)→Au(As,Sb)的元素分带,斑铜矿→黄铜矿→黄铁矿硫化物晕分带;斑岩型、矽卡岩型、次浅成环境脉型、高硫型和中硫型浅成低温热液型等矿化类型在斑岩铜矿成矿系统中分布具有显著的规律性,是勘查评价最重要的地质标志;⑧矿体剥蚀与保存,是评价矿田(体)找矿潜力重要因素。  相似文献   

5.
6.
Miocene igneous rocks in the 1,600 km-long E–W Gangdese belt of southern Tibet form two groups separated at longitude ~89° E. The eastern group is characterized by mainly intermediate–felsic calc-alkaline plutons with relatively high Sr/Y ratios (23 to 342), low (87Sr/86Sr)i ratios (0.705 to 0.708), and high εNdi values (+5.5 to ?6.1). In contrast, the western group is characterized by mainly potassic to ultrapotassic volcanic rocks with relatively high Th and K2O contents, low Sr/Y ratios (11 to 163), high (87Sr/86Sr)i ratios (0.707 to 0.740), and low εNdi values (?4.1 to ?17.5). The eastern plutonic group is associated with several large porphyry Cu–Mo ± Au deposits, whereas the western group is largely barren. We propose that the sharp longitudinal distinction between magmatism and metallogenic potential in the Miocene Gangdese belt reflects the breakoff of the Greater India slab and the extent of underthrusting by the Indian continental lithosphere at that time. Magmas to the east of ~89° E were derived by partial melting of subduction-modified Tibetan lithosphere (mostly lower crust) triggered by heating of hot asthenospheric melt following slab breakoff. These magmas remobilized metals and volatile residual in the crustal roots from prior arc magmatism and generated porphyry Cu–Mo ± Au deposits upon emplacement in the upper crust. In contrast, magmas to the west of ~89° E were formed by smaller volume partial melting of Tibetan lithospheric mantle metasomatized by fluids and melts released from the underthrust Indian plate. They are less hydrous and oxidized and did not have the capacity to transport significant amounts of metals into the upper crust.  相似文献   

7.
8.
9.
Cu ± Au ± Mo mineralization is found in multiple intrusive suites in the Gangdese belt of southern Tibet (GBST). However, the petrogenesis of these ore-bearing intrusive rocks remains controversial. Here, we report on mineralization-related Late Cretaceous-early Eocene intrusive rocks in the Chikang–Jirong area, southern Gangdese. Zircon U–Pb analyses indicate that the mainly granodioritic Chikang and Jirong plutons were generated in the Late Cretaceous (ca. 92 Ma) and early Eocene (ca. 53 Ma), respectively. They are high-K calc-alkaline suites with high SiO2 (64.8–68.3 wt.%) and Al2O3 (15.1–15.7 wt.%) contents. Chikang granodiorites are characterized by high Sr (835–957 ppm), Sr/Y (118–140), Mg# (58–60), Cr (21.8–36.6 ppm), and Ni (14.3–22.9 ppm), and low Y (6.0–8.1 ppm), Yb (0.54–0.68 ppm) values with negligible Eu anomalies, which are similar to those of typical slab-derived adakites. The Jirong granodiorites have high SiO2 (64.8–65.3 wt.%) and Na2O + K2O (7.19–7.59 wt.%), and low CaO (2.45–3.69 wt.%) contents, Mg# (47–53) and Sr/Y (14–16) values, along with negative Eu and Ba anomalies. Both Chikang and Jirong granodiorites have similar εHf(t) (7.6–13.1) values. The Chikang granodiorites were most probably produced by partial melting of subducted Neo-Tethyan oceanic crust, and the Jirong granodiorites were possibly generated by partial melting of Gangdese juvenile basaltic crust. In combination with the two peak ages (100–80 and 65–41 Ma) of Gangdese magmatism, we suggest that upwelling asthenosphere, triggered by the rollback and subsequent break-off of subducted Neo-Tethyan oceanic lithosphere, provided the heat for partial melting of subducted slab and arc juvenile crust. Taking into account the contemporaneous occurrence of Gangdese magmatism and Cu ± Au ± Mo mineralization, we conclude that the Late Cretaceous–early Eocene magmatic rocks in the GBST may have a significant potential for Cu ± Au ± Mo mineralization.  相似文献   

10.
本文介绍了利用铂族元素(PGE)和挥发分来判别煌斑岩原生Au富集和次生Au富集的地球化学方法,对探索煌斑岩与Au矿化的共生关系、建立新的金矿成矿模式以及找矿具有重要意义。  相似文献   

11.
12.
阿尔泰Au元素区域地球化学特征研究   总被引:1,自引:1,他引:0  
1:20万区域化探由于采样和分析方法的差异,各图幅间数据中存在着明显的系统误差和随机误差,大范围内的资料研究先要进行误差处理,在消除各种误差对Au元素含量数据影响的基础上,对阿尔泰地区成岩、成矿相关的Au元素地球化学特征信息进行了初步研究。  相似文献   

13.
The Şamlı (Balıkesir) Fe-oxide Cu (± Au) deposit, one of several iron (+ Cu ± Au) deposits in western Turkey, is hosted by porphyritic rocks of the multi-phase Şamlı pluton and metapelitic–metadiabasic rocks of Karakaya Complex. Two successive mineralization events are recognized in the area as; i) early magnetite and sulfide and ii) late hematite–goethite-native copper (± Au). Alteration associated with the mineralization in Şamlı is characterized by four distinct mineralogical assemblages. They are, in chronological order of formation, (1) plagioclase–early pyroxene (± scapolite), (2) garnet–late pyroxene, (3) chlorite–epidote, and (4) chalcedony–calcite alteration. Geochemical, isotopic (Sr, Nd, O, S) and geochronological (Ar–Ar) data from alteration and magmatic rocks suggest a temporal and genetic link between the multiphase Şamlı pluton and the hydrothermal system that controls the Fe-oxide-Cu (± Au) mineralization. 40Ar/39Ar geochronology on hornblende and biotite separates of the Şamlı pluton yielded an age range between 23.20 ± 0.50 and 22.42 ± 0.11 Ma, overlapping with 40Ar/39Ar age of 22.34 ± 0.59 Ma from alteration.The close spatial and temporal associations of Şamlı mineralization with porphyritic intrusions, pervasive Ca-rich alteration (calcic plagioclase, andraditic garnet, diopsidic pyroxene, scapolite, and epidote) are considered as common features akin to calcic assemblages in typical IOCG deposits. Besides abundant low-Ti (≤ 0.5%) magnetite/hematite, high Cu–moderate Au (up to 8.82 ppm) association, structural control and lithologic controls of mineralization, low S-sulfide content (chalcopyrite > pyrite) in the deposit; and the derivation of causative magma from subduction-modified subcontinental lithospheric mantle under a transpressional to transtensional regime, are collectively considered as the features in favor of IOCG-type mineralization for the Şamlı deposit.  相似文献   

14.
15.
The Camagüey district, Cuba, is known for its epithermal precious metal deposits in a Cretaceous volcanic arc setting. Recently, the La Unión prospect was discovered in the southern part of the district, containing gold and minor copper mineralization interpreted as porphyry type. Mineralization is hosted in a 73.0 ± 1.5 Ma calc–alkaline I-type oxidized porphyry quartz diorite intrusive within volcanic and volcaniclastic rocks of the early Cretaceous Guáimaro Formation. The porphyry is affected by propylitic alteration and crosscut by a network of quartz and carbonate veinlets and veins. Chlorite, epidote, sericite, quartz, and pyrite are the main minerals in the early veins which are cut by late carbonate and zeolite veins. Late barite pseudomorphously replaces pyrite. Gold is associated with pyrite as disseminations in the altered quartz diorite and in the veins, occurring as inclusions or filling fractures in pyrite with 4 g/t Au in bulk samples, and up to 900 ppm Au in in pyrite. Fluid inclusion and oxygen isotope data are consistent with a H2O–NaCl–(KCl) mineralizing fluid, derived from the quartz diorite magma, and trapped at least at 425°C and 1.2 kbar. This primary fluid unmixed into two fluid phases, a hypersaline aqueous fluid and a low-salinity vapor-rich fluid. Boiling during cooling may have played an important role in metal precipitation. Pyrite δ34S values for the La Unión prospect range between 0.71‰ and 1.31‰, consistent with a homogeneous magmatic sulfur source. The fluids in equilibrium with the mineralized rocks have estimated δ18O values from 8‰ to 11.8‰, calculated for a temperature range of 480–505°C. The tectonic environment of the La Unión prospect, its high gold and low copper contents, the physical–chemical characteristics of the mineralizing fluids and the isotopic signature of the alteration minerals and fluids indicate that the La Unión gold mineralization is similar to the porphyry gold type, even though the ore-related epidote–chlorite alteration can be classified as propylitic and not the classic potassic and/or phyllic alteration. The low copper contents in the prospect could be due to a mineralizing fluid previously saturated in copper, which is indicated by trapped chalcopyrite crystals in high-temperature fluid inclusions. The low-temperature paragenesis, represented by carbonate, zeolite and barite, indicates epithermal overprint. The study shows the potential for other gold porphyry-type deposits in the Cretaceous volcanoplutonic arc of Cuba.  相似文献   

16.
17.
1985年在对湖南省资江下游自然重砂分析过程中,发现了自然界少见的Au—Hg、Au—Hg—Pb、Au—sn矿物。这些物矿和本区的自然金均具备着再生成因特征。现将工作中积暴的一点资料整理成文,以便互相交流。 一、矿区地质背景 样品采自湖南资江下游现代河床堆积物中。  相似文献   

18.
The Lumwana Cu (± Co ± U) deposits of NW Zambia are large, tabular, disseminated ore bodies, hosted within the Mwombezhi Dome of the Lufilian Arc. The host rocks to the Lumwana deposits are two mineralogically similar but texturally distinct gneisses, a granitic to pegmatitic gneiss and a banded to augen gneiss which both comprise quartz–feldspar ± biotite ± muscovite ± haematite ± amphibole and intervening quartz–feldspar ± biotite schist. The sulphide ore horizons are typically developed within a biotite–muscovite–quartz–kyanite schist, although mineralization locally occurs within internal gneiss units. Contacts between the ore and host rocks are transitional and characterized by a loss of feldspar. Kinematic indicators, such as S-C fabrics and pressure shadows on porphyroblasts, suggest a top to the north shear sense. The sulphides are deformed by a strong shear fabric, enclosed within kyanite or concentrated into low strain zones and pressure shadows around kyanite porphyroblasts. This suggests that the copper mineralization was introduced either syn- or pre-peak metamorphism. In addition to Cu and Co, the ores are also characterized by enrichments in U, V, Ni, Ba and S and small, discrete zones of uranium mineralization, occur adjacent to the hanging wall and footwall of the copper ore bodies or in the immediate footwall to the copper mineralization. Unlike typical Copperbelt mineralization, unmineralized units show very low background copper values. Whole rock geochemical analyses of the interlayered schist and ore schist, compared to the gneiss, show depletions in Ca, Na and Sr and enrichments in Mg and K, consistent with replacement of feldspar by biotite. The mineral chemistry of muscovite, biotite and chlorite reflect changes in the bulk rock chemistry and show consistent increases in X Mg as the schists develop. δ34S for copper sulphides range from +2.3?‰ to +18.5?‰, with pyrite typically restricted to values between +3.9?‰ and +6.2?‰. These values are atypical of sulphides precipitated by bacteriogenic sulphate reduction. δ34S data for Chimiwungo (Cu + Co) show a broader range and increased δ34S values compared to the Malundwe (Cu) mineralization. The Lumwana deposits show many characteristics which distinguish them from classical Copperbelt mineralization and which suggests that they are formed by metasomatic alteration, mineralization and shearing of pre-Katangan basement. Although this style of mineralization is reported elsewhere in the Copperbelt, sometimes associated with the more widely reported stratiform ores of the Lower Roan, none of the previously reported occurrences have so far developed the tonnages of ore reported at Lumwana.  相似文献   

19.
20.
已有的地质、地球物理和地球化学证据表明太古宙Au-石英脉、低温热液Au-Ag和Au矽卡岩成矿流体的主要组分源自岩浆,而且Au、Ag及有关的富美元素也源自岩浆。太古宙Au-石英脉、太古宙Hemlo型、低温热液Au-Ag和Au矽卡岩体系的元素的产出具有重要的共性,表明其具有共同的成因过程。例如,27个元素中,44%(n=12)的元素出现在10个矿床亚类的至少7个亚类之中:Au、Ag、Fe、Cu、Pb、Zn、Hg、Mo、Sb、As、Te和s(9个金属、2个类金属和1个非金属)。加上B和W,52%(n=14)出现在至少5个亚类之中。富集的亲铜/亲铁元素的出现频率很高,达85%(27个元素中的23个)。总体元素(n=31)的出现频率也较高,达74%(n=23)。所有这些主要的亲铜/亲铁元素均富集于太古宙Au-石英脉、太古宙Hemlo型、低温热液Au-Ag和Au矽卡岩矿床之中。如果岩浆挥发分的饱和出现在岩浆硫化物熔体/上悬固体因重力而亏损之后,那么Au、Ag和相关亲铜元素将由于高的硫化物熔体/硅酸盐岩浆的分配系数(10 ̄2~10 ̄4,如Au为3x10 ̄4,Se为10 ̄3)而从岩浆中分离出来。因此可以得出,太古宙Au-石  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号