首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Groundwater with high salinity is widespread in different climatic and geologic environments of the world. The formation of its chemical composition, however, is still debatable. The chemical composition of groundwater has been studied in 19 springs of the Tuva depression. In this area, hydrocarbonate, sulfate, and chloride waters with different cation compositions discharge. Their TDS value varies mainly from 1 to 6 g/L, reaching 315 g/L at only one locality. The chemical composition of the studied waters is reflective of the geostructural, hydrogeologic, landscape, and geochemical conditions. The main processes determining the chemical composition of the waters are their interaction with aluminosilicate minerals, dissolution of gypsum and halite, evaporation, and oxidation of sulfide minerals.  相似文献   

2.
This paper reports new geochemical data on the low temperature nitric thermal waters of Sikhote Alin. The studied alkaline waters belong to the HCO3-Na type with significant trace element variations. The waters demonstrate an increase in temperature and TDS from the south northward of Sikhote Alin. The oxygen and hydrogen isotopic data suggest their infiltration origin. The chemical composition of these waters was formed by water-rock interaction.  相似文献   

3.
The results of studying the features of the hydrogeological structure and chemical and isotope composition of thermal waters from the central part of Vietnam that are characterized by intense manifestations of intrusive magmatism are presented. It is established that low–and high–thermal waters with temperature varying within 30–85°C are developed in the area under study. The value of total mineralization of the hydrotherms ranges from 0.05 to 10.05 g/dm3. It is assumed that the circulation of thermal waters that are different in temperature and chemical composition occurs at two levels. The regular change of the hydrotherm composition in the direction from mineralized chloride sodium, including with increased Ca content, to fresh sodium bicarbonate is revealed. The ratio of δ18O–δ2H isotopes indicates that the water component is based on meteoric water. In the coastal areas, there is an isotope shift towards the ocean waters, which is also confirmed by the hydrogeochemical data. The key factors for forming the chemical composition of the thermal waters in South Trungbo are their genetic type, the interaction processes in the “water–rock–gas–organic substance” system, and their equilibrium–nonequilibrium state.  相似文献   

4.
西藏朗久地热田及其温泉水化学特征研究   总被引:4,自引:3,他引:1  
西藏朗久地热田位于喜马拉雅——冈底斯微板块北西缘,区内构造、岩浆与变质作用强烈,在构造活动与河流的共同作用下其热储盖层遭到严重破坏,导致冷、热水发生混合。区内碳酸盐岩广布,未完全冷却的花岗岩为地热田的热源,热储平衡温度在191.11~213.85℃之间。区内地表水为HCO3-Ca型,温泉水阴离子为Cl-HCO3型,阳离子为K-Na型。温泉水TDS为2000~2300mg/L,Na+/Cl->1,其演化程度介于部分成熟水与未成熟水之间,水岩反应尚未达到平衡。几种典型热液矿物饱和度指数均大于零,区内热液蚀变作用对温泉水化学组成贡献较大;温泉水PCO2>2000Pa,与背景值形成较大的梯度差,会发生强烈的CO2脱气。   相似文献   

5.
Jowshan geothermal system comprises 6 thermal springs with outlet temperatures ranging from 39.3 to 46.6°C. The thermal water of these springs is presently used for swimming and as a treatment for rheumatism, sinusitis and skin diseases. The pH value of these springs is slightly acidic to neutral and the electrical conductivities about 1500 μS/Cm. The presence of many faults in the area, the alignment of all springs along the Sirch Fault and the similar chemical and isotopic composition of all springs in combination with the hydrogeological setting and geochemistry of water samples indicate that these springs are associated with deep circulation of meteoric water. According to this heating mechanism, meteoric waters infiltrate through fault openings to depth and after heating by geothermal gradient rise to the ground surface due to the hydraulic and buoyancy forces, a mechanism which is common in the southern parts of Iran. The use of various chemical geothermometers and mineral equilibrium states suggests a range of temperature about 50–90°C for the reservoir of Jowshan geothermal system.  相似文献   

6.
Thermal groundwater is currently being exploited for district-scale heating in many locations world-wide. The chemical compositions of these thermal waters reflect the provenance and circulation patterns of the groundwater, which are controlled by recharge, rock type and geological structure. Exploring the provenance of these waters using multivariate statistical analysis (MSA) techniques increases our understanding of the hydrothermal circulation systems, and provides a reliable tool for assessing these resources.Hydrochemical data from thermal springs situated in the Carboniferous Dublin Basin in east-central Ireland were explored using MSA, including hierarchical cluster analysis (HCA) and principal component analysis (PCA), to investigate the source aquifers of the thermal groundwaters. To take into account the compositional nature of the hydrochemical data, compositional data analysis (CoDa) techniques were used to process the data prior to the MSA.The results of the MSA were examined alongside detailed time-lapse temperature measurements from several of the springs, and indicate the influence of three important hydrogeological processes on the hydrochemistry of the thermal waters: 1) salinity and increased water-rock interaction; 2) dissolution of carbonates; and 3) dissolution of sulfides, sulfates and oxides associated with mineral deposits. The use of MSA within the CoDa framework identified subtle temporal variations in the hydrochemistry of the thermal springs, which could not be identified with more traditional graphing methods, or with a standard statistical approach. The MSA was successful in distinguishing different geological settings and different annual behaviours within the group of springs. This study demonstrates the usefulness of the application of MSA within the CoDa framework in order to better understand the underlying controlling processes governing the hydrochemistry of a group of thermal springs in a low-enthalpy setting.  相似文献   

7.
The geochemical characteristics of hydrothermal waters from the Phlegraean Fields (P.F.) (Naples, Italy) were analysed for minor and trace elements, selectively mobilised in hydrothermal systems such as B, F, Hg, As, Pb and Tl.The water samples, collected from a shallow aquifer likely to be fed by deeper fluids, showed various geochemical features, resulting from the mixing of three components: (1) surface waters of meteoric origin; (2) hot deep waters deriving from water-rock interaction and including deep waters of marine origin; (3) magmatic fluids rising from the local magma chamber, lying a few kilometres below the town of Pozzuoli.This setting, although very complex, provides a reliable means of studying the distribution of the investigated trace elements. In particular, within the Phlegraean area, high contents of B (0.1-48 mg/l), F (0.5-8 mg/l), As (16-6050 μg/l) and Hg (0.7-232 μg/l) were observed. The levels of thallium in the springs close to Solfatara (about 7 μg/l) were in line with those normally recorded in hydrothermal areas, whereas high levels of this element (up to 23.3 μg/l) were identified in other wells of the study area. Lead (1.3 to 29.1 μg/l) appears to be anomalous with respect to its normal content in groundwater (about 1 μg/l), owing to the presence of high-density brines at depth, which enhance the solubility of Pb in volcanic rocks under hydrothermal conditions.The distribution of the investigated trace elements in the Phlegraean Fields thermal area is probably related to the different ascent pathways of the fluids. Clearly, apart from the influence exerted by anomalous thermal conditions, each element shows a different behaviour, depending on its geochemical affinity with mineral phases and as a consequence of the different enthalpy values, which determine ion partitioning in gaseous phases.Based on geochemical evidences and on the distribution of minor and trace elements, the source processes of the investigated hydrothermal waters were defined. Five main groups were identified: (1) acid sulphate waters, resulting from mixing of meteoric water with magmatic gases (mainly H2S); (2) high sulphate-chloride waters, from a deep reservoir located in the major upflow zone; (3) waters associated with significant degassing of magmatic CO2; (4) waters from a deep geothermal neutral chloride reservoir, resulting from heating of marine water modified by water-rock interaction processes; (5) cold waters from the inner area, influenced by low-temperature, water-rock interaction processes.  相似文献   

8.
《Applied Geochemistry》2001,16(9-10):1153-1163
The waters of the thermal springs at Alhama de Granada vary in temperature between 27 and 45°C. Temporal changes in the composition of the principal spring (Baños Viejos) indicate that a small degree of mixing may occur between deep thermal waters and shallow groundwater. Slight compositional variations also occur between the various thermal springs in the study area. These spatial variations are due to the different local hydrodynamic conditions in the springs. Towards the north in less hydraulically transmissive rocks, cooling of the rising water is more noticeable, as are ion exchange and processes of SO4 reduction. The chemical composition of the water is related to the dissolution of evaporites (SO4 and Cl salts), carbonates and silicates, and to the possible existence of sources of S within the rock. Estimates of the mean residence times have been obtained based on 14CDIC and T. The state of thermodynamic equilibrium at the spring discharge was calculated using the SOLMINEQ.88 program. The results indicate that all the samples are supersaturated with respect to quartz, chalcedony, cristobalite, calcite, aragonite and dolomite, and undersaturated with respect to gypsum, anhydrite and halite. The use of different geothermometers and modelling of saturation indices for quartz, albite and anhydrite indicate temperatures of about 110°C.  相似文献   

9.
The subject of study was the chemical composition of common fresh-water springs precipitating travertines in tectonically passive regions of the Kolyvan'-Tomsk folded area and northwestern Salair. Attention was paid to the specific character of manifestation, mineralogy, and petrography of the produced travertines. Results of the study of isotopic composition of carbon in hydrocarbonate ion of waters and carbonate travertines are reported. It is shown that the genetic type of CO2 accompanying the formation of travertines is biogenic. Study of the equilibrium of the underground waters with aluminosilicate and carbonate minerals has shown that the travertines are the product of evolution of an equilibrium-nonequilibrium water-rock system. New mechanisms of travertine formation from cool fresh waters are proposed.  相似文献   

10.
Geothermal water is plentiful in Changbai Mountain region, northeastern China, due to the volcanic activities and widespread faults. For the exploration of geothermal resources, this study uses quartz and cation geothermometer to estimate the temperatures of the geothermal reservoir and uses the tubular models to evaluate the thermal gradient. The hydrogeochemical characteristics of the geothermal resources were also evaluated by hydrogeochemical analysis. The results showed that the geothermal reservoir temperatures of the four major thermal springs in Changbai Mountain region range from 72 to 169 °C. The average geothermal reservoir temperatures of Jinjiang hot springs, Changbai hot springs I, Xianrenqiao hot springs, and Changbai hot springs II are 129.25, 169, 89, and 73.67 °C, respectively. The geothermal gradient values of the four major thermal springs have different characteristics. The geothermal gradient values of Jinjiang hot springs and Changbai hot springs I are 4.6 and 3.1 °C/100 m, respectively. The geothermal gradient values of Xianrenqiao thermal springs and Changbai thermal springs II are both lower than 1.5 °C/100 m, with the values of 1.1 and 1.4 °C/100 m. And the geothermal gradients are influenced by Changbai Mountain Tianchi volcano. In addition, the water chemical analyses showed that the geothermal water types are HCO3-Na with higher concentrations of Na+, Cl?, SO4 2?, TDS, and HCO3 ? than the non-thermal waters, which suggested a deep and long water cycle of the thermal water, and therefore a sufficient water-rock interaction.  相似文献   

11.
Semnan thermal springs with high TDS and moderate temperature are located northwest of Semnan, the northern part of Iran. The spatial and temporal variations of physicochemical characteristics of the thermal and cold springs were investigated for the recognition of origin and dominant hydrogeochemical processes. Results show that the thermal springs have the same origin, but due to different ascending flow paths and different conductive cooling mechanism, their temperatures vary. The chemical composition of thermal waters is controlled by dolomite, halite and sulfate minerals dissolution and calcite precipitation and bacterial sulfate reduction. The concentration of major and trace elements in the thermal springs does not change in wet and dry seasons notably because they are derived from old groundwater with deep circulation and high temperature. Seasonal change in the concentration of some trace elements is due to the seasonal variation of pH, Eh, temperature and dilution by shallow waters. Decreasing SO4 and carbonate saturation index and increasing Na/Cl ratios and Ca content in the dry season show dilution effect caused by the previous heavy rainfall events. The temperature of the heating reservoir based on K–Mg, chalcedony, quartz and chemical equilibrium approach was approximately estimated in the range of 60–80 °C. Hydrogeologically, a conceptual model was suggested for the thermal springs. The general groundwater flow direction is probably from the dolomite Lar Formation in Chenaran anticline toward the adjacent syncline in a confined condition, and then a thrust fault acts as a conduit and redirects the thermal water to the emerging springs at the surface.  相似文献   

12.
搭格架温泉水化学特征及其约束因素研究   总被引:1,自引:0,他引:1  
搭格架地热区温泉水DJ1-DJ116号样品于2009年采集,阳离子及微量元素含量采用ICP-OES法测试,Cl-含量采用滴定法测试,其余阴离子含量采用紫外-可见光分光光度法测试。通过对温泉水化学指标的分析,研究温泉的水化学特征及约束因素。其温泉水化学类型为HCO3-Na型,平均矿化度为1 524 mg/L,具有较高的Na/Cl值,温泉水演化程度较高,为完全平衡水,热储中的水岩反应达到了平衡状态.温泉水中PO2极低,PCO2较高;大部分温泉水中玉髓、石英和无定形态SiO2三种硅质热液矿物的饱和度指数大于0。K-Na温标计算热储平均平衡温度为251.36℃;泉水中的Na+、K+离子活度主要受到钠、钾长石的约束。微量元素组合表现出花岗岩源的特征。总体上搭格架地热区温泉水化学特征受到区域地质背景的约束。  相似文献   

13.
The study area is located in the northwestern part of Greece, in Aitoloakarnania prefecture. In this region, where no volcanic activity exists, thermal springs such as Kremasta and Kokkino Stefani, well-known for their healing properties occur. The objective of this study was the investigation of these springs, as well as the study of the chemical composition and origin of water. Relationships between these springs were also examined. The geological setting of the area comprises sedimentary rocks of the Pindos, Gavrovo-Tripolis and Ionian geotectonic zones, deformed by orogenic movements followed by Neogene extensional tectonism. The thermal and mineral springs were classified into three main groups. The first group is characterized by Ca-HCO3 water type and low water temperatures. It corresponds to the springs that are hosted in the Ionian zone and their possible enrichment in SO4 is mainly attributed to the evaporites. The other two groups consist of alkaline thermal water mainly hosted in the formations of Gavrovo-Tripolis zone. In these two groups, the very strong reducing conditions that prevail are expressed by high amounts of NH3 and H2S. Moreover, Na, F, Li, Sr and Ba display elevated concentrations. The second includes mineral waters of (Ca)-Na-HCO3 type that are depleted in calcium. Their residence time is rather long and they originate from deep water circulation through siliceous rocks. The third group includes thermal waters of Ca-Mg-Na-HCO3 water type of higher water temperatures that reveal characteristics of deep circulation directly associated with the underlain limestones.  相似文献   

14.
This paper reports the results of our studies, the chemical analysis of thermal spring’s waters and their geological settings, the use of different statistical methods to evaluate the origin of the dissolved constituents of spring waters and the estimation of the reservoir temperature of the associated geothermal fields of the Guelma region, Algeria. A major component in 13 spring water samples was analyzed using various techniques. The waters of the thermal springs at Guelma basin vary in temperature between 20 and 94oC. Q-mode hierarchical cluster analysis suggests three groups. The water springs were classified as low, moderate and high salinity. Mineral saturation indices (SI) calculated from major ions indicate the spring waters are supersaturated with the most of the carbonate minerals, and all of the spring water samples are under-saturated with evaporite minerals. The thermal spring waters have a meteoric origin, and all samples are immature with strong mixing between warm and shallow waters, where the temperatures of reservoirs to which the thermal waters are related ranged between 64° and 124°C. The deep circulation of meteoric waters in the study area is supplied by the high geothermal gradient around 4.5°C per 100 m and reaches a high temperature before rising to the surface. The estimated circulation depths ranged from 1425 and 3542 m.  相似文献   

15.
A geochemical survey of thermal waters collected from submarine vents at Panarea Island (Aeolian Islands, southern Italy) was carried out from December 2002 to March 2007, in order to investigate (i) the geochemical processes controlling the chemical composition of the hydrothermal fluids and (ii) the possible relations between the chemical features of the hydrothermal reservoir and the activity of the magmatic system. Compositional data of the thermal water samples were integrated in a hydrological conceptual model, which describes the formation of the vent fluid by mixing of seawater, seawater concentrated by boiling, and a deep, highly-saline end-member, whose composition is regulated by water-rock interactions at relatively high temperature and shows clear clues of magmatic-related inputs. The chemical composition of concentrated seawater was assumed to be represented by that of the water sample having the highest Mg content. The composition of the deep end-member was instead calculated by extrapolation assuming a zero-Mg end-member. The Na–K–Ca geothermometer, when applied to the thermal end-member composition, indicated an equilibrium temperature of approximately 300 °C, a temperature in agreement with the results obtained by gas-geothermometry.  相似文献   

16.
 Curuksu is a low temperature hydrothermal system located within the upper sector of the B. Menderes Graben. The hydrologic structure of the Curuksu hydrothermal system is largely controlled by major graben faults where it is characterized by the presence of two thermal reservoirs. One is formed by Paleozoic quartzite, schist and marble units, and the second consists of Pliocene limestone-travertine units. The thermal conditions in the Curuksu region indicate that the regional tectonics and resulting local stress field control low temperatures activity. Temperatures of 30 springs emerging in the study area range between 15 and 55  °C. These springs are classified as cold fresh, warm mineral and thermal waters. Pamukkale, Karahayıt and Honaz springs are steam condensate waters, whereas Curuksu springs are commonly steam-heated waters with respect to the major anion concentrations. The reservoir temperatures have been estimated from chemical compositions by utilizing simultaneously, geothermometers and mixing models. According to these thermometric methods, the most probable subsurface temperature is in the range of 62–90  °C. However, the mixing models suggest a temperature level of 80  °C for the parent water. The system has low total dissolved solid (TDS) of ∼1000–1500 mg/l, which indicate that these waters undergo conductive cooling within the reservoir. Received: 9 September 1999 · Accepted: 14 February 2000  相似文献   

17.
Mineral and thermal waters are a special kind of ground-water, distinguished by specific chemical or physical properties such as higher mineralization, concentration of certain constituents, dissolved gas, radioactivity, or temperature. Hydrologically, they are a part of ground-water system. Mineral or thermal waters are usually connegted with specific and unique geological and tetuunic structure.. The classical territory of mineral and thermal waters is Europe, where these waters have been used for medicinal purposes since ancient times. The development of spas and increased demands for mineral water for spa operation necessitated increased knowledge of spring structures and the development of optimal balneotechnical works. These problems are discussed on the examples of the Karlovy Vary Spa (Karlsbad) and Jàchymov Spa (St. Jachimstha) in W Bohemia. The location of mineral springs in the Karlovy Vary Spa, the largest spa in Czechoslovakia, in a highly urbanized area required a thorough investigation and unique methods for capturing thermal water at a greater depth to provide a steady supply of thermal water and to protect the springs against pollution from the surface. The Jachymov radioactive thermal springs, which were accidentally discovered in a deep, subsurface uranium mine, present a unique problem of protecting the stability of spring's regime in a mining environment.  相似文献   

18.
本文基于西藏阿旺乡的地热地质背景, 综合应用野外调查、水文地球化学、环境同位素方法, 初步探究了区内出露地下热水的发育特征及其成因机制。结果表明, 地下热水化学类型为HCO3-Na型, 这与地下热水在径流过程中与围岩发生溶滤作用和阳离子交互作用有关。氢氧同位素分析显示地下热水补给来源为大气降水, 并伴随有轻微的氧漂移现象, 表明水岩作用较强烈, 热储温度较高。采用同位素方法估算补给高程在4600~4800 m左右, 推测地下热水的补给区为阿旺乡西北部山区。Na-K-Mg三角图判别法和矿物饱和度指数表明地下热水为未成熟水, 其在上升过程中受到了浅表冷水的混合, 冷水混入比为60% ~70%, 采用地球化学温标计算得到的深部热储温度为170~200 ℃, 地下热水循环深度为4500~5300 m。阿旺地区地下热水成因模式为:大气降水自补给区入渗进入深循环, 经大地热流加热形成热水, 热水在地下循环过程中沿断层破碎带上升受到浅循环冷水混合后出露地表形成温泉。  相似文献   

19.
A hydrogeological and geochemical study is presented for the San Severino Lucano region of southern Italy. In this region, groundwater circulation occurs in rocks lithologically different from one another (metaophiolites, carbonate rocks, etc.). Many springs drain this region. The Frido springs are the most important both for their great volume of flow and for their water quality. A water balance estimated for the recharge area of the Frido springs suggests that during the period 1938–1958 the evapotranspiration represents 54.8 percent, runoff 21.2 percent, and infiltration to groundwater 34 percent of rainfall. The springs studied have a meteoric origin and their waters are mostly acid carbonate-alkaline earth type. The reservoir rocks appear to be the only discriminating factors for the chemical composition of the waters analysed.  相似文献   

20.
《Applied Geochemistry》2002,17(3):163-183
The combined chemical composition, B and Sr isotopes, and the basic geologic setting of geothermal systems from the Menderes Massif in western Turkey have been investigated to evaluate the origin of the dissolved constituents and mechanisms of water–rock interaction. Four types of thermal water are present: (1) a Na–Cl of marine origin; (2) a Na–HCO3 type with high CO2 content that is associated with metamorphic rocks of the Menderes Massif; (3) a Na–SO4 type that is also associated with metamorphic rocks of the Menderes Massif with H2S addition; and (4) a Ca–Mg–HCO3–SO4 type that results from interactions with carbonate rocks at shallow depths. The Na–Cl waters are further subdivided based on Br/Cl ratios. Water from the Cumalı Seferihisar and Bodrum Karaada systems are deep circulated seawater (Br/Cl=sea water) whereas water from Çanakkale–Tuzla (Br/Cl<sea water) are from dissolution of Messinian evaporites. Good correlations between different dissolved salts and temperature indicate that the chemical composition of the thermal waters from non-marine geothermal systems is controlled by: (1) temperature dependent water–rock interactions; (2) intensification of reactions due to high dissolved CO2 and possibly HCl gasses; and (3) mixing with overlying cold groundwater. All of the thermal water is enriched in B. The B isotopic composition (δ11B=2.3‰ to 18.7‰; n=6) can indicate either leaching of B from the rocks, or B(OH)3 degassing flux from deep sources. The large ranges in B concentrations in different rock types as well as in thermal waters from different systems suggest the water-rock mechanism. 87Sr/86Sr ratios of the thermal water are used to differentiate between solutes that have interacted with metamorphic rocks (87Sr/86Sr ratio as high as 0.719479) and carbonate rocks (low 87Sr/86Sr ratio of 0.707864).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号