首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have computed the physical parameters for the Venus atmosphere between 0–64 km altitude by using Vega measurements. The proposed model can be used in order to study the structure of Venus atmosphere and its chemical comoposition between 60–64 km, where an inversion in temperature profiles has been measured by Vega.  相似文献   

2.
A simple, idealized model for the rapid escape of a hydrogen thermosphere provides some quantitative estimates for the energy-limited flux of escaping particles. The model assumes that the atmosphere is “tightly bound” by the gravitational field at lower altitudes, that diffusion through the lower atmosphere does not limit the flux, and that the main source of heating is solar euv. Rather low thermospheric temperatures are typical of such escape and a characteristic minimum develops in the temperature profile as the escape flux approaches its maximum possible value. The flux is limited by the amount of euv energy absorbed, which is in turn controlled by the radial extent of the thermosphere. Regardless of the amount of hydrogen in the thermosphere, the low temperatures accompanying rapid escape limit its extent, and thus constrain the flux. Applied to the Earth and Venus, the results suggest that the escape of hydrogen from these planets would have been energy-limited if their primordial atmospheres contained total hydrogen mixing ratios exceeding a few percent. Hydrogen and deuterium may have been lost in bulk, but heavier elements would have remained in the atmosphere. These results place constraints on hypotheses for the origin of the planets and their subsequent evolution.  相似文献   

3.
Rates of production of O(1 D) atoms in the upper atmosphere by photodissociation of O2, dissociative recombination of O2 +, NO+ and electron impact excitation of O(3 P) have been calculated for low, medium and high levels of solar activity. Variations with solar activity, of neutral and ionic composition, electron and neutral temperatures of the upper atmosphere and solar extreme ultraviolet fluxes incident on it have been taken into consideration.Emission rates ofOi red line (6300Å) have been computed taking into account the deactivation both by molecular oxygen and nitrogen. It has been shown that the integrated intensity from low to high activity period varies by approximately an order of magnitude in agreement with the results of experimental observations.  相似文献   

4.
Isolated events of proton and alpha particle precipitation in the Venusian atmosphere were recorded with the use of the ASPERA-4 analyzer on board the ESA Venus Express spacecraft. Using a Monte Carlo simulation method for calculation of proton and alpha particle precipitations in the Venusian atmosphere, reflected and upward directed particle fluxes have been found. It has been found that only a vanishing percentage of protons and alpha particles are backscattered to the Venusian exosphere when neglecting the induced magnetic field and under conditions of low solar activity. Accounting for the induced field drastically changes the situation: the backscattered by the atmosphere energy fluxes increase up to 44% for the horizontal magnetic field B = 20 nT, measured for Venus, for the case of precipitating protons, and up to 64%, for alpha particles. The reflected energy fluxes increase to about 100% for both protons and alpha particles as the field grows to 40 nT, i.e., the atmosphere is protected against penetration of solar wind particles.  相似文献   

5.
Titan, the largest satellite of Saturn, has a thick nitrogen/methane atmosphere with a thick global organic haze. A laboratory analogue of Titan's haze, called tholin, was formed in an inductively coupled plasma from nitrogen/methane=90/10 gas mixture at various pressures ranging from 13 to 2300 Pa. Chemical and optical properties of the resulting tholin depend on the deposition pressure in cold plasma. Structural analyses by IR and UV/VIS spectroscopy, microprobe laser desorption/ionization mass spectrometry, and Raman spectroscopy suggest that larger amounts of aromatic ring structures with larger cluster size are formed at lower pressures (13 and 26 Pa) than at higher pressures (160 and 2300 Pa). Nitrogen is more likely to incorporate into carbon networks in tholins formed at lower pressures, while nitrogen is bonded as terminal groups at higher pressures. Elemental analysis reveals that the carbon/nitrogen ratio in tholins increases from 1.5-2 at lower pressures to 3 at 2300 Pa. The increase in the aromatic compounds and the decrease in C/N ratio in tholin formed at low pressures indicate the presence of the nitrogen-containing polycyclic aromatic compounds in tholin formed at low pressures. Tholin formed at high pressure (2300 Pa) consists of a polymer-like branched chain structure terminated with CH3, NH2, and CN with few aromatic compounds. Reddish-brown tholin films formed at low pressures (13-26 Pa) shows stronger absorptions (almost 10 times larger k-value) in the UV/VIS range than the yellowish tholin films formed at high pressures (160 and 2300 Pa). The tholins formed at low pressures may be better representations of Titan's haze than those formed at high pressures, because the optical properties of tholin formed at low pressures agree well with that of Khare et al. (1984a, Icarus 60, 127-137), which have been shown to account for Titan's observed geometric albedo. Thus, the nitrogen-containing polycyclic aromatic compounds we find in tholin formed at low pressure may be present in Titan's haze. These aromatic compounds may have a significant influence on the thermal structure and complex organic chemistry in Titan's atmosphere, because they are efficient absorbers of UV radiation and efficient charge exchange intermediaries. Our results also indicate that the haze layers at various altitudes might have different chemical and optical properties.  相似文献   

6.
The principal features which distinguish the atmosphere on Venus from that of the Earth are the slow rotation of the planet, the large mass of the atmosphere, and the opacity of the atmosphere to long-wave radiation. The slow rotation of the planet gives rise, first of all, to nongeostrophuc dynamics (the atmosphere gas has a tendency to move along the pressure gradient), with the result that the region of the main influx of solar energy is located on one side of the planet, and the region of maximum cooling on the other. These considerations lead to a much simpler scheme of circulation than that in the Earth's atmosphere.The large mass of the atmosphere is the cause of a high thermal and mechanical inertia, which explains why the atmospheric circulation is asymmetrical relative to the solar-antisolar axis. The daily center of circulation is displaced to the second half of the Cytherean solar day, i.e., to the line of zero budget of thermal energy corresponding to a height of the Sun abobe the horizon of about 20°. The notions of cold and warm regions are very relative for Venus. While the horizontal temperature differences on the Earth may reach 100°, a mean horizontal temperature drop as small as 3° in the Cytherean atmosphere may be looked upon as an exceptional phenomenon. This high thermal homogeneity is due to a very large thermal inertia, with cooling at the poles never manifesting itself in the temperature fields obtained.The opacity of the Cytherean atmosphere to long-wave radiation results in vertical heat transfer by turbulence, mesoscale convection, and large-scale currents. This produces adiabatic stratification in the troposphere and a high temperature in the lower layers.These phenomena were studied in a general manner using two- and three-level models. Steps have recently been undertaken to investigate in greater detail the vertical structure of the troposphere on Venus using ten-level models. It appeared that the vertical dynamic structure of the troposphere is very much dependent on the distribution in height of the solar energy influx. In the greenhouse model, the entire atmosphere is affected by circulation. Pronounced velocity maxima are observed in the lower and upper layers. In a model with adsorption of solar radiation in the upper layer, the velocity is small in the lower layers, but it rapidly increases and changes its direction several times in the upper layers. The mean kinetic energy of the atmosphere proves to be two to three times smaller than in the greenhouse model.Attempts have been made in the calculations to find the principal modes of the statistical fluctuations. The results obtained show that atmospheric circulation may be represented by a global mean basic state following the rotation of the planet with deviations from that basic state which are indeterminate disturbances. The mean basic state exhibits a high degree of symmetry relative to the equator. On account of nonlinearity, the disturbances were observed in all the models independently of space and time resolution. This phenomenon appears to reflect the actual properties of the Cytherean atmosphere and has no bearing on the details of the numerical scheme.  相似文献   

7.
8.
Ionospheric drifts using total reflections from the E-region have been compared with neutral winds measured by meteor radar. Close agreement was found when both measurements were made in a common volume of atmosphere. Even with a separation of 700 km between the measuring regions the results were very similar. It is concluded that the drift technique does measure the movement of the neutral atmosphere in the altitude range 95–120 km. The agreement between measurements from widely separated regions indicates the horizontal scale of the wind structure is at least 700 km.  相似文献   

9.
An approximate calculation of the amount of organic material (OM) delivered to the Earth by comets during the first 700 million years of the planet's existence has been carried out. Approximation formulas based on lunar-crater data have been used for the flux of bodies colliding with the Earth. The calculations of impact velocities have been performed with allowance made for dragging and ablation of bodies in the atmosphere. Semianalytical models used in these calculations take into account the increase in the cross-sectional area of a disrupted meteoroid due to aerodynamic forces, as well as specific features of radiative heat transfer at large optical depths. Particular attention has been given to oblique trajectories that correspond to the perigee distances of cometary orbits close to the Earth's radius. Kilometer-sized comets, which arrived at the surface with low velocities, contributed largely to the mean OM flux under conditions of a dense early terrestrial atmosphere. For the atmosphere with a near-surface pressure of 10 bars, this flux comprises (1–40) × 107 kg per year. As will be shown below, rare but highly probable events of atmospheric entry of large (10 km) comets along oblique trajectories may have produced high local concentrations of organic molecules.  相似文献   

10.
With modern imaging and spectral instruments observing in the visible, EUV, X-ray, and radio wavelengths, the detection of oscillations in the solar outer atmosphere has become a routine event. These oscillations are considered to be the signatures of a wave phenomenon and are generally interpreted in terms of magnetohydrodynamic (MHD) waves. With multiwavelength observations from ground- and space-based instruments, it has been possible to detect waves in a number of different wavelengths simultaneously and, consequently, to study their propagation properties. Observed MHD waves propagating from the lower solar atmosphere into the higher regions of the magnetized corona have the potential to provide excellent insight into the physical processes at work at the coupling point between these different regions of the Sun. High-resolution wave observations combined with forward MHD modeling can give an unprecedented insight into the connectivity of the magnetized solar atmosphere, which further provides us with a realistic chance to reconstruct the structure of the magnetic field in the solar atmosphere. This type of solar exploration has been termed atmospheric magnetoseismology. In this review we will summarize some new trends in the observational study of waves and oscillations, discussing their origin and their propagation through the atmosphere. In particular, we will focus on waves and oscillations in open magnetic structures (e.g., solar plumes) and closed magnetic structures (e.g., loops and prominences), where there have been a number of observational highlights in the past few years. Furthermore, we will address observations of waves in filament fibrils allied with a better characterization of their propagating and damping properties, the detection of prominence oscillations in UV lines, and the renewed interest in large-amplitude, quickly attenuated, prominence oscillations, caused by flare or explosive phenomena.  相似文献   

11.
Using Voyager results, we have made crude estimates of the rate at which Io loses volatiles by a variety of processes to the surrounding magnetosphere for both the current SO2-dominated atmosphere as well as hypothetical paleoatmospheres in which other gases, such as N2, may have been the dominant constituent. Loss rates are strongly influenced by the surface pressure on the night side, the relationship between the exobase and the Jovian magnetospheric boundary, the exospheric temperature, and the peak altitudes reached by volcanic plumes. Several mechanisms make significant contributions to the prodigious rate at which Io is currently losing volatiles. These include: interaction of the magnetospheric plasma with volcanic plume particles and the background atmosphere; sputtering of ices on the surface, if the nightside atmospheric pressure is low enough; and Jeans' escape of O, a dissociation product of SO2 gas. For paleoatmospheres, only the first two of these mechanisms would have been effective. However, they are capable of eliminating large amounts of N2 and other volatiles from Io over the satellite's lifetime. Io could have also lost large amounts of water over its lifetime due to the extensive recycling of water between its upper and lower crust, with the partial dissociation of water vapor in silicate magma chambers initiating this loss process. Significant amounts of water may also have been lost as a result of the interaction of the magnetospheric plasma with water ice particles in volcanic plumes. Once an SO2-dominated atmosphere becomes established, much water may have also been lost through the sputtering of surface water ice.  相似文献   

12.
We are using observations obtained with Mars Express to explore the structure and dynamics of the martian lower atmosphere. We consider a series of radio occultation experiments conducted in May-August 2004, when the season on Mars was midspring of the northern hemisphere. The measurements are widely distributed in latitude and longitude, but the local time remained within a narrow range, 17.0-17.2 h. Most of the atmospheric profiles retrieved from these data contain a distinct, well-mixed convective boundary layer (CBL). We have accurately determined the depth of the CBL and its spatial variations at fixed local time through analysis of these profiles. The CBL extends to a height of 3-10 km above the surface at the season and locations of these measurements. Its depth at fixed local time is clearly correlated with variations in surface elevation on planetary scales, with a weaker dependence on spatial variations in surface temperature. In general, the CBL is deep (8-10 km) where the surface elevation is high, as in Tharsis Montes and Syrtis Major, and shallow (4-6 km) where the surface elevation is low, as in Amazonis and Utopia. This variability results from the combined effects of conditions near the surface and in the atmosphere above the CBL. Convection arises from solar heating of the ground, and the impact of this heat source on thermal structure is largest where the surface pressure and atmospheric density are smallest, at high surface elevations. The vertical extent of the CBL is in turn constrained by the static stability of the overlying atmosphere. These results greatly reduce the long-standing uncertainty concerning the depth of the CBL.  相似文献   

13.
14.
We present a numerical investigation of dead, or relic, radio galaxies and the environmental impact that radio galaxy activity has on the host galaxy or galaxy cluster. We perform axisymmetric hydrodynamical calculations of light, supersonic, back-to-back jets propagating in a β -model galaxy/cluster atmosphere. We then shut down the jet activity and let the resulting structure evolve passively. The dead source undergoes an initial phase of pressure driven expansion until it achieves pressure equilibrium with its surroundings. Thereafter, buoyancy forces drive the evolution and lead to the formation of two oppositely directed plumes that float high into the galaxy/cluster atmosphere. These plumes entrain a significant amount of low entropy material from the galaxy/cluster core and lift it high into the atmosphere. An important result is that a large fraction (at least half) of the energy injected by the jet activity is thermalized in the interstellar medium (ISM)/intracluster medium (ICM) core. The whole ISM/ICM atmosphere inflates in order to regain hydrostatic equilibrium. This inflation is mediated by an approximately spherical disturbance which propagates into the atmosphere at the sound speed. The fact that such a large fraction of the injected energy is thermalized suggests that radio galaxies may have an important role in the overall energy budget of rich ISM/ICM atmospheres. In particular, they may act as a strong and highly time-dependent source of negative feedback for galaxy/cluster cooling flows.  相似文献   

15.
Recent observations have evidenced traces of methane (CH4) heterogeneously distributed in the martian atmosphere. However, because the lifetime of CH4 in the atmosphere of Mars is estimated to be around 300-600 years on the basis of photochemistry, its release from a subsurface reservoir or an active primary source of methane have been invoked in the recent literature. Among the existing scenarios, it has been proposed that clathrate hydrates located in the near subsurface of Mars could be at the origin of the small quantities of the detected CH4. Here, we accurately determine the composition of these clathrate hydrates, as a function of temperature and gas phase composition, by using a hybrid statistical thermodynamic model based on experimental data. Compared to the other recent works, our model allows us to calculate the composition of clathrate hydrates formed from a more plausible composition of the martian atmosphere by considering its main compounds, i.e. carbon dioxide, nitrogen and argon, together with methane. Besides, because there is no low temperature restriction in our model, we are able to determine the composition of clathrate hydrates formed at temperatures corresponding to the extreme ones measured in the polar caps. Our results show that methane enriched clathrate hydrates could be stable in the subsurface of Mars only if a primitive CH4-rich atmosphere has existed or if a subsurface source of CH4 has been (or is still) present.  相似文献   

16.
Hiroyuki K.M. Tanaka 《Icarus》2007,191(2):603-615
In order to evaluate the obliquity-driven atmospheric-density path length effect on nuclide production rate on Mars, we performed a Monte-Carlo simulation to produce the number of secondary particles such as muons, neutrons and protons in the martian atmosphere and to simulate that production of 10Be and 36Cl in the martian regolith by muons and neutrons depends on how much atmosphere had been present for the past 10 million years. The vertical profile of the present martian atmosphere to generate secondary particles has been determined based on the data provided by the Viking missions. For other thickness profiles, we scaled Linsley's atmospheric model. Atmospheric shower has been generated with the SIBYLL 2.1 for high-energy hadronic interactions and EHSA for low energy photonuclear interactions. With increasing atmospheric thickness, more primary interactions occur in the atmosphere. Consequently the proton flux is reduced and the secondary cosmic ray flux, such as muons or energetic neutrons increases at surface. The result indicates that the muon production is more sensitive to obliquity-driven atmospheric variations than proton reduction. A thicker atmosphere would result in enhanced nuclide production at a place deeper than 5 m below the surface and the nuclides present in detectable concentrations. Application to the polar deposit is described.  相似文献   

17.
A theoretical reconstruction of the history of Martian volatiles indicates that Mars probably possessed a substantial reducing atmosphere at the outset of its history and that its present tenous and more oxidized atmosphere is the result of extensive chemical evolution. As a consequence, it is probable that Martian atmospheric chemical conditions, now hostile with respect to abiotic organic synthesis in the gas phase, were initially favorable. Evidence indicating the chronology and degradational history of Martian surface features, surface mineralogy, bulk volatile content, internal mass distribution, and thermal history suggests that Mars catastrophically developed a substantial reducing atmosphere as the result of rapid accretion. This atmosphere probably persisted—despite the direct and indirect effects of hydrogen escape—for a geologically short time interval during, and immediately following, Martian accretion. That was the only portion of Martian history when the atmospheric environment could have been chemically suited for organic synthesis in the gas phase. Subsequent gradual degrassing of the Martian interior throughout Martian history could not sustain a reducing atmosphere due to the low intensity of planet-wide orogenic activity and the short atmospheric mean residence time of hydrogen on Mars. During the post-accretion history of Mars, the combined effects of planetary hydrogen escape, solar-wind sweeping, and reincorporation of volatiles into the Martian surface produced and maintained the present atmosphere.  相似文献   

18.
Yan Tang  Yujie Huang 《Icarus》2006,180(1):88-92
The detection of gray crystalline hematite deposits on Mars by Thermal Emission Spectrometer (TES) has been used to argue for the presence of liquid water on Mars in the distant past. By methanol-thermal treatment of anhydrous FeCl3 at low temperatures (70-160 °C), crystalline gray hematite with layered structure was synthesized, based on this result an alternative explanation for the origin of martian hematite deposits is suggested. Methane could be abundant in the early martian atmosphere; process such as photochemical oxidation of methane could result in the formation of ocean or pool of organic compounds such as methanol, which provides an environment for the formation of large-scale hematite deposits on Mars.  相似文献   

19.
For several years now, an experimental simulation of Titan's atmosphere has been on going at LISA. A cold plasma is established in a gas mixture representative of the atmosphere of the satellite. In these experiments, more than 70 organic compounds have been identified, including the first identification in this type of experimental simulation of C4N2 already detected in its solid form on Titan, which suggests that the setup correctly mimics the chemistry of Titan's atmosphere.We have carried out the first experimental simulation including O-containing compounds in order to study the influence of the presence of CO on the chemical behavior of Titan's atmosphere. With the help of gas chromatography–mass spectrometry (GC–MS) and infrared spectroscopy (IRS) we can thus determine which minor species still undetected in Titan's atmosphere are likely to be present and understand the complex chemistry of the atmosphere of this satellite. Surprisingly we have identified unpredicted O-containing gaseous compounds, mainly ethylene oxide (also named oxirane, C2H4O). This molecule has been observed in the interstellar medium by observation in the millimeter region (Astrophys. J. 489 (1997) 553; Astron. Astrophys. 337 (1998) 275). On the contrary, the predicted O-compounds (formaldehyde and methanol) have not been identified in this experiment. Furthermore, we have identified NH3 in the gaseous products with an initial mixture of N2 (98%) and CH4 (2%).The paper describes the experimental device used in this work, in particular the IRS and GC–MS techniques. We also comment the results related to the detection of the O-containing compounds and NH3 and their implications on our knowledge of the chemistry of Titan's atmosphere and on the retrieval of the future Titan data expected from Cassini-Huygens.  相似文献   

20.
The search for γ-ray bursts of low intensity has been undertaken mostly from balloon-borne detectors with wide aperture. The effect of multiple Compton scattering in the atmosphere greatly increases the probability of seeing small bursts, and should be taken into account when deducing the lnN-lnS curve. Detailed calculations have been carried out for different assumed spectra in the extreme case of a completely unscreened flat horizontal detector.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号