首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Results of impact fragmentation experiments for basalts and pyrophyllites are reported. Aluminum cylindrical projectiles were impacted on cubic basalt and pyrophyllite targets at velocities of 70 to 990 m/sec. The targets and projectiles were 20 g to 3.3 kg and 2 to 20 g in weight respectively. Weights of the fragments produced by impacts were measured and the size distributions of fragments were examined. Data of the largest fragment mass (mL) normalized to the original target mass (Mt), mL/Mt, correlate better with the nondimensional impact stress, PI, a new scaling parameter introduced by H. Mizutani, Y. Takagi, and S. Kawakami (1984, in preparation) than the conventional projectile's kinetic energy per unit target mass, E/Mt, used in the previous studies. All the mL/Mt data for basalts obtained in the present study are summarized by mL/Mt = 2.95 × 10?2PI?1 where PI = P0L3/YR3, P0 = peak shock pressure, L = projectile size, R = target size and Y = material strength of target. For aluminum targets, however, the mL/Mt is 2.5 orders of magnitude larger than that for brittle targets at impacts with the same PI. Size distributions of fragments expressed in a log N - log (m/Mt) diagram divided into three regimes bounded by two inflection points. In each regime the curve is expressed by N (>mMt) = A (mMt)?a. The slopes, a, of the log N - log (mMt) curves in the regimes of a large and a medium size range are positively correlated with the nondimensional impact stress, PI, and expressed as a = C3 + a3log PI. The slopes, a, in the smallest size range are, on the other hand, nearly constant and have values of 0.5 to 0.7 (12?23). Present results indicate that the impact fragmentation is scaled well by the new scaling parameter, PI, of Mizutani, Takagi, and Kawakami and that the present experimental data may shed new light on planetary impact processes.  相似文献   

2.
3.
We report laboratory experiments and modeling calculations investigating the effect of a hydrocarbon coating on ammonia ice spectral signatures. Observational evidence and thermochemical models indicate an abundance of ammonia ice clouds in Jupiter's atmosphere. However, spectrally identifiable ammonia ice clouds are found covering less than 1% of Jupiter's atmosphere, notably in areas of strong vertical transport, indicating a short lifetime for the signature of ammonia absorption on condensed ammonia particles [Baines, K.H., Carlson, R.W., Kamp, L.W., 2002. Icarus 159, 74-94]. Current literature has suggested coating of ammonia ice particles by a hydrocarbon haze as a possible explanation for this paradox. The work presented here supports the inference of a coating effect that can alter or suppress ammonia absorption features. In the experiments, thin films of ammonia ices are deposited in a cryogenic apparatus, coated with hydrocarbons, and characterized by reflection-absorption infrared spectroscopy. We have observed the effects on the ammonia ice absorption features near 3 and 9 μm with coverage by thin layers of hydrocarbons. Modeling calculations of these multilayer thin films assist in the interpretation of the experimental results and reveal the important role of optical interference in altering the aforementioned ammonia spectral features. Mie and T-matrix scattering calculations demonstrate analogous effects for ammonia ice particles and investigate the relative effects of ammonia ice particle size, shape, and coating layer thickness on the ice particle spectral signatures.  相似文献   

4.
Abstract— Ice thickness estimates and impactor dynamics indicate that some impacts must breach Europa's ice crust; and outcomes of impact experiments using ice‐over‐water targets range from simple craters to chaos‐like destroyed zones, depending on impact energy and ice competence. First‐order impacts‐into thick ice or at low impact energy‐produce craters. Second‐order impacts punch through the ice, making holes that resemble raft‐free chaos areas. Third‐order impacts‐into thinnest ice or at highest energy‐produce large irregular raft‐filled zones similar to platy chaos. Other evidence for an impact origin for chaos areas comes from the size‐frequency distribution of chaos+craters on Europa, which matches the impact production functions of Ganymede and Callisto; and from small craters around the large chaos area Thera Macula, which decrease in average size and density per unit area as a function of distance from Thera's center. There are no tiny chaos areas and no craters >50 km diameter. This suggests that small impactors never penetrate, whereas large ones (ÜberPenetrators: >2.5 km diameter at average impact velocity) always do. Existence of both craters and chaos areas in the size range 2–40 km diameter points to spatial/temporal variation in crust thickness. But in this size range, craters are progressively outnumbered by chaos areas at larger diameters, suggesting that probability of penetration increases with increasing scale of impact. If chaos areas do represent impact sites, then Europa's surface is older than previously thought. The recalculated resurfacing age is 480 (‐302/+960) Ma: greater than prior estimates, but still very young by solar system standards.  相似文献   

5.
Velocity distributions are determined for ejecta from 14 experimental impacts into regolithlike powders in near-vacuum conditions at velocities from 5 to 2321 m/sec. Of the two powders, the finer produces slower ejecta. Ejecta include conical sheets with ray-producing jets and (in the fastest impacts at Vimp ? 700 m/sec) high-speed vertical plumes of uncertain nature. Velocities in the conical sheets and jets increase with impact velocity (Sect. 6). Ejecta velocities also increase as impact energy and crater size increase; a suggested method of estimating ejecta velocity distributions in large-scale impacts involves homologous scaling according to R/Rcrater, where R is radial distances from the crater (Sect. 7). The data are consistent with Holsapple-Schmidt scaling relationships (Sect. 8). The fraction of initial total impact energy partitioned into ejecta kinetic energy increases from around 0.1% for the slow impacts to around 10% for the fast impacts, with the main increase probably at the onset of the hypervelocity impact regime (Sect. 9). Crater shapes are discussed, including an example of a possible “frozen” transient cavity (Sect. 10). Ejecta blanket thickness distributions (as a function of R) vary with target material and impact speed, but the results measured for hypervelocity impacts agree with published experimental and theoretical values (Sect. 11). The low ejecta velocities for powder targets relative to rock targets, together with the paucity of powder ejecta in low-speed impacts ( < 1 projectile mass for Vimp ≈ 10 m/sec) enhance early planetary accretion effeciency beyond that in some earlier theoretical models; 100% efficient accretion is found for certain primordial conditions (Sect. 12).  相似文献   

6.
B. Gundlach  S. Kilias  E. Beitz  J. Blum 《Icarus》2011,214(2):717-723
Coagulation models assume a higher sticking threshold for micrometer-sized ice particles than for micrometer-sized silicate particles. However, in contrast to silicates, laboratory investigations of the collision properties of micrometer-sized ice particles (in particular, of the most abundant H2O-ice) have not been conducted yet. Thus, we used two different experimental methods to produce micrometer-sized H2O-ice particles, i.e. by spraying H2O droplets into liquid nitrogen and by spraying H2O droplets into a cold nitrogen atmosphere. The mean particle radii of the ice particles produced with these experimental methods are (1.49 ± 0.79) μm and (1.45 ± 0.65) μm. Ice aggregates composed of the micrometer-sized ice particles are highly porous (volume filling factor: ? = 0.11 ± 0.01) or rather compact (volume filling factor: ? = 0.72 ± 0.04), depending on the method of production. Furthermore, the critical rolling friction force of FRoll,ice = (114.8 ± 23.8) × 10−10 N was measured for micrometer-sized ice particles, which exceeds the critical rolling friction force of micrometer-sized SiO2 particles . This result implies that the adhesive bonding between micrometer-sized ice particles is stronger than the bonding strength between SiO2 particles. An estimation of the specific surface energy of micrometer-sized ice particles, derived from the measured critical rolling friction forces and the surface energy of micrometer-sized SiO2 particles, results in γice = 0.190 J m−2.  相似文献   

7.
A. Bar-Nun  I. Pat-El  D. Laufer 《Icarus》2007,187(1):321-325
The findings of Deep Impact on the structure and composition of Tempel-1 are compared with our experimental results on large (20 cm diameter and up to 10 cm high) samples of gas-laden amorphous ice. The mechanical ∼tensile strength inferred for Tempel-1: ∼65 Pa is 30 to 60 times smaller than our experimental findings of 2-4 kPa. This means that Tempel-1 is even fluffier than our very fluffy, talcum like, ice sample. The thermal inertia: is very close to our value of 80. The density of , is close to our value of 250-300 kg m−3, taking into account an ice/silicate ratio of 1 in the comet, while we study pure ice. Surface morphological features, such as non-circular depressions, chaotic terrain and smooth surfaces, were observed in our experiments. The only small increase in the gas/water vapor ratio pre- and post-impact, suggest that in the area excavated by the impactor, the 135 K front did not penetrate deeper than a few meters. Altogether, the agreement between the findings of Deep Impact and our experimental results point to a loose agglomerate of ice grains (with a silicate-organic core), which was formed by a very gentle aggregation of the ice grains, without compaction.  相似文献   

8.
The existence of strong absorption bands of singly deuterated methane (CH3D) at wavelengths where normal methane (CH4) absorbs comparatively weakly could enable remote measurement of D/H ratios in methane ice on outer Solar System bodies. We performed laboratory transmission spectroscopy experiments, recording spectra at wavelengths from 1 to 6 μm to study CH3D bands at 2.47, 2.87, and 4.56 μm, wavelengths where ordinary methane absorption is weak. We report temperature-dependent absorption coefficients of these bands when the CH3D is diluted in CH4 ice and also when it is dissolved in N2 ice, and describe how these absorption coefficients can be combined with data from the literature to simulate arbitrary D/H ratio absorption coefficients for CH4 ice and for CH4 in N2 ice. We anticipate these results motivating new telescopic observations to measure D/H ratios in CH4 ice on Triton, Pluto, Eris, and Makemake.  相似文献   

9.
Aptly named, ice giants such as Uranus and Neptune contain significant amounts of water. While this water cannot be present near the cloud tops, it must be abundant in the deep interior. We investigate the likelihood of a liquid water ocean existing in the hydrogen-rich region between the cloud tops and deep interior. Starting from an assumed temperature at a given upper tropospheric pressure (the photosphere), we follow a moist adiabat downward. The mixing ratio of water to hydrogen in the gas phase is small in the photosphere and increases with depth. The mixing ratio in the condensed phase is near unity in the photosphere and decreases with depth; this gives two possible outcomes. If at some pressure level the mixing ratio of water in the gas phase is equal to that in the deep interior, then that level is the cloud base. The gas below the cloud base has constant mixing ratio. Alternately, if the mixing ratio of water in the condensed phase reaches that in the deep interior, then the surface of a liquid ocean will occur. Below this ocean surface, the mixing ratio of water will be constant. A cloud base occurs when the photospheric temperature is high. For a family of ice giants with different photospheric temperatures, the cooler ice giants will have warmer cloud bases. For an ice giant with a cool enough photospheric temperature, the cloud base will exist at the critical temperature. For still cooler ice giants, ocean surfaces will result. A high mixing ratio of water in the deep interior favors a liquid ocean. We find that Neptune is both too warm (photospheric temperature too high) and too dry (mixing ratio of water in the deep interior too low) for liquid oceans to exist at present. To have a liquid ocean, Neptune's deep interior water to gas ratio would have to be higher than current models allow, and the density at 19 kbar would have to be ≈0.8 g/cm3. Such a high density is inconsistent with gravitational data obtained during the Voyager flyby. In our model, Neptune's water cloud base occurs around 660 K and 11 kbar, and the density there is consistent with Voyager gravitational data. As Neptune cools, the probability of a liquid ocean increases. Extrasolar “hot Neptunes,” which presumably migrate inward toward their parent stars, cannot harbor liquid water oceans unless they have lost almost all of the hydrogen and helium from their deep interiors.  相似文献   

10.
The Deep Impact flyby spacecraft obtained high-speed images of the evolving impact event. Multiple exposures captured a self-luminous impact flash, caused by the heating and vaporization of the cometary surface. Laboratory investigations show that target conditions affect the photometric and spatial evolutions of the impact flash; thus, the flash can be used to constrain the state of the target if the other initial impact conditions are known. Through comparisons of DI flash observations to laboratory impact experiments, the impact flash evolution can be used to determine the type of impact that occurred and to interpret the nature of the impacted Tempel 1 surface. The Deep Impact flash was of relatively long duration, though its luminous efficiency was an order of magnitude lower than expectations. Both uprange and downrange self-luminous plumes were observed. Comparisons of the DI observations with the results of laboratory experiments suggest that the surface of Tempel 1 contains silicates, volatiles, and carbon compounds, and is a highly-porous substrate.  相似文献   

11.
The proposed past eruption of liquid water on Europa and ongoing eruption of water vapor and ice on Enceladus have led to discussion about the feasibility of cracking a planetary ice shell. We use a boundary element method to model crack penetration in an ice shell subjected to tension and hydrostatic compression. We consider the presence of a region at the base of the ice shell in which the far-field extensional stresses vanish due to viscoelastic relaxation, impeding the penetration of fractures towards a subsurface ocean. The maximum extent of fracture penetration can be limited by hydrostatic pressure or by the presence of the unstressed basal layer, depending on its thickness. Our results indicate that Europa's ice shell is likely to be cracked under 1-3 MPa tension only if it is ?2.5 km thick. Enceladus' ice shell may be completely cracked if it is capable of supporting ∼1-3 MPa tension and is less than 25 km thick.  相似文献   

12.
The Antarctic ice cap is the largest ice sheet of modern times. It is of considerable importance to predict the sea level variability due to the associated changes in ice volume. We present the results of a simple grounded ice sheet model, developed from Oerlemans [Oerlemans, J., 2002. Global dynamics of the Antarctic Ice Sheet, Climate Dynamics 19, 85–93.], in which the net oceanic evaporation influences the ice cap volume in two ways, through changes in: (i) the accumulation rate, and (ii) the mean sea level. The net evaporation changes are driven by the sea surface temperature (SST) anomaly time series of Howard [Howard, W.R., 1997. A warm future in the past, Nature, 388, 418–419.] for the subantarctic Southern Ocean over the period 220 kyr to the present. The effect of the waxing and waning of the northern hemisphere ice sheets is integrated into the model using an independent model, in which ice melting depends on the SST anomaly and ice calving depends on the sea level anomaly. A series of analytical expressions are derived for the related properties of the coupled ocean–ice system applicable over time scales of 100 kyr, which show, in particular, that the Antarctic ice cap volume changes are due mainly to the effects of the northern hemisphere ice sheets on sea level (which influences ice calving), rather than directly to changes in SST, and hence the ice cap volume is greatest during interglacial periods. This conclusion, which is independent of the specification of the ice melting regime for the northern hemisphere ice sheets, strongly suggests that the changes in accumulation flux estimated from the Vostok proxy temperature data and used in other studies of the Antarctic mass balance have been overestimated. A simple expression is also presented for the lag of ice cap volume to SST, and it is found that the predictions for the mean sea level variability are similar to observations for a melting flux of the northern hemisphere ice sheets about twice their accumulation flux due to the net oceanic evaporation, except during major deglaciations when these two fluxes appear to be of similar magnitude.  相似文献   

13.
William B. Moore 《Icarus》2006,180(1):141-146
Models of tidal-convective equilibrium for Europa's ice shell are computed using a laboratory-derived composite flow law for ice. Volume diffusion creep is found to dominate the flow law at equilibrium, and thus the thickness of the shell is strongly dependent on the poorly known grain size of the ice. This grain size is, however, constrained to be less than a few millimeters if equilibrium is achieved at the current eccentricity. Europa's ice shell cannot be thinner than about 16 km in equilibrium at present, since tidal dissipation cannot generate enough heat in such a thin shell to balance the heat transport. No conductive equilibria are found; this is likely due to the fact that most of a conductive shell must be cold if temperature gradients are to be large enough to carry the heat. A minimum eccentricity of about 0.0025 (about 1/4 the present value) below which there are no equilibria is also found.  相似文献   

14.
15.
B. V. Somov 《Solar physics》1975,42(1):235-246
Part of the proper X-ray emission of a flare is absorbed in the chromosphere and heats the region which creates an optical (in particular Hα) flare emission. The heating of chromosphere by X-ray emission may be responsible for the diffuse halo around the flare kernels. The optical emission of flare kernels, whose main sources of heating are energetic particles and/or thermal fluxes, may be also increased. By simple model calculations the present paper discusses the possibility of such effects for the large flare of 1972 August 7.  相似文献   

16.
17.
I.D.S. Grey 《Icarus》2004,168(2):467-474
Research on the impact cratering process on icy bodies has been largely based on the most abundant ice, water. However little is known about the influence of other relatively abundant ices such as ammonia. Accordingly, data are presented studying the influence on cratering in ammonia rich ice using spherical 1 mm diameter stainless steel projectiles at velocities of 4.8±0.5 km s−1. The ice target composition ranged from pure water ice, to solutions containing 50% ammonia and 50% water by weight. Results for crater depth, diameter, volume and depth/diameter ratio are given. The results showed that the presence of ammonia in the ice had a very strong influence on crater diameter and morphology. It was found that with only a 10% concentration of ammonia, crater diameter significantly decreased, and then at greater concentrations became independent of ammonia content. Crater depth was independent of the presence of ammonia in the ice, and the crater volume appeared to decrease as ammonia concentration increased. Between ammonia concentrations of 10 and 20% crater morphology visibly changed from wide shallow craters with a deeper central pit to craters with a smoothly increasing depth from the crater rim to centre. Thus, a small amount of ammonia within a water ice surface may have a major effect on crater morphology.  相似文献   

18.
A model is proposed for the formation of water ice mantles on grains in interstellar clouds. This occurs by direct accretion of monomers from the gas, be they formed by gas or surface reactions. The formation of the first monolayer requires a minimum extinction of interstellar radiation, sufficient to lower the grain temperature to the point where thermal evaporation of monomers is just offset by monomer accretion from the gas. This threshold is mainly determined by the adsorption energy of water molecules on the grain material; for hydrocarbon material, chemical simulation places this energy between 0.5 and 2 kcal mol−1, which sets the (true) visible extinction threshold at a few magnitudes. However, realistic distributions of matter in a cloud will usually add to this an unrelated amount of cloud core extinction, which can explain the large dispersion of observed (apparent) thresholds. Once the threshold is crossed, all available water molecules in the gas are quickly adsorbed, because the grain cools down and the adsorption energy on ice is higher than on bare grain. The relative thickness of the mantle, and, hence, the slope of  τ3( A v)  depend only on the available water vapour, which is a small fraction of the oxygen abundance. Chemical simulation was also used to determine the adsorption sites and energies of O and OH on hydrocarbons and study the dynamics of formation of water molecules by surface reactions with gaseous H atoms, as well as their chances to stick in situ.  相似文献   

19.
Somov  B. V.  Syrovatskii  S. I. 《Solar physics》1974,38(2):415-417
Solar Physics - Most of the energy of particles accelerated in a flare is used for the creation of a high-temperature flare region, the structure of which is determined by the heat conduction...  相似文献   

20.
Denis Lacelle  David Fisher 《Icarus》2008,197(2):458-469
In this study, various approaches that can potentially distinguish between vapor- and liquid-derived ground ice in the martian regolith (petrography, geochemistry, stable OH isotopes, CO2O2N2Ar gas composition) are examined using terrestrial ground ice examples. Although the stable OH isotope composition ratios can distinguish between vapor- and liquid-derived terrestrial ground ice, there might be to much mixing between the various water reservoirs on Mars to effectively use it, and, like on Earth, petrographic and geochemical approaches need to be complemented with additional supporting evidences. Of the different approaches currently being employed to determine the origin of terrestrial massive ground ice and icy sediments, it is the concentration of CO2 and the O2/Ar, N2/Ar and N2/O2 ratios of air entrapped in the ice that has proven to be the less ambiguous and most discriminatory. This is because the molar ratios of atmospheric gases change during their dissolution in water due to differences in their relative solubilities, thus providing distinctive ratios for the dissolved gases. The gas composition of air entrapped in the ice not only distinguishes between vapor- and liquid-derived ground ice, but any deviation from the theoretical dissolved values can provide insights into potential physical and biological processes operating in the subsurface, a key component for astrobiology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号