首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A.W. Harris 《Icarus》1975,24(2):190-192
Jeffreys (1947) estimated the size of fragments resulting from breakup of a satellite inside the Roche limit, obtaining a result of ~100 km. This result does not allow for the further breakup of the fragments due to collisions among themselves, which should reduce the maximum size to ?3 km for rock, or ?1 km for ice. This result affects not only Jeffrey's speculations as to the origin of Saturn's rings, but also recent speculations on the origin of the moon by capture and the possible tidal destruction of satellites of Mercury or Venus.  相似文献   

2.
A model is outlined shortly that explains the Martian surface asymmetry on the basis of interior processes.  相似文献   

3.
4.
The outer edges of Saturn's A and B rings, at 2.27 Rs and 1.95 Rs, have been examined using data acquired by four Voyager experiments. The shapes and kinematics of these features are influenced by their proximity to strong low-order Lindblad resonances. The data for the A-ring edge are consistent with a seven-loded radial distortion of amplitude 6.7 ± 1.5 km which rotates with the mass-weighted mean angular velocity of the coorbital satellite system. The B-ring edge has essentially a double-lobed figure of radial amplitude 74 ± 9 km which rotates with the mean motion of Mimas, though there is an indication that it is not completely described withe a simple Saturn-centered ellipse. An upper limit of 10 m has been placed on the vertical thickness in the unperturbed region of the B ring.  相似文献   

5.
The interacting of two winds model and a nonspherical density functionin three dimensions is introduced to study the dynamical structure ofplanetary nebulae. A fast wind with a mechanical energy interacts with asuper wind mass-loss rate of 2 × 10-10 M yr and avelocity of 10 km s-1. As a result it produces a dense and luminosmedium.Taking into account the above assumptions, we introduce the code(DS3D),and numerically we calculate the following physical quantities:the shell velocity, the shell radious and thickness, and other physicalquantities throughout the entire nebula.  相似文献   

6.
Intricate filamentary structure and multiple shell-like appearance are very common phenomena in Planetary Nebulae.In addition, recent observations also indicate that the individual filaments present in these objects can have larger velocities than the adjacent smooth background (Pascoli, 1992 PASP 104, 350 and paper quoted therein).We have hypothesized that non linear hydrodynamical processes existing within the nebular gas are, possibly, responsible for these structures. As a matter of fact, it is argued that such a characteristic morphology, reinterpreted as a intermingled network of solitary waves or solitons, can be spontaneously generated in Planetary Nebulae as soon as one assumes that the nebular gas is permeated by a weak magnetic field whose strength is about 10–5 to 10–4 gauss.Main results of this work and further comments will be subsequently published in Ap&SS.  相似文献   

7.
The search for life in the solar system requires sub-surface exploration capabilities of extra-terrestrial bodies like the Moon and Mars. To do so different techniques are being developed: from the classical rotary drilling techniques widely used on Earth to more original techniques like ultrasonic drilling. Dual-reciprocating drilling (DRD) is a bio-mimetic drilling principle inspired by the manner wood-wasps drill into wood to lay its eggs. It was proposed as an efficient extra-terrestrial drilling technique requiring low over-head force. To deepen the understanding of this novel drilling technique, DRD has been tested for the first time in planetary regolith simulants. These experiments are reported here. To do so a new test bench was built and is presented. The soil forces on the drill bit are analysed and the final depth reached by the DRD system is compared to the final depth reached by static penetration. The experiments have shown very high levels of slippage (defined here specifically for DRD). The observations of the surface deformations and the importance of slippage lead to the proposal of DRD penetration mechanics in regoliths. Finally a re-evaluation of previous DRD experiments conducted on low compressive strength rocks also show the high levels of slippage during DRD.  相似文献   

8.
A numerical method for calculating the time-average, vertical temperature structure of planetary atmospheres is presented. It is assumed that the atmospheres are in radiative-convective equilibrium, which is a good first approximation to many situations. Numerical tests of the rate of convergence and accuracy of the answer are presented. The method can readily handle molecular sources of opacity. Accurate results can be obtained with a minimum of computer time, because the number of iterations needed (~ 4) is small and the number of pressure levels at which the net flux needs to be evaluated (~ 10) is small. As an application of this procedure, we have calculated some model atmospheres of Jupiter.  相似文献   

9.
A dust disc within a planetary magnetosphere constitutes a novel type of dust-ring current. Such an azimuthal current carrying dust disc is subject to the dusty plasma analog of the well known finite-resistivity ‘tearing’ mode instability in regular plasma current sheets, at long wavelengths. It is proposed that the presently observed fine ringlet structure of the Saturnian ring system is a relic of this process operating at cosmogonic times and breaking up the initial proto-ring (which may be regarded as an admixture of fine dust and plasma) into an ensemble of thin ringlets. It is shown that this instability developes at a rate that is many orders of magnitude faster than any other known instability, when the disc thickness reaches a value that is comparable to its present observed value.  相似文献   

10.
The Weyl covariant formulation of Dirac's equation by means of a rest mass the Weyl type of which is — 1, implies the introduction of a Riemann structure in addition to the Weyl structure. The Ehlers-Pirani-Schild attempt to specify the space-time structure and the lowest order of the WKB approximation are compatible with each other. Only the requirement that the connection to which the Dirac field couples minimally is identical to the connection the autoparallels of which are the world lines of structure-less test particles, leads to a reduction of the Weyl structure to the Riemannian one.  相似文献   

11.
The Voyager spacecraft discovered that small moons orbit within all four observed ring systems coincident with the discovery of narrow and dusty rings around Jupiter, Saturn, Uranus and Neptune. These moons can provide the source for new rings if they are catastrophically disrupted by a comet or large meteoroid impact. This hypothesis for ring origins provides a natural mechanism for the ongoing creation of planetary rings. While it relieves somewhat the problem of explaining the continued existence of rings with apparently short evolutionary lifetimes, it raises the problem of explaining the continued existence of small moons, and the coexistence of moons and rings at comparable locations within the Roche zones of the giant planets. This problem has been studied in some detail recently, and the present work is a review of our current understanding of the processes in satellite disruption that pertain to the creation of planetary rings and the collisional cascade of circumplanetary bodies. Significant progress has been made. Narrow rings are produced by disruption of small moons in numerical simulations, and a self-consistent model of the collisional cascade can explain present-day moon populations. Absolute timescales and initial moon populations remain uncertain due to our poor knowledge of the impactor population and uncertainties in the strength of planetary satellites. More pressing are the qualitative issues that remain to be resolved including the nature of reaccretion of the debris and the origin of Saturn's rings.  相似文献   

12.
W.-L. Tseng  W.-H. Ip  T.A. Cassidy 《Icarus》2010,206(2):382-389
The saturnian system is subject to constant bombardment by interplanetary meteoroids and irradiation by solar UV photons. Both effects release neutral molecules from the icy ring particles either in the form of impact water vapor or gas emission in the form of H2O, O2 and H2. The observations of the Cassini spacecraft during its orbit insertion have shown the existence of molecular and atomic oxygen ions. Subsequent modeling efforts have led to the picture that an exospheric population of neutral oxygen molecules is probably maintained in the vicinity of the rings via photolytic-decomposition of ice and surface reactions. At the same time, ionized products O+ and ions move along the magnetic field lines and, depending on the optical local thickness rings, can thread through the ring plane or impact a ring particle, the ion principal sink. In addition, collisional interactions between the ions and neutrals will change the scale height of the ions and produce a scattered component of O2 molecules and O atoms which can be injected into Saturn’s upper atmosphere or the inner magnetosphere. The ring atmosphere, therefore, serves as a source of ions throughout Saturn’s magnetosphere. If photolysis of ice is the dominant source of O2, then the complex structure of the ring atmosphere/ionosphere and the injection rate of neutral O2 will be subject to modulation by the seasonal variation of Saturn along its orbit. In this work, we show how the physical properties of the ring oxygen atmosphere, the scattered component, and the magnetospheric ion source rate vary as the ring system goes through the cycle of solar insolation. In particular, it is shown that the magnetopheric ions should be nearly depleted at Saturn’s equinox if O2 is produced mainly by photolysis of the ring material.  相似文献   

13.
Monochromatic photographs in H, [Nii] 6584 and [Oiii] 5007 Å show many different details in the morphological structure of the Eskimo Nebula (NGC 2392). H and [Nii] images show, in a first approximation, similar structure (elliptical inner ring and broken outer ring) whereas both rings in [Oiii] are quite circular and regular in brightness. A photometric study using the method described by Louise (1974) gives various geometrical parameters of both rings which are practically the same for the observed lines. In other words, the classical stratification structure in planetary nebulae is not clearly observed in NGC 2392, in good agreement with previous observations (Wilson, 1950). This fact is probably a consequence of the peculiar structure in the geometry of the nebula. A model consisting of an inner toroid surrounded by a spherical shell is proposed to account for both photometric and spectroscopic observations.  相似文献   

14.
M. Seiß  F. Spahn  Jürgen Schmidt 《Icarus》2010,210(1):298-317
Saturn’s rings host two known moons, Pan and Daphnis, which are massive enough to clear circumferential gaps in the ring around their orbits. Both moons create wake patterns at the gap edges by gravitational deflection of the ring material (Cuzzi, J.N., Scargle, J.D. [1985]. Astrophys. J. 292, 276-290; Showalter, M.R., Cuzzi, J.N., Marouf, E.A., Esposito, L.W. [1986]. Icarus 66, 297-323). New Cassini observations revealed that these wavy edges deviate from the sinusoidal waveform, which one would expect from a theory that assumes a circular orbit of the perturbing moon and neglects particle interactions. Resonant perturbations of the edges by moons outside the ring system, as well as an eccentric orbit of the embedded moon, may partly explain this behavior (Porco, C.C., and 34 colleagues [2005]. Science 307, 1226-1236; Tiscareno, M.S., Burns, J.A., Hedman, M.M., Spitale, J.N., Porco, C.C., Murray, C.D., and the Cassini Imaging team [2005]. Bull. Am. Astron. Soc. 37, 767; Weiss, J.W., Porco, C.C., Tiscareno, M.S., Burns, J.A., Dones, L. [2005]. Bull. Am. Astron. Soc. 37, 767; Weiss, J.W., Porco, C.C., Tiscareno, M.S. [2009]. Astron. J. 138, 272-286). Here we present an extended non-collisional streamline model which accounts for both effects. We describe the resulting variations of the density structure and the modification of the nonlinearity parameter q. Furthermore, an estimate is given for the applicability of the model. We use the streamwire model introduced by Stewart (Stewart, G.R. [1991]. Icarus 94, 436-450) to plot the perturbed ring density at the gap edges.We apply our model to the Keeler gap edges undulated by Daphnis and to a faint ringlet in the Encke gap close to the orbit of Pan. The modulations of the latter ringlet, induced by the perturbations of Pan (Burns, J.A., Hedman, M.M., Tiscareno, M.S., Nicholson, P.D., Streetman, B.J., Colwell, J.E., Showalter, M.R., Murray, C.D., Cuzzi, J.N., Porco, C.C., and the Cassini ISS team [2005]. Bull. Am. Astron. Soc. 37, 766), can be well described by our analytical model. Our analysis yields a Hill radius of Pan of 17.5 km, which is 9% smaller than the value presented by Porco (Porco, C.C., and 34 colleagues [2005]. Science 307, 1226-1236), but fits well to the radial semi-axis of Pan of 17.4 km. This supports the idea that Pan has filled its Hill sphere with accreted material (Porco, C.C., Thomas, P.C., Weiss, J.W., Richardson, D.C. [2007]. Science 318, 1602-1607). A numerical solution of a streamline is used to estimate the parameters of the Daphnis-Keeler gap system, since the close proximity of the gap edge to the moon induces strong perturbations, not allowing an application of the analytic streamline model. We obtain a Hill radius of 5.1 km for Daphnis, an inner edge variation of 8 km, and an eccentricity for Daphnis of 1.5 × 10−5. The latter two quantities deviate by a factor of two from values gained by direct observations (Jacobson, R.A., Spitale, J., Porco, C.C., Beurle, K., Cooper, N.J., Evans, M.W., Murray, C.D. [2008]. Astron. J. 135, 261-263; Tiscareno, M.S., Burns, J.A., Hedman, M.M., Spitale, J.N., Porco, C.C., Murray, C.D., and the Cassini Imaging team [2005]. Bull. Am. Astron. Soc. 37, 767), which might be attributed to the neglect of particle interactions and vertical motion in our model.  相似文献   

15.
We analyze stellar occultations by Saturn's rings observed with the Cassini Ultraviolet Imaging Spectrograph and find large variations in the apparent normal optical depth of the B ring with viewing angle. The line-of-sight optical depth is roughly independent of the viewing angle out of the ring plane so that optical depth is independent of the path length of the line-of-sight. This suggests the ring is composed of virtually opaque clumps separated by nearly transparent gaps, with the relative abundance of clumps and gaps controlling the observed optical depth. The observations can be explained with a model of self-gravity wakes like those observed in the A ring. These trailing spiral density enhancements are due to the competing processes of self-gravitational accretion of ring particles and Kepler shear. The B ring wakes are flatter and more closely packed than their neighbors in the A ring, with height-to-width ratios <0.1 for most of the ring. The self-gravity wakes are seen in all regions of the B ring that are not opaque. The observed variation in total B ring optical depth is explained by the amount of relatively empty space between the self-gravity wakes. Wakes are more tightly packed in regions where the apparent normal optical depth is high, and the wakes are more widely spaced in lower optical depth regions. The normal optical depth of the gaps between the wakes is typically less than 0.5 and shows no correlation with position or overall optical depth in the ring. The wake height-to-width ratio varies with the overall optical depth, with flatter, more tightly packed wakes as the overall optical depth increases. The highly flattened profile of the wakes suggests that the self-gravity wakes in Saturn's B ring correspond to a monolayer of the largest particles in the ring. The wakes are canted to the orbital direction in the trailing sense, with a trend of decreasing cant angle with increasing orbital radius in the B ring. We present self-gravity wake properties across the B ring that can be used in radiative transfer modeling of the ring. A high radial resolution (∼10 m) scan of one part of the B ring during a grazing occultation shows a dominant wavelength of 160 m due to structures that have zero cant angle. These structures are seen at the same radial wavelength on both ingress and egress, but the individual peaks and troughs in optical depth do not match between ingress and egress. The structures are therefore not continuous ringlets and may be a manifestation of viscous overstability.  相似文献   

16.
《Icarus》1987,70(1):31-36
Models of Uranus were computed which match J4 with a 17.24-hr rotation rate as measured by Voyager 2. These models imply an atmospheric enhancement of H2O, NH3, and CH4 of not more than about 30 times the solar value, and have a total planetary ice to rock ratio more than 16. A scenario is presented whereby such high values of I/R may be attained.  相似文献   

17.
18.
In this study we present photometric results for the galaxy NGC 4736: infrared and visible profiles. After a careful correction for the extinction within the galaxy based on measured neutral gas surface densities, we interpret the profiles in the individual bands and in colour indices, in terms of the radial distribution of stellar populations. We pick out the behaviour of the two rings, an inner ring some 40–50 arc sec from the nucleus, and an outer ring some 300 arc sec away. We show how the photometry allows us to make tentative physical inferences about the nature of these two structures, showing that the inner ring is connected with an outflow of gas observed via itsHii regions, and is probably the result of an axisymmetric starburst, while the outer ring is a site of star formation which appears to be further from the centre than the typical resonant structures associated with a density wave.  相似文献   

19.
The Duolun basin, which is located in Inner Mongolia, China, has been proposed to be an impact structure with an apparent rim diameter of about 70, or even 170 km. The designation as an impact structure was based on its nearly circular topography, consisting of an annular moat that surrounds an inner hummocky region, and the widespread occurrences of various igneous rocks, polymict breccias, and deformed crustal rocks. Critical shock metamorphic evidence is not available to support the impact hypothesis. We conducted two independent reconnaissance field surveys to this area and studied the lithology both within and outside of the ring structure. We collected samples from all lithologies that might contain evidence of shock metamorphism as suggested by their locations, especially those sharing similar appearances with impact breccias, suevites, impact melt rocks, and shatter cones. Field investigation, together with thin‐section examination, discovered that the suspected impact melt rocks are actually Early Cretaceous and Late Jurassic lava flows and pyroclastic deposits of rhyolitic to trachytic compositions, and the interpreted impact glass is typical volcanic glass. Petrographic analyses of all the samples reveal no indications for shock metamorphic overprint. All these lines of evidence suggest that the Duolun basin was not formed through impact cratering. The structural deformation and spatial distribution pattern of the igneous rocks suggest that the Duolun basin is most likely a Jurassic–Cretaceous complex rhyolite caldera system that has been partly filled with sediments forming an annular basin, followed by resurgent doming of the central area.  相似文献   

20.
Keiji Ohtsuki 《Icarus》2006,183(2):384-395
We examine rotation rates of gravitating particles in low optical depth rings, on the basis of the evolution equation of particle rotational energy derived by Ohtsuki [Ohtsuki, K., 2006. Rotation rate and velocity dispersion of planetary ring particles with size distribution. I. Formulation and analytic calculation. Icarus 183, 373-383]. We obtain the rates of evolution of particle rotation rate and velocity dispersion, using three-body orbital integration that takes into account distribution of random velocities and rotation rates. The obtained stirring and friction rates are used to calculate the evolution of velocity dispersion and rotation rate for particles in one- and two-size component rings as well as those with a narrow size distribution, and agreement with N-body simulation is confirmed. Then, we perform calculations to examine equilibrium rotation rates and velocity dispersion of gravitating ring particles with a broad size distribution, from 1 cm up to 10 m. We find that small particles spin rapidly with 〈ω21/2/Ω?102-103, where ω and Ω are the particle rotation rate and its orbital angular frequency, respectively, while the largest particles spin slowly, with 〈ω21/2/Ω?1. The vertical scale height of rapidly rotating small particles is much larger than that of slowly rotating large particles. Thus, rotational states of ring particles have vertical heterogeneity, which should be taken into account in modeling thermal infrared emission from Saturn's rings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号