首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
A small but increasing volume of observations of cometary nuclei has accumulated during the past two decades. This development is accelerating with upcoming space missions such as Stardust, Contour, and Rosetta. In response to the growing need for a theoretical understanding of optical properties of cometary nuclei, we have calculated synthetic reflectance spectra in the wavelength region 0.2-2.0 μm, photometric colors in the Johnson-Kron-Cousins UBVRI system, and visual geometric albedos for a large number of porous ice-dust mixtures with differing composition, regolith grain sizes, and grain morphologies, such as core-mantle grains, dense clusters of such grains, and large irregular particles with internal scatterers. The calculations are based on Mie theory, the discrete dipole approximation, Hapke theory, and a numerical solution to the equation of radiative transfer in particulate media. In addition, wavelength-integrated directional-hemispherical albedos and flux attenuation profiles in the regolith as functions of depth have been calculated in order to improve the energy budget and treatment of energy boundary conditions in thermal models of cometary nuclei.Our results are compared with spectra and colors of observed cometary nuclei. Our main conclusions are that only regolith consisting of relatively large core-mantle grains, or clusters of smaller core-mantle grains, is capable of reproducing the red colors seen in comets; that ice-dust mixtures actually can be darker than ice-free regolith in certain circumstances; and that solar radiation sometimes penetrates to a depth that is comparable to the region in which diurnal temperature variations occur.  相似文献   

2.
The results of photometric and polarimetric observations carried out for some bright atmosphere-less bodies of the Solar system near the zero phase angle reveal the simultaneous existence of two spectacular optical phenomena, the so-called brightness and polarization opposition effects. In a number of studies, these phenomena were explained by the influence of coherent backscattering. However, in general, the interference concept of coherent backscattering can be used only in the case where the particles are in the far-field zones of each other, i.e., when the scattering medium is rather rarefied. Because of this, it is important to prove rigorously and to demonstrate that the coherent backscattering effect may also exist in densely packed scattering media like regolith surface layers of celestial bodies. From the results of the computer modeling performed with the use of numerically exact solutions of the macroscopic Maxwell equations for discrete random media with different packing densities of particles, we studied the origin and evolution of all the opposition phenomena predicted by the coherent backscattering theory for low-packing-density media. It has been shown that the predictions of this theory remain valid for rather high packing densities of particles that are typical, in particular, of regolith surfaces of the Solar system bodies. The results allow us to conclude that both opposition effects observed simultaneously in some high-albedo atmosphereless bodies of the Solar system are caused precisely by coherent backscattering of solar light in the regolith layers composed of microscopic particles.  相似文献   

3.
《Icarus》1987,72(1):95-127
The possibility that snowmelt could have provided liquid water for valley network formation early in the history of Mars is investigated using an optical-thermal model developed for dusty snowpacks at temperate latitudes. The heating of the postulated snow is assumed to be driven primarily by the absorption of solar radiation during clear sky conditions. Radiative heating rates are predicted as a function of depth and shown to be sensitive to the dust concentration and the size of the ice grains while the thermal conductivity is controlled by temperature, atmospheric pressure, and bulk density. Rates of metamorphism indicate that fresh fine-grained snow on Mars would evolve into moderately coarse snow during a single summer season. Results from global climate models are used to constrain the mean-annual surface temperatures for snow and the atmospheric exchange terms in the surface energy balance. Mean-annual temperatures within Martian snowpacks fail to reach the melting point for all atmospheric pressures below 1000 mbar despite a predicted temperature enhancement beneath the surface of the snowpacks. When seasonal and diurnal variations in the incident solar flux are included in the model, melting occurs at midday during the summer for a wide range of snow types and atmospheric pressures if the dust levels in the snow exceed 100 ppmw (parts per million by weight). The optimum dust concentration appears to be about 1000 ppmw. With this dust load, melting can occur in the upper few centimeters of a dense coarse-grained snow at atmospheric pressures as low as 7 mbar. Snowpack thickness and the thermal conductivity of the underlying substrate determine whether the generated snow-melt can penetrate to the snowpack base, survive basal ice formation, and subsequently become available for runoff. Under favorable conditions, liquid water becomes available for runoff at atmospheric pressures as low as 30 to 100 mbar if the substrate is composed of regolith, as is expected in the ancient cratered terrain of Mars.  相似文献   

4.
Wenzhe Fa 《Icarus》2010,207(2):605-615
In China’s first lunar exploration project, Chang-E 1 (CE-1), a multi-channel microwave radiometer was aboard the satellite, with the purpose of measuring microwave brightness temperature (Tb) from lunar surface and surveying the global distribution of lunar regolith layer thickness. In this paper, the primary 621 tracks of swath data measured by CE-1 microwave radiometer from November 2007 to February 2008 are collected and analyzed. Using the nearest neighbor interpolation to collect the Tb data under the same Sun illumination, global distributions of microwave brightness temperature from lunar surface at lunar daytime and nighttime are constructed. Based on the three-layer media modeling (the top dust-soil, regolith and underlying rock media) for microwave thermal emission of lunar surface, the CE-1 measured Tb and its dependence upon latitude, frequency and FeO + TiO2 content, etc. are discussed. The CE-1 Tb data at Apollo landing sites are especially chosen for validation and calibration on the basis of available ground measurements. Using the empirical dependence of physical temperature upon the latitude verified by the CE-1 multi-channel Tb data at Apollo landing sites, the global distribution of regolith layer thickness is further inverted from the CE-1 brightness temperature data at 3 GHz channel. Those inversions at Apollo landing sites and the characteristics of regolith layer thickness for lunar maria are well compared with the Apollo in situ measurements and the regolith thickness derived from the Earth-based radar data. Finally, the statistical distribution of regolith thickness is analyzed and discussed.  相似文献   

5.
Petrova  E. V.  Jockers  K.  Kiselev  N. N. 《Solar System Research》2001,35(5):390-399
Optical observations of comets and atmosphereless celestial bodies show that a change of sign of the linear polarization of scattered light from negative to positive at phase angles less than 20° is typical of the cometary coma, as well as of the regolith of Mercury, the Moon, planetary satellites, and asteroids. To explain a negative branch of polarization, this research suggests a unified approach to the treatment of cometary-dust particles and regolith grains as aggregate forms. A composite structure of aggregate particles resulting in the interaction of composing structural elements (monomers) in the light-scattering process is responsible for the negative polarization at small phase angles, if the monomer sizes are comparable to the wavelength. The characteristics of single scattering of light calculated for aggregates of this kind turned out to be close to the properties observed for cometary dust. Unlike the cometary coma, the regolith is an optically semi-infinite medium, where the interaction between particles is significant. To find the reflectance characteristics of regolith, the radiative-transfer equation should be solved for a regolith layer. In this case, the interaction between scatterers can be modeled to a certain extent by representing the regolith grains as aggregate structures consisting of several or many elements. Although real regolith grains are much larger than the particles considered here, laboratory measurements have shown that it is precisely the surface irregularities comparable to the wavelength that cause a negative branch of polarization. The main observed features of the phase and spectral dependence of the linear polarization of light scattered from comets and atmosphereless celestial bodies, which are due to the difference of the elementary scatterers in composition, size, and structure, can be successfully explained using the aggregate model of particles.  相似文献   

6.
Patrick Michel  Marco Delbo 《Icarus》2010,209(2):520-534
In this paper, we present our study of the orbital and thermal evolutions, due to solar radiative heating, of four near-Earth asteroids (NEAs) considered as potential target candidates for sample return space missions to primitive asteroids. We used a dynamical model of the NEA population to estimate the most likely source region and orbital history of these objects. Then, for each asteroid, we integrated numerically over their entire lifetime a set of 14 initially indistinguishable orbit (clones), obtained by small variations of the nominal initial conditions. Using a thermal model, we then computed surface and sub-surface temperatures of these bodies during their dynamical history. Our aim is to determine whether these bodies are likely to have experienced high temperature level, and whether great temperature changes can be expected due to the orbital changes as well as their maximum and minimum values. Such information is important in the framework of sample return space missions whose goal is to bring back pristine materials. The knowledge of the temperature range of materials at different depth over the orbital evolution of potential targets can help defining sampling strategies that ensure the likelihood that unaltered material will be brought back. Our results suggest that for all the considered potential targets, the surface has experienced for some time temperatures greater than 400 K and at most 500 K with 50% probability. This probability drops rapidly with increasing temperature. Sub-surface materials at a depth of only 3 cm are much more protected from high temperature and generally do not reach temperatures exceeding 450 K (with 50% probability). They should thus be unaltered at this depth at least from a Sun-driven heating point of view. On the other hand, surface material for some of the considered objects can have a range of temperature which can make them less reliable as pristine materials. However, it is assumed here that the same material is constantly exposed to solar heat, while regolith turnover may occur. The latter can be caused by different processes such as seismic shaking and/or impact cratering. This would reduce the total time that materials are exposed to a certain temperature. Thus, it is very likely that a sample collected from any of the four considered targets, or any primitive NEA with similar dynamical properties, will have components that will be thermally unaltered as long as some of it comes from only 3 to 5 cm depth. Such a depth is not considered difficult to reach with some of the current designs of sampling devices.  相似文献   

7.
Between 1999 and 2002, the Galileo spacecraft made 6 close flybys of Io during which many observations of Io's thermal radiation were made with the photopolarimeter-radiometer (PPR). While the NIMS instrument could measure thermal emission from hot spots with T>200 K, PPR was the only Galileo instrument capable of mapping the lower temperatures of older, cooling lava flows, and the passive background. We tabulate all data taken by PPR of Io during these flybys and describe some scientific highlights revealed by the data. The data include almost complete coverage of Io at better than 250 km resolution, with extensive regional coverage at higher resolutions. We found a modest poleward drop in nighttime background temperatures and evidence of thermal inertia variations across the surface. Comparison of high spatial resolution temperature measurements with observed daytime SO2 gas pressures on Io provides evidence for local cold trapping of SO2 frost on scales smaller than the 60 km resolution of the PPR data. We also calculated the power output from several hot spots and estimated total global heat flow to be about 2.0-2.6 W m−2. The low-latitude diurnal temperature variations for the regions between obvious hot spots are well matched by a laterally-inhomogeneous thermal model with less than 1 W m−2 endogenic heat flow.  相似文献   

8.
Abstract— The capability of modern methods to characterize ultra‐small samples is well established from analysis of interplanetary dust particles (IDPs), interstellar grains recovered from meteorites, and other materials requiring ultra‐sensitive analytical capabilities. Powerful analytical techniques are available that require, under favorable circumstances, single particles of only a few nanograms for entire suites of fairly comprehensive characterizations. A returned sample of > 1000 particles with total mass of just 1 μg permits comprehensive quantitative geochemical measurements that are impractical to carry out in situ by flight instruments. The main goal of this paper is to describe the state‐of‐the‐art in microanalysis of astromaterials. Given that we can analyze fantastically small quantities of asteroids and comets, etc., we have to ask ourselves, how representative are microscopic samples of bodies that measure a few to many kilometers across? With the Galileo flybys of Gaspra and Ida, it is now recognized that even very small airless bodies have indeed developed a particulate regolith. Acquiring a sample of the bulk regolith, a simple sampling strategy, provides two critical pieces of information about the body. Regolith samples are excellent bulk samples because they normally contain all the key components of the local environment, albeit in particulate form. Furthermore, because this fine fraction dominates remote measurements, regolith samples also provide information about surface alteration processes and are a key link to remote sensing of other bodies. Studies indicate that a statistically significant number of nanogram‐sized particles should be able to characterize the regolith of a primitive asteroid, although the presence of larger components (e.g., chondrules, calcium‐aluminum‐rich inclusions, large crystal fragments, etc.) within even primitive meteorites (e.g., Murchison) points out the limitations of using data obtained from nanogram‐sized samples to characterize entire primitive asteroids. However, the most important asteroidal geological processes have left their mark on the matrix, because this is the finest‐grained portion and therefore most sensitive to chemical and physical changes. Thus, the following information can be learned from this fine grain size fraction alone: (1) mineral paragenesis; (2) regolith processes; (3) bulk composition; (4) conditions of thermal and aqueous alteration (if any); (5) relationships to planets, comets, meteorites (via isotopic analyses, including O); (6) abundance of water and hydrated material; (7) abundance of organics; (8) history of volatile mobility; (9) presence and origin of presolar and/or interstellar material. Most of this information can be obtained even from dust samples from bodies for which nanogram‐sized samples are not truly representative. Future advances in sensitivity and accuracy of laboratory analytical techniques can be expected to enhance the science value of nano‐ to microgram‐sized samples even further. This highlights a key advantage of sample returns—that the most advanced analysis techniques can always be applied in the laboratory and that well‐preserved samples are available for future investigations.  相似文献   

9.
Reliable measurements of the Moon's global heat flow would serve as an important diagnostic test for models of lunar thermal evolution and would also help to constrain the Moon's bulk abundance of radioactive elements and its differentiation history. The two existing measurements of lunar heat flow are unlikely to be representative of the global heat flow. For these reasons, obtaining additional heat flow measurements has been recognized as a high priority lunar science objective. In making such measurements, it is essential that the design and deployment of the heat flow probe and of the parent spacecraft do not inadvertently modify the near-surface thermal structure of the lunar regolith and thus perturb the measured heat flow. One type of spacecraft-related perturbation is the shadow cast by the spacecraft and by thermal blankets on some instruments. The thermal effects of these shadows propagate by conduction both downward and outward from the spacecraft into the lunar regolith. Shadows cast by the spacecraft superstructure move over the surface with time and only perturb the regolith temperature in the upper 0.8 m. Permanent shadows, such as from thermal blankets covering a seismometer or other instruments, can modify the temperature to greater depth. Finite element simulations using measured values of the thermal diffusivity of lunar regolith show that the limiting factor for temperature perturbations is the need to measure the annual thermal wave for 2 or more years to measure the thermal diffusivity. The error induced by permanent spacecraft thermal shadows can be kept below 8% of the annual wave amplitude at 1 m depth if the heat flow probe is deployed at least 2.5 m away from any permanent spacecraft shadow. Deploying the heat flow probe 2 m from permanent shadows permits measuring the annual thermal wave for only one year and should be considered the science floor for a heat flow experiment on the Moon. One way to meet this separation requirement would be to deploy the heat flow and seismology experiments on opposite sides of the spacecraft. This result should be incorporated in the design of future lunar geophysics spacecraft experiments. Differences in the thermal environments of the Moon and Mars result in less restrictive separation requirements for heat flow experiments on Mars.  相似文献   

10.
The effects of vertical variations in density and dielectric constant on nadir-viewing microwave brightness temperatures are examined. Stratification models as well as models of a continuous increase in density with depth are analyzed. Specific applications address the vertical structure of the lunar frontside regolith, utilizing combined constraints from Apollo data, bistatic radar signatures, and Earth-based measurements of the lunar microwave brightness temperature.Results have been analyzed in terms of the effects on the zeroth and first harmonic of the lunar disk-center brightness temperature variation over a lunation, and their wavelength dependence. Lunation-mean brightness temperatures, which are diagnostic of emissivity and steady-state sub-surface temperatures, are sensitive to both near-surface soil density gradients and single high-impedance dielectric contrasts. Models of the rapid density increase in the upper 5–10 cm of the lunar regolith predict brightness temperature decreases of 2–10°K between λ0 = 3 and 30 cm. The magnitude of this spectral variation depends upon the thickness of a postulated low-density surface coating layer, and the magnitude of the density gradient in the transition soil layer. Comparable decreases in brightness temperature can be produced by a stratified two-layer model of soil overlaying bedrock if the high-density substrate lies within 1–2 m of the surface. Multiple soil layering on a centimeter scale, such as is observed in the Apollo core samples, is not likely to induce spectral variations in mean brightness temperature due to rapid regional variations in layer depths and thicknesses.The fractional variation in disk-center brightness temperature over a lunation (first harmonic) can be altered by vertical-structure effects only for the case in which a larger and abrupt dielectric contrast exists within the upper surface layer where the significant diurnal variations in physical temperature occur. Soil density variations do not cause scattering effects sufficient to significantly alter the microwave emission weighting function within the diurnal layer. For the Moon, this layer consists of the upper 10 cm. Since no widespread rock substrate as shallow as 10 cm exists in the lunar frontside, only volume scattering effects, due to buried shallow rock fragments, can explain the apparent high electrical loss inferred from Earth-based measurements of the amplitude of lunation brightness temperature variations.Representative models of the lunar frontside vertical structure have also been examined for their effects of radar cross-section measurements and resultant inferences of bulk dielectric constant. Models of the near-surface density gradient predict a significant increase in the remotely inferred dielectric constant value from centimeter to meter wavelengths. Such a model is in general agreement with the dielectric constant spectrum inferred from Earth-based brightness temperature polarization measurements, but is difficult to reconcile with the Apollo bistatic radar results at λ0 = 13 and 116 cm.  相似文献   

11.
《Icarus》1986,67(1):19-36
A quantitative model of the state, distribution, and migration of water in the shallow Martian regolith is presented. Reported results are confined to the region of the planet greater than 40° lat. The calculations take into account (1) expected thermal variations at all depths, latitudes, and times resulting from seasonal and astronomically induced insolation variations; (2) variations in atmospheric PH2O and PCO2 resulting from polar insolation variations and regolith adsorptive equilibria; (3) feedback effects related to latent heat and albedo variations resulting from condensation of atmospheric constituents; (4) two possible regolith mineralogies; (5) variable total H2O content of the regolith; (6) kinetics of H2O transport through the Martian atmosphere and regolith; and (7) equilibrium phase partitioning of H2O between the condensed, adsorbed, and vapor phases. Results suggest that the adsorptive capacity of the regolith is important in controlling the state and distribution of high-latitude H2O; unweathered mafic silicates favor the development of shallow ground ice at all temperate and polar latitudes, while heavily weathered clay-like regolith materials leads to a deeper ground ice interface and far more extensive quantities of adsorbed H2O. The capacity of the high-latitude regolith for storage of H2O and the total mass of H2O exchanged between the atmosphere, polar cap, and subsurface over an obliquity cycle is found to be relatively independent of mineralogy. The maximum exchanged volume is found to be 3.0 × 104 km3 of ice per cycle. Implications for the history of the polar caps and the origin of the layered terrain are discussed. Results also suggest that seasonal thermal waves act to force adsorbed H2O into the solid phase over a wide variety of latitude/obliquity conditions. Seasonal phase cycling of regolith H2O is most common at high latitudes and obliquities. Such phase behavior is highly dependent on regolith mineralogy. In a highly weathered regolith, adsorbed H2O is annually forced into the solid phase at all latitudes ≥40° at obliquities greater than approximately 25°. Seasonal adsorption-freezing cycles which are predicted here may produce geomorphologic signatures not unlike those produced by terrestrial freeze-thaw cycles.  相似文献   

12.
In this paper we attempt to answer the question, how formation of a small-scale trench in the martian regolith affects local distribution of the subsurface ice. We are especially interested in the consequences of digging a trench to search for buried ice, as has been done during the Phoenix Mars Lander mission. However, the results may be also applicable for natural troughs, or cracks. We present results of simulations of diurnal exchange of water between the regolith and the atmosphere. Our model includes the heat and vapor migration in the regolith surrounding the trench, as well as formation of diurnal frost. We take into account scattering of light in the atmosphere and on the trench facets, as well as changes of atmospheric humidity on diurnal and seasonal time scales. Our calculations show, that the measurements of ice content in a sample obtained within one, or two days from the beginning of digging should not be affected. However, on somewhat longer time scale at the south facing site of the trench the regolith can be significantly depleted from ice. This effect should be taken into account if the excavation and taking samples from different depths will be performed in stages separated in time by a month, or more.  相似文献   

13.
The adsorption of molecular water onto lunar analog materials was investigated under ultra-high vacuum with the goal to better understand the thermal stability and evolution of water on the lunar surface. Temperature-programmed desorption (TPD) experiments show that lunar-analog basaltic-composition glass is hydrophobic, with water-water interactions dominating over surface chemisorption. This suggests that lunar agglutinates will tend not to adsorb water at temperatures above where water clusters and multilayer ice forms. The basalt JSC-1A lunar mare analog, which is a complex mixture of minerals and glass, adsorbs water above 180 K with an adsorption profile that extends to 400 K, showing evidence for a continuum of water adsorption sites. Bancroft albite adsorbs more water, more strongly, than JSC-1A, with a well-defined desorption peak near 225 K. This suggests that mineral surfaces will adsorb more water than mare or mature (glassy, agglutinate rich) surfaces and may explain the association of water with fresh feldspathic craters at high latitudes. The activation energies for the thermal desorption of water from these materials were determined, and along with values from the literature, used to model the grain-to-grain migration of water within the lunar regolith. These models suggest that a combination of recombinative desorption of hydroxyl along with molecular desorption of water and its subsequent migration within and out of the regolith may explain observed diurnal variations in the distribution of water and hydroxyl on the illuminated Moon.  相似文献   

14.
In late 2004 and 2005 the Cassini composite infrared spectrometer (CIRS) obtained spatially resolved thermal infrared radial scans of Saturn's main rings (A, B and C, and Cassini Division) that show ring temperatures decreasing with increasing solar phase angle, α, on both the lit and unlit faces of the ring plane. These temperature differences suggest that Saturn's main rings include a population of ring particles that spin slowly, with a spin period greater than 3.6 h, given their low thermal inertia. The A ring shows the smallest temperature variation with α, and this variation decreases with distance from the planet. This suggests an increasing number of smaller, and/or more rapidly rotating ring particles with more uniform temperatures, resulting perhaps from stirring by the density waves in the outer A ring and/or self-gravity wakes.The temperatures of the A and B rings are correlated with their optical depth, τ, when viewed from the lit face, and anti-correlated when viewed from the unlit face. On the unlit face of the B ring, not only do the lowest temperatures correlate with the largest τ, these temperatures are also the same at both low and high α, suggesting that little sunlight is penetrating these regions.The temperature differential from the lit to the unlit side of the rings is a strong, nearly linear, function of optical depth. This is consistent with the expectation that little sunlight penetrates to the dark side of the densest rings, but also suggests that little vertical mixing of ring particles is taking place in the A and B rings.  相似文献   

15.
《Icarus》1986,67(1):1-18
A thermal/diffusive model of H2O kinetics and equilibrium was developed to investigate the long-term evolution and depth distribution of subsurface ice on Mars. The model quantitatively takes into account (1) obliquity variations; (2) eccentricity variations; (3) long-term changes in the solar luminosity; (4) variations in the argument of subsolar meridian (in planetocentric equatorial coordinates); (5) albedo changes at higher latitudes due to seasonal phase changes of CO2 and the varying extent of CO2 ice cover; (6) planetary internal heat flow; (7) temperature variations in the regolith as a function of depth, time, and latitude due to the above factors; (8) atmospheric pressure variations over a 104-year time scale; (9) the effects of factors (1) through (5) on seasonal polar cap temperatures; and (10) Knudsen and molecular diffusion of H2O through the regolith. The migration of H2O into or out of the regolith is determined by two boundary conditions, the H2O vapor pressure at the subsurface ice boundary and the annual average H2O concentration at the base of the atmosphere. These are controlled respectively by the annual average regolith temperature at the given depth and seasonal temperatures at the polar cap. Starting from an arbitrary initial uniform depth distribution of subsurface ice, H2O fluxes into or out of the regolith are calculated for 100 selected obliquity cycles, each representing a different epoch in Mars' history. The H2O fluxes are translated into ice thicknesses and extrapolated over time to give the subsurface ice depth as a function of latitude and time. The results show that obliquity variations influence annual average regolith temperatures in varying degrees, depending on latitude, with the greatest effect at the poles and almost no effect at 40° lat. Insolation changes at the pole, due to obliquity, argument of subsolar meridian, and eccentricity variations can produce enormous atmospheric H2O concentration variations of ≈6 orders of magnitude over an obliquity cycle. Superimposed on these cyclic variations is a slow, monotonic change due to the increasing solar luminosity. Albedo changes at the polar cap due to seasonal phase changes of CO2 and the varying thickness of the CO2 ice cover are critically important in determining annual average atmospheric H2O concentrations. Despite the strongly oscillating character of the boundary conditions, only small amounts of H2O are exchanged between the regolith and the atmosphere per obliquity cycle (<10 g/cm2). The net result of H2O migration is that the regolith below 30–40° lat is depleted of subsurface ice, while the regolith above 30–40° lat contains permanent ice due to the depth of penetration of the annual thermal wave. This result is supported by recent morphological studies. The rate of migration of H2O is strongly dependent on average pore/capillary radius for which we have assumed values of 1 and 10 μm. We estimate that the H2O ice removed from the regolith would produce a permanent ice cap with a volume between 2 × 106 and 6 × 106 km3. This generally agrees with estimates deduced from deflationary features at lower latitudes, depositional features at higher latitudes, and the mass of the polar caps.  相似文献   

16.
Abstract— Knowledge of regolith depth structure is important for a variety of studies of the Moon and other bodies such as Mercury and asteroids. Lunar regolith depths have been estimated using morphological techniques (i.e., Quaide and Oberbeck 1968; Shoemaker and Morris 1969), crater counting techniques (Shoemaker et al. 1969), and seismic studies (i.e., Watkins and Kovach 1973; Cooper et al. 1974). These diverse methods provide good first order estimates of regolith depths across large distances (tens to hundreds of kilometers), but may not clearly elucidate the variability of regolith depth locally (100 m to km scale). In order to better constrain the regional average depth and local variability of the regolith, we investigate several techniques. First, we find that the apparent equilibrium diameter of a crater population increases with an increasing solar incidence angle, and this affects the inferred regolith depth by increasing the range of predicted depths (from ~7–15 m depth at 100 m equilibrium diameter to ~8–40 m at 300 m equilibrium diameter). Second, we examine the frequency and distribution of blocky craters in selected lunar mare areas and find a range of regolith depths (8–31 m) that compares favorably with results from the equilibrium diameter method (8–33 m) for areas of similar age (~2.5 billion years). Finally, we examine the utility of using Clementine optical maturity parameter images (Lucey et al. 2000) to determine regolith depth. The resolution of Clementine images (100 m/pixel) prohibits determination of absolute depths, but this method has the potential to give relative depths, and if higher resolution spectral data were available could yield absolute depths.  相似文献   

17.
Here we show results from thermal-infrared observations of km-sized binary near-Earth asteroids (NEAs). We combine previously published thermal properties for NEAs with newly derived values for three binary NEAs. The η value derived from the near-Earth asteroid thermal model (NEATM) for each object is then used to estimate an average thermal inertia for the population of binary NEAs and compared against similar estimates for the population of non-binaries. We find that these objects have, in general, surface temperatures cooler than the average values for non-binary NEAs as suggested by elevated η values. We discuss how this may be evidence of higher-than-average surface thermal inertia. This latter physical parameter is a sensitive indicator of the presence or absence of regolith: bodies covered with fine regolith, such as the Earth’s moon, have low thermal inertia, whereas a surface with little or no regolith displays high thermal inertia. Our results are suggestive of a binary formation mechanism capable of altering surface properties, possibly removing regolith: an obvious candidate is the YORP effect.We present also newly determined sizes and geometric visible albedos derived from thermal-infrared observations of three binary NEAs: (5381) Sekhmet, (153591) 2001 SN263, and (164121) 2003 YT1. The diameters of these asteroids are 1.41 ± 0.21 km, 1.56 ± 0.31 km, and 2.63 ± 0.40 km, respectively. Their albedos are 0.23 ± 0.13, 0.24 ± 0.16, and 0.048 ± 0.015, respectively.  相似文献   

18.
We develop a physical model for the evolution of regoliths on small bodies and apply it to the asteroids and meteorite parent bodies. The model considers global deposition of that fraction of cratering ejecta that is not lost to space. It follows the build up of regolith on a typical region, removed from the larger craters which are the source of most regolith blankets. Later in the evolution, larger craters saturate the surface and are incorporated into the typical region; their net ejection of materials to space causes the elevation of the typical region to decrease and once-buried regolith becomes susceptible to ejection or gardening. The model is applied to cases of both strong, cohesive bodies and to bodies of weak, unconsolidated materials. Evolution of regolith depths and gardening rates are followed until a sufficiently large impact occurs that fractures the entire asteroid. (Larger asteroids are not dispersed, however, and evolve mergaregoliths from multiple generations of surficial regoliths mixed into their interiors.) We find that large, strong asteroids generate surficial regoliths of a few kilometers depth while strong asteroids smaller than 10-km diameter generate negligible regoliths. Our model does not treat large, weak asteroids, because their cratering ejecta fail to surround such bodies; regolith evolution is probably similar to that of the Moon. Small, weak asteroids of 1- to 10-km diameter generate centimeter- to meter-scale regoliths. In all cases studied, blanketing rates exceed excavation rates, so asteroid regoliths are rarely, if ever, gardened and should be very immature measured by lunar standards. They should exhibit many of the characteristics of the brecciated, gas-rich meteorites; intact foreign clasts, relatively low-exposure durations to galactic and solar cosmic rays low solar gas contents, minimal evidence for vitrification and agglutinate formation, etc. Both large, strong asteroids and small, weak ones provide regolith environments compatible with those inferred for the parent bodies of brecciated meteorites. But from volumetric calculations, we conclude that most brecciated meteorites formed on the surfaces of, and were recycled through the interiors of, parent bodies at least several tens of kilometers in diameter. The implications of our regolith model are consistent with properties inferred for asteroid regoliths from a variety of astronomical measurements of asteroids, although such data do not constrain regolith properties nearly as strongly as meteoritical evidence Our picture of substantial asteroidal regoliths produced predominantly by blanketing differs from earlier hypotheses that asteroidal regoliths might be thin or absent and that short surface exposure of asteroidal materials is due chiefly to erosion rather than blanketing.  相似文献   

19.
The physics of scattering of electromagnetic waves by media in which the particles are in contact, such as planetary regoliths, has been thought to be relatively well understood when the particles are larger than the wavelength. However, this is not true when the particles are comparable with or smaller than the wavelength. We have measured the scattering parameters of planetary regolith analogs consisting of suites of well-sorted abrasives whose particles ranged from larger to smaller than the wavelength. We measured the variation of reflectance as the phase angle varied from 0.05° to 140°. The following parameters of the media were then deduced: the single scattering albedo, single scattering phase function, transport mean free path, and scattering, absorption, and extinction coefficients. A scattering model based on the equation of radiative transfer was empirically able to describe quantitatively the variation of intensity with angle for each sample. Thus, such models can be used to characterize scattering from regoliths even when the particles are smaller than the wavelength. The scattering parameters were remarkably insensitive to particle size. These results are contrary to theoretical predictions, but are consistent with earlier measurements of alumina abrasives that were restricted to small phase angles. They imply that a basic assumption made by virtually all regolith scattering models, that the regolith particles are the fundamental scattering units of the medium, is incorrect. Our understanding of scattering by regoliths appears to be incomplete, even when the particles are larger than the wavelength.  相似文献   

20.
The paper contains the data on the thermal and physical characteristic of the surface regolith of the Martian satellite Phobos obtained from the spaceborne remote sensing (with the Mariner 9, Viking, and Mars Global Surveyor orbiters and the Phobos-2 spacecraft) and the results of the numerical modeling of the thermal regime in the surface regolith (on diurnal and seasonal scales) performed for the prospective landing site in the Lagado Planitia region located in the anti-Martian hemisphere of Phobos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号