首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Infrared spectra obtained by the Voyager spacecraft indicate that the para hydrogen fraction near the 300-mbar pressure level on Jupiter is not in thermodynamic equilibrium. Analysis of the global mapping data sequences from Voyagers 1 and 2 shows that the para fraction is smallest at equatorial latitudes, and approaches equilibrium at high latitudes. The sampled atmospheric level is near 125°K and the equatorial para fraction would represent thermal equilibrium at about 160°K. There are small-scale variations superposed on the global pattern, and these do not correlate with albedo, flow velocity, or 5-μm brightness.Lack of correlation of cloud indicators with the para fraction suggests that catalysis of ortho-para conversion does not occur on aerosol surfaces, at least near the 300 mbar level. The fact that dynamics alters the para fraction from equilibrium while not affecting temperatures to a large degree suggests that the para hydrogen equilibration rate is slower than radiative thermal adjustment. A survey of the mechanisms for equilibration suggests that H2H2 paramagnetic interaction is dominant. The slow equilibration rate has dynamical implications for all the outer planets. A mixing length model is used to demonstrate that within the convective lower tropospheres of the giant planets there is very slow overturning. The mean structures are close to equilibrium para fraction, the thermal structures are equilibrium adiabats, and they are statically stable to high frequency dynamical perturbations. The para hydrogen conversion greatly increases the efficiency of convection. Within Jupiter's stably stratified upper troposphere, where the infrared spectra originate, the global variation of the para fraction appears most likely to be produced by upwelling at equatorial latitudes in response to solar heating. If this is true, there is compensating downward motion in polar regions.  相似文献   

2.
Yuan Lian  Adam P. Showman 《Icarus》2008,194(2):597-615
Three-dimensional numerical simulations of the atmospheric flow on giant planets using the primitive equations show that shallow thermal forcing confined to pressures near the cloud tops can produce deep zonal winds from the tropopause all the way down to the bottom of the atmosphere. These deep winds can attain speeds comparable to the zonal jet speeds within the shallow, forced layer; they are pumped by Coriolis acceleration acting on a deep meridional circulation driven by the shallow-layer eddies. In the forced layer, the flow reaches an approximate steady state where east-west eddy accelerations balance Coriolis accelerations acting on the meridional flow. Under Jupiter-like conditions, our simulations produce 25 to 30 zonal jets, similar to the number of jets observed on Jupiter and Saturn. The simulated jet widths correspond to the Rhines scale; this suggests that, despite the three-dimensional nature of the dynamics, the baroclinic eddies energize a quasi-two-dimensional inverse cascade modified by the β effect (where β is the gradient of the Coriolis parameter). In agreement with Jupiter, the jets can violate the barotropic and Charney-Stern stability criteria, achieving curvatures 2u/∂y2 of the zonal wind u with northward distance y up to 2β. The simulations exhibit a tendency toward neutral stability with respect to Arnol'd's second stability theorem in the upper troposphere, as has been suggested for Jupiter, although deviations from neutrality exist. When the temperature varies strongly with latitude near the equator, our simulations can also reproduce the stable equatorial superrotation with wind speeds greater than . Diagnostics show that barotropic eddies at low latitudes drive the equatorial superrotation. The simulations also broadly explain the distribution of jet-pumping eddies observed on Jupiter and Saturn. While idealized, these simulations therefore capture many aspects of the cloud-level flows on Jupiter and Saturn.  相似文献   

3.
Radiative-convective equilibrium models for Jupiter and Saturn have been produced in a study centered primarily on the stratospheric energy balance and the possible role of aerosol heating. These models are compared directly to the thermal structure profiles obtained from Voyager radio occultation measurements. The method is based on a straightforward flux divergence formulation derived from earlier work (J. S. Hogan, S. I. Rasool, and T. Encrenaz 1969, J. Atmos. Sci.26, 898–905). The balance between absorbed and emitted energies is computed iteratively at each level in the atmosphere, assuming local thermodynamic equilibrium and employing a standard treatment of opacities. Results for Jupiter indicate that a dust-free model (no aerosol heating) furnishes a good mean thermal profile for the stratosphere when compared with the Voyager 1 radio occultation (RSS) measurements. These observations of the equatorial region (0° and 12°S, respectively) exhibit periodic vertical structure. Of course, among many possible complications, the Voyager profiles may not represent typical excursions from the mean. The aerosol heat depositions required to match these profiles exactly, relative to the nominal dust-free model, are reasonably consistent with independent estimates for “continuum” absorbers. Other interpretations are discussed, along with a survey of problems encountered in intercomparing the lower portions (P ? 300 mb) of the models, the RSS profiles, and a recent IRIS equatorial profile. Although aerosol heating cannot be ruled out at low latitudes on Jupiter, our results indicate that it may not be required to reproduce the Voyager 1 RSS profiles. On the other hand, heating by aerosols or some other absorber seems necessary in order to match the high-latitude Voyager 2 RSS temperature profile. The Saturn models are relatively simple and in good-to-excellent agreement with the Voyager 2 RSS profiles at all levels. Our comparisons indicate that aerosol heating played a minor role in Saturn's midlatitude stratospheric energy balance at the time of the Voyager 2 encounter. These models, however, may need to be reassessed once the hydrocarbon concentrations have been more precisely determined.  相似文献   

4.
Five years of Cassini Imaging Science Subsystem images, from 2004 to 2009, are analyzed in this work to retrieve global zonal wind profiles of Saturn’s northern and southern hemispheres in the methane absorbing bands at 890 and 727 nm and in their respective adjacent continuum wavelengths of 939 and 752 nm. A complete view of Saturn’s global circulation, including the equator, at two pressure levels, in the tropopause (60 mbar to 250 mbar with the MT filters) and in the upper troposphere (from ∼350 mbar to ∼500 mbar with the CB filter set), is presented. Both zonal wind profiles (available at the Supplementary Material Section), show the same structure but with significant differences in the peak of the eastward jets and the equatorial region, including a region of positive vertical shear symmetrically located around the equator between the 10° < |φc| < 25° where zonal velocities close to the tropopause are higher than at 500 mbar. A comparison of previously published zonal wind sets obtained by Voyager 1 and 2 (1980-1981), Hubble Space Telescope, and ground-based telescopes (1990-2004) with the present Cassini profiles (2004-2009) covering a full Saturn year shows that the shape of the zonal wind profile and intensity of the jets has remained almost unchanged except at the equator, despite the seasonal insolation cycle and the variability of Saturn’s emitted power. The major wind changes occurred at equatorial latitudes, perhaps following the Great White Spot eruption in 1990. It is not evident from our study if the seasonal insolation cycle and its associated ring shadowing influence the equatorial circulation at cloud level.  相似文献   

5.
Large-scale zonal flows, as observed on the giant planets, can be driven by thermal convection in a rapidly rotating spherical shell. Most previous models of convectively-driven zonal flow generation have utilized stress-free mechanical boundary conditions (FBC) for both the inner and the outer surfaces of the convecting layer. Here, using 3D numerical models, we compare the FBC case to the case with a stress free outer boundary and a non-slip inner boundary, which we call the mixed case (MBC). We find significant differences in surface zonal flow profiles produced by the two cases. In low to moderate Rayleigh number FBC cases, the main equatorial jet is flanked by a strong, high-latitude retrograde jets in the northern and southern hemispheres. For the highest Rayleigh number FBC case, the equatorial jet is flanked by strong reversed jets as well as two additional large-scale alternating jets at higher latitudes. The MBC cases feature stronger equatorial jets but, much weaker, small-scale alternating zonal flows are found at higher latitudes. Our high Rayleigh number FBC results best compare with the zonal flow pattern observed on Jupiter, where the equatorial jet is flanked by strong retrograde jets as well as small-scale alternating jets at high latitude. In contrast, the MBC results compare better with the observed flow pattern on Saturn, which is characterized by a dominant prograde equatorial jet and a lack of strong high latitude retrograde flow. This may suggest that the mechanical coupling at the base of the jovian convection zone differs from that on Saturn.  相似文献   

6.
Yuan Lian  Adam P. Showman 《Icarus》2010,207(1):373-393
Three-dimensional numerical simulations show that large-scale latent heating resulting from condensation of water vapor can produce multiple zonal jets similar to those on the gas giants (Jupiter and Saturn) and ice giants (Uranus and Neptune). For plausible water abundances (3-5 times solar on Jupiter/Saturn and 30 times solar on Uranus/Neptune), our simulations produce ∼20 zonal jets for Jupiter and Saturn and 3 zonal jets on Uranus and Neptune, similar to the number of jets observed on these planets. Moreover, these Jupiter/Saturn cases produce equatorial superrotation whereas the Uranus/Neptune cases produce equatorial subrotation, consistent with the observed equatorial-jet direction on these planets. Sensitivity tests show that water abundance, planetary rotation rate, and planetary radius are all controlling factors, with water playing the most important role; modest water abundances, large planetary radii, and fast rotation rates favor equatorial superrotation, whereas large water abundances favor equatorial subrotation regardless of the planetary radius and rotation rate. Given the larger radii, faster rotation rates, and probable lower water abundances of Jupiter and Saturn relative to Uranus and Neptune, our simulations therefore provide a possible mechanism for the existence of equatorial superrotation on Jupiter and Saturn and the lack of superrotation on Uranus and Neptune. Nevertheless, Saturn poses a possible difficulty, as our simulations were unable to explain the unusually high speed (∼) of that planet’s superrotating jet. The zonal jets in our simulations exhibit modest violations of the barotropic and Charney-Stern stability criteria. Overall, our simulations, while idealized, support the idea that latent heating plays an important role in generating the jets on the giant planets.  相似文献   

7.
Xun Zhu  Darrell F. Strobel 《Icarus》2005,176(2):331-350
Titan's atmospheric winds, like those on Venus, exhibit superrotation at high altitudes. Titan general circulation models have yielded conflicting results on whether prograde winds in excess of 100 m s−1 at the 1 mbar level are possible based on known physical processes that drive wind systems. A comprehensive two-dimensional (2D) model for Titan's stratosphere was constructed to systematically explore the physical mechanisms that produce and maintain stratospheric wind systems. To ensure conservation of angular momentum in the limit of no net exchange of atmospheric angular momentum with the solid satellite and no external sources and sinks, the zonal momentum equation was solved in flux form for total angular momentum. The relationships among thermal wind balance, meridional circulation, and zonal wind were examined with numerical experiments over a range of values for fundamental input parameters, including planetary rotation rate, radius, internal friction due to wave stresses, and net radiative drive. The magnitude of mid-latitude jets is most sensitive to a single parameter, the planetary rotation rate and results from the conversion of planetary angular momentum to relative angular momentum by the meridional circulation, whereas the strength of meridional circulation is mainly determined by the magnitude of the radiative drive. For Titan's slowly rotating atmosphere, the meridional temperature gradient is vanishingly small, even when the radiative drive is enhanced beyond reasonable magnitudes, and can be inferred from zonal winds in gradient/thermal wind balance. In our 2D model large equatorial superrotation in Titan's stratosphere can be only produced through internal drag forcing by eddy momentum fluxes, which redistribute angular momentum within the atmosphere, while still conserving the total angular momentum of the atmosphere with time. We cannot identify any waves, such as gravitational or thermal tides, that are sufficiently capable of generating the required eddy forcing of >50 m s−1 Titan-day−1 to maintain peak prograde winds in excess of 100 m s−1 at the 1 mbar level.  相似文献   

8.
This paper extends Leovy's theory on Venus’ equatorial superrotation by analytically examining additional terms in the mean zonal momentum equation that stably balances the momentum source of pumping by thermal tides. The general analytical solution is applied to the atmospheres of both Venus and Saturn's moon Titan. The main results are: (i) Venus’ equatorial superrotation of 118 m s−1 results primarily from a balance between the momentum source of pumping by thermal tides and the momentum sink of meridional advection of wind shear by horizontal branches of the Hadley circulation; (ii) no solution is found for Titan's stratospheric equatorial superrotation centered at the 1-hPa level; (iii) however, if the main solar radiation absorption layer in Titan's stratosphere is lifted from 1 hPa (∼185 km) to 0.1 hPa (∼288 km), an equatorial superrotation of ∼110 m s−1 centered at 0.1-hPa could be maintained. Titan's equatorial superrotation results mainly from a balance between the momentum source of tidal pumping and the momentum sink of frictional drag.  相似文献   

9.
Interplanetary scintillation measurements of the solar wind speed in 1976 show the expected trend that higher speeds are found at higher heliographic latitudes or larger angular distances from the interplanetary current sheet deduced from coronal observations. A careful examination of variations in the speed where the current sheet departs from the equator reveals that the wind speed is not symmetrically distributed about the equator, and the minimum speed occurs at the current sheet. The variation of the speed u with the angular distance from the current sheet, λ, during 1976 is
u(λ) = 800 sin?2λ + 350 km/s,|λ| ?35° = 600 km/s, |λ| > 35°
.  相似文献   

10.
We argue that the asymmetric morphology of the blue and red shifted components of the outflow at hundreds of AU from the massive binary system η Carinae can be understood from the collision of the primary stellar wind with the slowly expanding dense equatorial gas. Recent high spatial observations of some forbidden lines, e.g. [Fe III] λ4659, reveal the outflowing gas within about one arcsecond (2300AU) from η Car. The distribution of the blue and red shifted components are not symmetric about the center, and they are quite different from each other. The morphologies of the blue and red shifted components correlate with the location of dense slowly moving equatorial gas (termed the Weigelt blob environment; WBE), that is thought to have been ejected during the 1887–1895 Lesser Eruption (LE). In our model the division to the blue and red shifted components is caused by the postshock flow of the primary wind on the two sides of the equatorial plane after it collides with the WBE. The fast wind from the secondary star plays no role in our model for these components, and it is the freely expanding primary wind that collides with the WBE. Because the line of sight is inclined to the binary axis, the two components are not symmetric. We show that the postshock gas can also account for the observed intensity in the [Fe III] λ4659 line.  相似文献   

11.
The global circulation of the Venus atmosphere is characterized at cloud level by a zonal super rotation studied over the years with data from a battery of spacecrafts: orbiters, balloons and probes. Among them, the Galileo spacecraft monitored the Venus atmosphere in a flyby in February 1990 in its route toward Jupiter. Since the flyby was almost equatorial, published analysis of zonal winds obtained from displacements of cloud elements on images obtained by the SSI camera [Belton, M.J.S., and 20 colleagues, 1991. Science 253, 1531-1536] stop at latitudes 50° north and south. In this paper we present new results on Venus winds based on a reanalysis of an extended set of images obtained at two wavelengths, 418 nm (violet) and 986 nm (near infrared), that sense different altitude levels in the upper cloud. Our main result is that we have been able to extend the zonal wind profile up to the polar latitudes: 70° N and 70° S at 418 nm and 70° N at 986 nm. Binned and smoothed profiles are given in tabular form. We show that the zonal winds drop in their velocity poleward of latitudes 45° N and 50° S where an intense meridional wind shear develops at the two cloud levels. Our data confirm the magnitude of this shear, retrieved previously from radio occultation data, but disagrees with it in the latitudinal location of the sheared region. The new wind data can be used to recalibrate the zonal winds retrieved from the previous measurements of the temperature field and the cyclostrophic balance assumption. The meridional profiles of the zonal winds at the two cloud levels are used to assess the vertical wind shear in the upper cloud layer as a function of latitude and locate the most unstable region.  相似文献   

12.
We present the first 3-dimensional self-consistent calculations of the response of Saturn's global thermosphere to different sources of external heating, giving local time and latitudinal changes of temperatures, winds and composition at equinox and solstice. Our calculations confirm the well-known finding that solar EUV heating alone is insufficient to produce Saturn's observed low latitude thermospheric temperatures of 420 K. We therefore carry out a sensitivity study to investigate the thermosphere's response to two additional external sources of energy, (1) auroral Joule heating and (2) empirical wave heating in the lower thermosphere. Solar EUV heating alone produces horizontal temperature variations of below 20 K, which drive horizontal winds of less than 20 m/s and negligible horizontal changes in composition. In contrast, Joule heating produces a strong dynamical response with westward winds comparable to the sound speed on Saturn. Joule heating alone, at a total rate of 9.8 TW, raises polar temperatures to around 1200 K, but values equatorward of 30° latitude, where observations were made, remain below 200 K due to inefficient meridional energy transport in a fast rotating atmosphere. The primarily zonal wind flow driven by strong Coriolis forces implies that energy from high latitudes is transported equatorward mainly by vertical winds through adiabatic processes, and an additional 0.29-0.44 mW/m2 thermal energy are needed at low latitudes to obtain the observed temperature values. Strong upwelling increases the H2 abundances at high latitudes, which in turn affects the H+3 densities. Downwelling at low latitudes helps increase atomic hydrogen abundances there.  相似文献   

13.
The thermal balance of the plasma in the day-time equatorial F region is examined. Steady-state solutions of electron and ion temperatures are obtained, assuming the ions are O+ and H+. The theoretical concentrations of O+ and H+ and the field-aligned velocity were obtained following Moffett and Hanson (1973), while theoretical photoelectron heating rates of the electron gas were taken from Swartz et al. (1975).The results demonstrate the gross features in the electron and ion temperatures as observed at the Jicamarca Observatory and in the ion temperatures observed on the OGO-6 satellite. The rapid increase in electron temperature above 500 km at the magnetic equator is due to heating by photoelectrons created at higher latitudes and travelling up along the field lines. The rapid increase in ion temperature is due to good thermal contact with the electrons rather than the neutrals. It is shown that field-aligned interhemispheric thermal plasma flows appreciably affect these temperatures, and that, with a net plasma flow from the summer hemisphere to the winter hemisphere, the temperatures are higher in the winter hemisphere. These effects are related to the character of the ion temperature minimum observed by OGO-6 near the magnetic equator.  相似文献   

14.
Coronal density, temperature, and heat-flux distributions for the equatorial and polar corona have been deduced from Saito’s model of averaged coronal white-light (WL) brightness and polarization observations. These distributions are compared with those determined from a kinetic collisionless/exospheric model of the solar corona. This comparison indicates similar distributions at large radial distances (>?7 R) in the collisionless region. However, rather important differences are found close to the Sun in the acceleration region of the solar wind. The exospheric heat flux is directed away from the Sun, while that inferred from all WL coronal observations is in the opposite direction, i.e. conducting heat from the inner corona toward the chromosphere. This could indicate that the source of coronal heating extends up into the inner corona, where it maximizes at r>1.5 R, well above the transition region.  相似文献   

15.
The Cassini Huygens mission provides a unique opportunity to combine ground-based and spacecraft investigations to increase our understanding of chemical and dynamical processes in Titan’s atmosphere. Spectroscopic measurements from both vantage points enable retrieving global wind structure, temperature structure, and atmospheric composition. An updated analysis of Titan data obtained with the NASA Goddard Space Flight Center’s Infrared Heterodyne Spectrometer (IRHS) and Heterodyne Instrument for Planetary Wind and Composition (HIPWAC) prior to and during the Cassini Huygens mission is compared to retrievals from measurements with the Cassini Composite Infrared Spectrometer (CIRS). IRHS/HIPWAC results include the first direct stratospheric wind measurements on Titan, constraints on stratospheric temperature, and the study of atmospheric molecular composition. These results are compared to CIRS retrievals of wind and temperature profile from thermal mapping data and ethane abundance at 10-15° South latitude, near the equatorial region. IRHS/HIPWAC wind results are combined with other direct techniques, stellar occultation measurements, and CIRS results to explore seasonal variability over nearly one Titan year and to provide an empirical altitude profile of stratospheric winds, varying from ∼50 to 210 m/s prograde. The advantage of fully resolved line spectra in species abundance measurements is illustrated by comparing the possible effect on retrieved ethane abundance by blended spectral features of other molecular constituents, e.g., acetylene (C2H2), ethylene (C2H4), allene (C3H4), and propane (C3H8), which overlap the ν9 band of ethane, and are not resolved at lower spectral resolution. IR heterodyne spectral resolution can discriminate weak spectral features that overlap the ν9 band of ethane, enabling ethane lines alone to be used to retrieve abundance. Titan’s stratospheric mean ethane mole fraction (8.6±3 ppmv) retrieved from IRHS/HIPWAC emission line profiles (resolving power λλ∼106) is compared to past values obtained from lower resolution spectra and from CIRS measurements (resolving power λλ∼2×103) and more compatible recent analysis. Results illustrate how high spectral resolution ground-based studies complement the spectral and spatial coverage and resolution of moderate spectral resolution space-borne spectrometers.  相似文献   

16.
Hubble Space Telescope observations revealed that Saturn's equatorial jet at the cloud level blows at ∼275 m s−1 today, approximately half the ∼470 m s−1 wind during the Voyager flybys in 1980-1981. Radiative transfer calculations estimate the clouds to be significantly higher today than in 1980. The higher clouds make it difficult to observationally isolate any true slowdown from the vertical wind shear because Voyager and Cassini observations show that the winds become slower with altitude. Here, we test the hypothesis that the large equatorial storm in 1990 called the Great White Spot (GWS) decelerated the equatorial jet. We first use order of magnitude estimates to show: (1) if the GWS triggers vertical momentum redistribution, a minor speed change in the troposphere can lead to a substantial stratospheric wind speed change; (2) storm-triggered turbulent mixing slows a prograde equatorial jet; and (3) a prograde equatorial jet inhibits turbulent mixing in latitude. To test whether a GWS-like large storm decelerates the equatorial jet, we perform numerical experiments using the Explicit Planetary Isentropic Coordinate (EPIC) atmosphere model. Our simulation results are consistent with our order of magnitude predictions. We show that the storm excites waves, and the waves transport westward momentum from the troposphere to the stratosphere and decelerate the equatorial jet by as much as ∼40 m s−1 at the 10-mbar level. However, our results show that the storm's effect is too weak at the cloud levels to halve the jet's speed from ∼470 m s−1. Our results suggest that a combination of higher clouds and a true slowdown is necessary to explain the apparent equatorial jet slowdown. We also analyze the effect of waves on the apparent cloud motions, and show that waves can influence cloud-tracking wind speed measurements.  相似文献   

17.
Marsch  E.  Tu  C.-Y. 《Solar physics》1997,176(1):87-106
A physical model of the transition region, including upflow of the plasma in magnetic field funnels that are open to the overlying corona, is presented. A numerical study of the effects of Alfvén waves on the heating and acceleration of the nascent solar wind originating in the chromospheric network is carried out within the framework of a two-fluid model for the plasma. It is shown that waves with reasonable amplitudes can, through their pressure gradient together with the thermal pressure gradient, cause a substantial initial acceleration of the wind (on scales of a few Mm) to locally supersonic flows in the rapidly expanding magnetic field trunks of the transition region network. The concurrent proton heating is due to the energy supplied by cyclotron damping of the high-frequency Alfvén waves, which are assumed to be created through small-scale magnetic activity. The wave energy flux of the model is given as a condition at the upper chromosphere boundary, located above the thin layer where the first ionization of hydrogen takes place.Among the new numerical results are the following: Alfvén waves with an assumed f -1 power spectrum in the frequency range from 1 to 4 Hz, and with an integrated mean amplitude ranging between 25 and 75 km s4, can produce very fast acceleration and also heating through wave dissipation. This can heat the lower corona to a temperature of 5× 105 K at a height of h=12,000 km, starting from 5× 104 K at h=3000 km. The resulting thermal and wave pressure gradients can accelerate the wind to speeds of up to 150 km s-1 at h=12,000 km, starting from 20 km s-1 at h=3000 km in a rapidly diverging flux tube. Thus the nascent solar wind becomes supersonic at heights well below the classical Parker-Type sonic point. This is a consequence of the fact that any large wave-energy flux, if it is to be conducted through the expanding funnel to the corona, implies the building-up of an associated wave-pressure gradient. Because of the diverging field geometry, this might lead to a strong initial acceleration of the flow. There is a multiplicity of solutions, depending mainly on the coronal pressure. Here we discuss two new (as compared with a static transition region model) possibilities, namely that either the flow remains supersonic or slows down abruptly by shock formation, which then yields substantial coronal heating up to the canonical 106 K for the proton temperature.  相似文献   

18.
V. Ramanathan  R.D. Cess 《Icarus》1975,25(1):89-103
A dynamical model is presented for the observed strong zonal circulation within the stratosphere of Venus. The model neglects rotational effects and considers a compressible and radiating atmosphere. It is shown that diurnal radiative heating is negligible within the lower stratosphere, a region below 85km, while observational evidence for the strong zonal circulation pertains to the lower stratosphere within which a direct thermal driving for the circulation is absent. The analysis, however, suggests that propagating internal gravity waves generated by diurnal solar heating of the upper stratosphere induce mean zonal velocities within the upper and lower stratosphere.Considering the linearized equations of motion and energy, and following Stern's (1971) analysis for an analogous problem, it is shown that the zonal velocity induced by internal gravity waves is retrograde in direction, a result which is in agreement with observation. The nonlinear equations of motion and energy are then solved by an approximate analytical method to determine the magnitude of the zonal velocity. This velocity increases from zero at the tropopause to about 200 msec?1 at the 85 km level. The velocity near the uv-cloud level compares favorably with the observed value of 100 msec?1.  相似文献   

19.
We review the dynamics of radiatively driven mass loss from rapidly rotating hot-stars. We first summarize the angular momentum conservation process that leads to formation of a Wind Compressed Disk(WCD) when material from a rapidly rotating star is driven gradually outward in the radial direction. We next describe how stellar oblateness and asymmetries in the Sobolev line-resonance generally leads to nonradialcomponents of the driving force is a line-driven wind, including an azimuthal spin-down force acting against the sense of the wind rotation, and a latitudinal force away from the equator. We summarize results from radiation-hydrodynamical simulations showing that these nonradial forces can lead to an effective suppressionof the equatorward flow needed to form a WCD, as well as a modest (∼ 25%) spin-downof the wind rotation. Furthermore, contrary to previous expectations that the wind mass flux should be enhanced by the reduced effective gravity near the equator, we show here that gravity darkening effects can actually lead to a reducedmass loss, and thus lower density, in the wind from the equatorial region. Finally, we examine the equatorial bistability model, and show that a sufficiently strong jump in wind driving parameters can, in principle, overcome the effect of reduced radiative driving flux, thus still allowing moderate enhancements in density in an equatorial, bistability zone wind. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Voyager flybys of Saturn in 1980-1981 revealed a circumpolar wave at ≈78° north planetographic latitude. The feature had a dominant wavenumber 6 mode, and has been termed the Hexagon from its geometric appearance in polar-projected mosaics. It was also noted for being stationary with respect to Saturn’s Kilometric Radiation (SKR) rotation rate. The Hexagon has persisted for over 30 years since the Voyager observations until now. It has been observed from ground based telescopes, Hubble Space Telescope and multiple instruments onboard Cassini in orbit around Saturn. Measurements of cloud motions in the region reveal the presence of a jet stream whose path closely follows the Hexagon’s outline. Why the jet stream takes the characteristic six-sided shape and how it is stably maintained across multiple saturnian seasons are yet to be explained. We present numerical simulations of the 78.3°N jet using the Explicit Planetary Isentropic-Coordinate (EPIC) model and demonstrate that a stable hexagonal structure can emerge without forcing when dynamic instabilities in the zonal jet nonlinearly equilibrate. For a given amplitude of the jet, the dominant zonal wavenumber is most strongly dependent on the peak curvature of the jet, i.e., the second north-south spatial derivative of the zonal wind profile at the center of the jet. The stable polygonal shape of the jet in our simulations is formed by a vortex street with cyclonic and anticyclonic vortices lining up towards the polar and equatorial side of the jet, respectively. Our result is analogous to laboratory experiments of fluid motions in rotating tanks that develop polygonal flows out of vortex streets. However, our results also show that a vortex street model of the Hexagon cannot reproduce the observed propagation speed unless the zonal jet’s speed is modified beyond the uncertainties in the observed zonal wind speed, which suggests that a vortex street model of the Hexagon and the observed zonal wind profile may not be mutually compatible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号