首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
B.W. Denevi  M.S. Robinson 《Icarus》2008,197(1):239-246
Mariner 10 clear filter (490 nm) images of Mercury were recalibrated and photometrically normalized to produce a mosaic of nearly an entire hemisphere of the planet. Albedo contrasts are slightly larger than seen in the lunar highlands (excluding maria). Variegations indicative of compositional differences include diffuse low albedo units often overlain by smooth plains, the high albedo smooth plains of Borealis Planitia, and high-albedo enigmatic crater floor deposits. A higher level of contrast between immature crater ejecta and average mature material on Mercury compared to the Moon is consistent with a more intense space weathering environment on Mercury that results in a more mature regolith. Immature lunar highlands materials are ∼1.5 times higher in reflectance than analogous immature mercurian materials. Immature materials of the same composition would have the same reflectance on both bodies, thus this observation requires that Mercury's crust contains a significant darkening agent, either opaque minerals or ferrous iron bearing silicates, in abundances significantly higher than those of the lunar highlands. If the darkening agent is opaque minerals (e.g. ilmenite or ulvospinel) Mercury's crust may contain significant ferrous iron and yet not exhibit a 1-μm absorption band.  相似文献   

2.
Don E. Wilhelms 《Icarus》1976,28(4):551-558
The Mariner 10 television team has argued that extensive plains on Mercury were formed by volcanism and compared them with the demonstrably lunar maria. I believe, however, that in stratigraphic relations, surface morphology, and albedo contrast, the Mercurian plains more closely resemble the lunar light plains. These lunar plains were interpreted as volcanic on the basis of data comparable to that available to the Mariner 10 investigators but have been shown by the Apollo missions to be of impact origin. The plains on Mercury might also be formed of impact materials, perhaps of impact melt or other basin ejecta that behaved more like a fluid when emplaced that did lunar basin ejecta.  相似文献   

3.
Clark R. Chapman 《Icarus》1976,29(4):523-524
It is premature to establish a chronology for Mars and Mercury, relative to the known lunar chronology, to better than an order of magnitude. Lunar evidence neither requires nor excludes a “cataclysmic” episode of bombardment about 4.0 b.y. ago. Such a cataclysm might have resulted naturally from tidal disruption by a planet or collisional fragmentation in the asteroid belt of either a Uranus/Neptune-scattered planetesimal or a large asteroid, in which case any lunar cataclysm would have occurred as well on other planets. There is no independent evidence in Mariner 10 imagery for (or against) an early episodic bombardment on Mercury. Crater densities on plains units of the Moon, Mars, and Mercury have not been shown to be “strikingly similar” and do not imply, in the absence of definitive dynamical calculations of planetary impact rates of plausible populations of planetesimals, any similarity in the geological chronologies for those planets. Photogeological studies alone cannot determine absolute chronologies for planets. In combination with dynamical analyses, they can help us date to no better than a factor of 3 to 10 the formation of the Caloris Basin or the epoch when the Martian rivers ran.  相似文献   

4.
Images returned by the MESSENGER spacecraft from the Mercury flybys have been examined to search for anomalous high-albedo markings similar to lunar swirls. Several features suggested to be swirls on the basis of Mariner 10 imaging (in the craters Handel and Lermontov) are seen in higher-resolution MESSENGER images to lack the characteristic morphology of lunar swirls. Although antipodes of large impact basins on the Moon are correlated with swirls, the antipodes of the large impact basins on Mercury appear to lack unusual albedo markings. The antipodes of Mercury’s Rembrandt, Beethoven, and Tolstoj basins do not have surface textures similar to the “hilly and lineated” terrain found at the Caloris antipode, possibly because these three impacts were too small to produce obvious surface disturbances at their antipodes. Mercury does have a class of unusual high-reflectance features, the bright crater-floor deposits (BCFDs). However, the BCFDs are spectral outliers, not simply optically immature material, which implies the presence of material with an unusual composition or physical state. The BCFDs are thus not analogs to the lunar swirls. We suggest that the lack of lunar-type swirls on Mercury supports models for the formation of lunar swirls that invoke interaction between the solar wind and crustal magnetic anomalies (i.e., the solar-wind standoff model and the electrostatic dust-transport model) rather than those models of swirl formation that relate to cometary impact phenomena. If the solar-wind standoff hypothesis for lunar swirls is correct, it implies that the primary agent responsible for the optical effects of space weathering on the Moon is solar-wind ion bombardment rather than micrometeoroid impact.  相似文献   

5.
Polarimetric measurements were collected at different areas of the surface of Mercury, and for the whole disk in six wavelengths. The curves of polarization are compared with telescopic observations of the Moon and laboratory studies of minerals and returned lunar samples. The negative branch of polarization proves that Mercury's surface is almost everywhere covered by a regolith layer of fines of the lunar type, also made of dark and adsorbing material, and most probably of the same impact generated origin. The polarization maximum of Mercury is reproduced by lunar samples of fines of intermediate albedo corresponding to the lightest regolith found in the Apollo explored maria.The albedo of Mercury at phase angle 5° deduced from telescopic photometry is to be corrected by a factor of 1.20 and the best “polarimetric” values of albedos are 0.130 at λ = 0.585μm, 0.119 at λ = 0.520 μm, 0.093 at λ = 0.379μm and 0.087 at λ = 0.354μm. The contrast between light and dark-lined regions at the surface of Mercury is most probably much fainter than between the maria and continents on the Moon.The molecular atmosphere of Mercury, if any, has a surface pressure probably smaller than 2 × 10?4 bars.  相似文献   

6.
J Warell 《Icarus》2004,167(2):271-286
A comparison of the photometric properties of Mercury and the Moon is performed, based on their integral phase curves and disk-resolved image data of Mercury obtained with the Swedish Vacuum Solar Telescope. Proper absolute calibration of integral V-band magnitude observations reveals that the near-side of the Moon is 10-15% brighter than average Mercury, and 0-5% brighter for the “bolometric” wavelength range 400-1000 nm. As shown, this is supported by recent estimates of their geometric albedos. Hapke photometric parameters of their surfaces are derived from identical approaches, allowing a contrasting study between their surface properties to be performed. Compared to the average near-side Moon, Mercury has a slightly lower single-scattering albedo, an opposition surge with smaller width and of marginally smaller amplitude, and a somewhat smoother surface with similar porosity. The width of the lobes of the single-particle scattering function are smaller for Mercury, and the backward scattering anisotropy is stronger. In terms of the double Henyey-Greenstein b-c parameter plot, the scattering properties of an average particle on Mercury is closer to the properties of lunar maria than highlands, indicating a higher density of internal scatterers than that of lunar particles. The photometric roughness of Mercury is well constrained by the recent study of Mallama et al. (2002, Icarus 155, 253-264) to a value of about 8°, suggesting that the surfaces sampled by the highest phase angle observations (Borealis, Susei, and Sobkou Planitia) are lunar mare-like in their textural properties. However, Mariner 10 disk brightness profiles obtained at intermediate phase angles indicate a surface roughness of about twice this value. The photometric parameters of the Moon are more difficult to constrain due to limited phase angle coverage, but the best Hapke fits are provided by rather small surface roughnesses. Better-calibrated, multiple-wavelength observations of the integral and disk-resolved brightnesses of both bodies, and obtained at higher phase angle values in the case of the Moon, are urgently needed to arrive at a more consistent picture of the contrasting light scattering properties of their surfaces.  相似文献   

7.
Reflectance spectra of Mercury, covering the spectral range of ~0.3–1.1 μm obtained during 1963–1976, were examined for any correlations with surface terrain. Mercury's 6.1385°/day rotational rate, the phases of the planet around maximum elongations, and bidirectional reflectance spectroscopy theory were used to identify the surface area associated with each spectrum. Data from 1974–1975, re-reduced with improved standard star flux ratios, show a weak absorption band in the near infrared not see in earlier analyses. Older spectra suggest that the western longitudes of the unimaged side of Mercury are similar to the rest of the planet. Spectra of the intercrater plains in the 0–90° quadrant suggest a possible absorption band. Spectra of areas dominated by Caloris Basin with the encompassing smooth plains may show Fe2+ abundances in the soil comparable to lunar highlands soil. No striking differences between spectra of intercrater plains and spectra of smooth plains are found. The absorption features seen in spectra of Mercury are generally weaker than features seen in lunar spectra.  相似文献   

8.
Measurements of the disk-integrated reflectance spectrum of Mercury and the Moon have been obtained by the MESSENGER spacecraft. A comparison of spectra from the two bodies, spanning the wavelength range 220-1450 nm, shows that the absolute reflectance of Mercury is lower than that of the nearside waxing Moon at the same phase angle with a spectral slope that is less steep at visible and near-infrared wavelengths. We interpret these results and the lack of an absorption feature at a wavelength near 1000 nm as evidence for a Mercury surface composition that is low in ferrous iron within silicates but is higher in the globally averaged abundance of spectrally neutral opaque minerals than the Moon. Similar conclusions have been reached by recent investigations based on observations from both MESSENGER and Mariner 10. There is weak evidence for a phase-reddening effect in Mercury that is slightly larger in magnitude than for the lunar nearside. An apparent absorption in the middle-ultraviolet wavelength range of the Mercury spectrum detected from the first MESSENGER flyby of Mercury is found to persist in subsequent observations from the second flyby. The current model of space weathering on the Moon, which also presumably applies to Mercury, does not provide an explanation for the presence of this ultraviolet absorption.  相似文献   

9.
Abstract— The possibility of volcanism on Mercury has been a topic of discussion since Mariner 10 returned images of half the planet's surface showing widespread plains material. These plains could be volcanic or lobate crater ejecta. An assessment of the mechanics of the ascent and eruption of magma shows that it is possible to have widespread volcanism, no volcanism on the surface whatsoever, or some range in between. It is difficult to distinguish between a lava flow and lobate crater ejecta based on morphology and morphometry. No definite volcanic features have been identified on Mercury. However, known lunar volcanic features cannot be identified in images with similar resolutions and viewing geometries as the Mariner 10 dataset. Examination of high‐resolution, low Sun angle Mariner 10 images reveals several features which are interpreted to be flow fronts; it is unclear if these are volcanic flows or ejecta flows. This analysis implies that a clear assessment of volcanism on Mercury must wait for better data. MESSENGER (MErcury: Surface, Space ENvironment, GEochemistry, Ranging) will take images with viewing geometries and resolutions appropriate for the identification of such features.  相似文献   

10.
By combining UV negatives with IR positives of the full Moon, it is possible to suppress albedo differences and to enhance color differences between various lunar regions. Areas within the lunar maria exhibit the greatest color variations, and many have sharp boundaries. In contrast, the terrae in general show only feeble color variations, although small terra regions situated near or surrounded by maria sometimes display enhanced redness. The mare color boundaries in some cases coincide with the edges of clear-cut lava flows, the bluer material overlying the redder. One wedge-shaped area of bluer material corresponds with a prominent sinuous rille, the rille source being situated precisely in the point of the wedge. This area has obliterated portions of two ray systems, showing that the bluer material was deposited later than both the surrounding redder material and the ray material. On the other hand, rays from the crater Olbers A cross both colored areas impartially. Other examples of ray obliteration by bluer deposits are found elsewhere. From Apollo and Surveyor analyses, it is found that there is an apparent correlation between degree of blueness and titanium content of the surface materials. The following conclusions may be drawn:
  1. The various maria were deposited over considerable lengths of time; this does not support the fusion-through-impact hypothesis.
  2. The bluer materials, which appear to be those of high Ti content, are the more recent.
  3. The hypothesis that sinuous rilles are lava drainage channels is supported.
  4. The terrae covered by this study are mostly monotonous, suggesting constant composition, but a few anomalously red isolated regions may be of substantially different composition.
  相似文献   

11.
Evidence concerned with (1) the character and distribution of terrain surrounding fresh basins, (2) albedo, color and temporal differences between a basin rim and smooth plains on its floor, and (3) the stratigraphic relations and local distribution of smooth plains in the hilly and lineated terrain are cited as additional evidence for an internal origin of much of the Mercurian smooth plains. Altough the question of Mercurian volcanism should be kept open, this evidence together with that presented in an earlier paper suggests that volcanism occurred on Mercury early in its history.  相似文献   

12.
Disk-integrated and disk-resolved measurements of Mercury’s surface obtained by both the Mercury Dual Imaging System (MDIS) and the Mercury Atmospheric and Surface Composition Spectrometer (MASCS) onboard the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft were analyzed and compared with previous ground-based observations of Mercury at 11 wavelengths. The spectra show no definitive absorption features and display a red spectral slope (increasing reflectance with increasing wavelength) typical of space-weathered rocky surfaces. The MDIS spectra show evidence of phase reddening, which is not observed in the MASCS spectra. The MDIS spectra are commensurate with ground-based observations to within 10%, whereas the MASCS spectra display greater discrepancies with ground-based observations at near-infrared wavelengths. The derived photometric calibrations provide corrections within 10% for observations taken at phase angles less than ∼100°. The derived photometric properties are indicative of a more compact regolith than that of the lunar surface or of average S-type asteroids. The photometric roughness of the surface is also much smoother than the Moon’s. The calculated geometric albedo (reflectance at zero phase) is higher than lunar values. The lower reflectance of immature units on Mercury compared with immature units on the Moon, in conjunction with the higher geometric albedo, is indicative of more complicated grain structures within Mercury’s regolith.  相似文献   

13.
Shailendra Kumar 《Icarus》1976,28(4):579-591
Measurements made during the Mariner 10 flybys of Mercury have shown that this planet has a tenuous atmosphere, somewhat similar to that of the Moon, which consists of at least helium and can be classified as an exosphere. The amount of helium observed can be supplied by either the accretion of only a fraction of the solar wind He2+ diffusing across the magnetopause, or from outgassing of radiogenic helium from the planetary crust. The role of solar wind in the maintenance and depletion of Mercury's atmosphere is discussed in view of the density upper limits established from Mariner 10. The argon supply rate on Mercury is probably not more than that on the Earth, but it is difficult to say whether Mercury is deficient in potassium or not on the basis of the present data. The global outgassing of CO2 and H2O from the planet interior is estimated to be at least four orders of magnitude smaller than for Earth which indicates that either Mercury is deficient in volatiles or that this planet is very inactive.  相似文献   

14.
We report measurements of the oxidation state of Fe nanoparticles within lunar soils that experienced varied degrees of space weathering. We measured >100 particles from immature, submature, and mature lunar samples using electron energy‐loss spectroscopy (EELS) coupled to an aberration‐corrected transmission electron microscope. The EELS measurements show that the nanoparticles are composed of a mixture of Fe0, Fe2+, and Fe3+ oxidation states, and exhibit a trend of increasing oxidation state with higher maturity. We hypothesize that the oxidation is driven by the diffusion of O atoms to the surface of the Fe nanoparticles from the oxygen‐rich matrix that surrounds them. The oxidation state of Fe in the nanoparticles has an effect on modeled reflectance properties of lunar soil. These results are relevant to remote sensing data for the Moon and to the remote determination of relative soil maturities for various regions of the lunar surface.  相似文献   

15.
J. Warell 《Icarus》2002,156(2):303-317
Multicolor photometric observations of the “unknown” hemisphere of Mercury have been performed with the Swedish Vacuum Solar Telescope on La Palma at maximal elongations from the Sun in 1997 and 1998. A set of six interference filters with central wavelengths from 450 to 940 nm were used. Multicolor photometry of Mercury was performed on disk-resolved images of the unknown hemisphere (longitudes 160°-340°) with a highest resolution of ∼200 km (J. Warell and S. Limaye 2001, Planet. Space Sci.49, 1531-1552).Disk-integrated spectrophotometry shows that (1) the spectrum of Mercury displays a linear slope from 650 to 940 nm, indicating that the average mercurian regolith is considerably more mature than relatively immature pure anorthosite regions on the Moon; (2) there is negative evidence for the presence of the putative 1-μm absorption feature near 940 nm due to the presence of ferrous iron (Fe2+) in pyroxenes; and (3) no effect of phase reddening of the integrated disk is observed between phase angles of 63° and 84°.For the first time, disk-resolved spectrophotometry of Mercury's surface has been obtained, from which it is inferred that (4) the scattering properties of Mercury's regolith are more homogeneous than for the Moon and that there is no clear relation between reflectance and chemical properties at spatial scales of ∼300 km on the unknown hemisphere and (5) there exists an inverse relation of spectral slope with emission angle which is larger for Mercury than for the Moon, indicating that the average mercurian regolith is more backscattering and that this effect increases with wavelength.Finally, from filter ratio images of Mercury's disk it is found that (6) no color variations larger that 2% with respect to the surroundings are detected at a spatial resolution of ∼300 km.  相似文献   

16.
New crater size-shape data were compiled for 221 fresh lunar craters and 152 youthful mercurian craters. Terraces and central peaks develop initially in fresh craters on the Moon in the 0–10 km diameter interval. Above a diameter of 65 km all craters are terraced and have central peaks. Swirl floor texture is most common in craters in the size range 20–30 km, but it occurs less frequently as terraces become a dominant feature of crater interiors. For the Moon there is a correlation between crater shape and geomorphic terrain type. For example, craters on the maria are more complex in terms of central peak and terrace detail at any given crater diameter than are craters in the highlands. These crater data suggest that there are significant differences in substrate and/or target properties between maria and highlands. Size-shape profiles for Mercury show that central peak and terrace onset is in the 10–20 km diameter interval; all craters are terraced at 65 km, and all have central peaks at 45 km. The crater data for Mercury show no clear cut terrain correlation. Comparison of lunar and mercurian data indicates that both central peaks and terraces are more abundant in craters in the diameter range 5–75 km on Mercury. Differences in crater shape between Mercury and the Moon may be due to differences in planetary gravitational acceleration (gMercury=2.3gMoon). Also differences between Mercury and the Moon in target and substrate and in modal impact velocity may contribute to affect crater shape.  相似文献   

17.
The ultraviolet and visible albedos of a number of terrestrial basalts, gabbros and anorthosites have been investigated over the wavelength range 800 Å to 8000 Å and compared with previously reported measurements of the lunar albedo. For most of the terrestrial samples the albedo changed only slightly between visible and middle ultraviolet wavelengths in striking contrast to the Moon where the ultraviolet albedo is about a factor of five or ten less than it is in the visible. Some of the lighter coloured terrestrial anorthositic samples were however found to have albedo curves that fairly closely approximate the ultraviolet darkening of the Moon. The general shape of the lunar ultraviolet albedo may be caused by a layer of anorthositic fragments on the Moon such as have been found to be a very abundant component of the Apollo ‘coarse-fines’.  相似文献   

18.
A procedure of an a posteriori correction of the available data on the integral photometry of the Moon is described. This procedure reduces the regular errors of the integral phase curves caused by variations of the libration parameters; the effect due to libration can reach 4%. A method allowing the integral measurements of the Moon to be compared correctly with the photometric measurements of the lunar areas or laboratory samples imitating the lunar soil has been developed. To approximate the phase curves of integral albedo in the phase-angle range from 6° to 120°, we proposed a simple empirical formula A eq(α) = m l e ?ρα + m 2 e ?0.7α, where α is the phase angle, ρ is the factor of effective roughness, and m 1 + m 2 is the surface albedo at a zero phase angle. An empirical phase dependence of the slope of the lunar spectrum in the 360–1060 nm range has been obtained. The results may be used to test various theoretical models of the light scattering by the lunar surface and to calibrate the data of ground-based and space-borne spectrophotometric observations.  相似文献   

19.
This survey is a general overview of modern optical studies of the Moon and their diagnostic meaning. It includes three united parts: phase photometry, spectrophotometry, and polarimetry. The first one is devoted to the progress in the photometry of the Moon, which includes absolute albedo determination to refine the albedo scale (e.g., to connect lunar observations and the data of lunar sample measurements) and mapping the parameters of a lunar photometric function (e.g., the phase-angle ratios method) with the aim of making qualitative estimates of regolith structure variations. This part also includes observations of the lunar opposition effect as well as photogrammetry and photoclinometry techniques. In particular, available data show that because of the low albedo of the lunar surface, the coherent backscattering enhancement hardly influences the lunar opposition spike, with the exception of the brightest lunar areas measured in the NIR. The second part is devoted to chemical/mineral mapping of the Moon's surface using spectrophotometric measurements. This section also includes analyses related to the detection of water ice or hydroxyl, prognoses of maturity, and helium-3 abundance mapping. In particular, we examine the relationship between superficial OH/H2O compounds spectrally detected recently and bulk “water ice” found earlier by the Lunar Prospector GRS and LRO LEND, assuming that the compounds are delivered to cold traps (permanently shadowed regions) with electrostatically levitated dust saturated by solar wind hydrogen. Significant problems arise with the determination of TiO2 content, as the correlation between this parameter and the color ratio C(750/415 nm) is very non-linear and not universal for different composition types of the lunar surface; a promising way to resolve this problem is to use color ratios in the UV spectral range. The third part is devoted to mapping of polarization parameters of the lunar surface, which enable estimates of the average size of regolith particles and their optical inhomogeneity. This includes considerations of the Umov effect and results of spectropolarimetry, negative polarization imagery, and measurements of other polarimetric parameters, including the third Stokes parameter. Although these three research divisions have not been developed equally and the numbers of proper references are very different, we try to keep a balance between them, depicting a uniform picture. It should be emphasized that many results presented in this review can be applied to other atmosphereless celestial bodies as well.  相似文献   

20.
Abstract— ‐Mercury has widespread plains deposits proposed to be volcanic in origin. In a Mariner 10 color‐derived parameter image, sensitive to FeO and maturity, these volcanic plains have a value equivalent to, or slightly elevated above, the hemispheric average, thus implying FeO equivalent to, or slightly less than, the hemispheric average (~3 wt% FeO). Since FeO has a solid/liquid distribution coefficient ~1 during partial melting, we estimate the mantle of Mercury to have an FeO abundance equal to the lava flows. This is consistent with models that predict Mercury was assembled from planetesimals formed near the planet's current position. This new estimate of Mercury's bulk FeO (~3 wt%) is consistent with data for the other terrestrial planets that suggest there was a radial gradient in FeO in the solar nebula.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号