首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is very important to strengthen the research about the heavy metal pollution of soil in vulnerable ecological regions of the south-central arid area of Northwest China for regulating and guiding local industrial and municipal activities and for protecting the environment. In this study, 48 surface soil samples were collected in the desert–loess transitional zone in the south of the Tengger Desert. The distributions of elements (heavy metal based) and the differences between urban and natural soils were analyzed. We observed that As, Pb, Cu, Zn and S were clearly enriched in the Baiyin area, and Ni and Cr were mainly enriched in the Zhongwei area. V, Mn, Ti, Bi, Co and W were enriched in the southeast margin of the Tengger Desert, where there is relatively little human activity. Over the entire study area, Ce, La and Nd were widely distributed across regions whether with strong or weak human activity. Based on the distributions of elements, we suggest that in the desert–loess transitional zone in the south of the Tengger Desert, the distribution and abundances of element As, Pb, Cu, Zn, S, Ni and Cr are strongly related to the human activities in the area, but the elements V, Mn, Ti, Bi, Co, W, Ce, La and Nd are derived mainly from natural sources.  相似文献   

2.
A test comparing concentrations of 57 chemical elements (Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ge, Hf, Ho, I, K, La, Li, Lu, Mg, Mn, Mo, Na, Nb, Nd, Ni, Pb, Pr, Rb, Sb, Se, Sm, Sn, Sr, Ta, Tb, Te, Th, Ti, Tl, Tm, U, V, W, Y, Yb, Zn and Zr) determined by inductively coupled plasma quadrupole mass spectrometry (ICP-QMS) in 294 samples of the same bottled water (predominantly mineral water) sold in the European Union in glass and PET bottles demonstrates significant (Wilcoxon rank sum test, α = 0.05) differences in median concentrations for Sb, Ce, Pb, Al, Zr, Ti, Th, La, Pr, Fe, Zn, Nd, Sn, Cr, Tb, Er, Gd, Bi, Sm, Y, Lu, Dy, Yb, Tm, Nb and Cu. Antimony has a 21× higher median value in bottled water when sold in PET bottles (0.33 vs. 0.016 μg/L). Glass contaminates the water with Ce (19× higher than in PET bottles), Pb (14×), Al (7×), Zr (7×), Ti, Th (5×), La (5×), Pr, Fe, Zn, Nd, Sn, Cr, Tb (2×), Er, Gd, Bi, Sm, Y, Lu, Yb, Tm, Nb and Cu (1.4×). Testing an additional 136 bottles of the same water sold in green and clear glass bottles demonstrates an important influence of colour, the water sold in green glass shows significantly higher concentrations in Cr (7.3×, 1.0 vs. 0.14 μg/L), Th (1.9×), La, Zr, Nd, Ce (1.6×), Pr, Nb, Ti, Fe (1.3×), Co (1.3×) and Er (1.1×).  相似文献   

3.
To evaluate trace element soil contamination, geochemical baseline contents and reference values need to be established. Pedo-geochemical baseline levels of trace elements in 72 soil samples of 24 soil profiles from the Mediterranean, Castilla La Mancha, are assessed and soil quality reference values are calculated. Reference value contents (in mg kg?1) were: Sc 50.8; V 123.2; Cr 113.4; Co 20.8; Ni 42.6; Cu 27.0; Zn 86.5; Ga 26.7; Ge 1.3; As 16.7; Se 1.4; Br 20.1; Rb 234.7; Sr 1868.4; Y 38.3; Zr 413.1; Nb 18.7; Mo 2.0; Ag 7.8; Cd 4.4; Sn 8.7; Sb 5.7; I 25.4; Cs 14.2; Ba 1049.3; La 348.4; Ce 97.9; Nd 40.1; Sm 10.7; Yb 4.2; Hf 10.0; Ta 4.0; W 5.5; Tl 2.3; Pb 44.2; Bi 2.2; Th 21.6; U 10.3. The contents obtained for some elements are below or close to the detection limit: Co, Ge, Se, Mo, Ag, Cd, Sb, Yb, Hf, Ta, W, Tl and Bi. The element content ranges (the maximum value minus the minimum value) are: Sc 55.0, V 196.0, Cr 346.0, Co 64.4, Ni 188.7, Cu 49.5, Zn 102.3, Ga 28.7, Ge 1.5, As 26.4, Se 0.9, Br 33.0 Rb 432.7, Sr 3372.6, Y 39.8, Zr 523.2, Nb 59.7, Mo 3.9, Ag 10.1, Cd 1.8, Sn 75.2, Sb 9.9, I 68.0, Cs 17.6, Ba 1394.9, La 51.3, Ce 93.5, Nd 52.5, Sm 11.2, Yb 4.2, Hf 11.3, Ta 6.3, W 5.2, Tl 2.1, Pb 96.4, Bi 3.0, Th 24.4, U 16.4 (in mg kg?1). The spatial distribution of the elements was affected mainly by the nature of the bedrock and by pedological processes. The upper limit of expected background variation for each trace element in the soil is documented, as is its range as a criterion for evaluating which sites may require decontamination.  相似文献   

4.
This paper reports a geochemical study of trace metals and Pb isotopes of sediments from the lowermost Xiangjiang River, Hunan province (P. R. China). Trace metals Ba, Bi, Sc, V, Cr, Mn, Co, Ni, Cu, Zn, Mo, Cd, Sn, Sb, Pb, Tl, Th, U, Zr, Hf, Nb and Ta were analyzed using ICP-MS, and Pb isotopes of the bulk sediments were measured by MC-ICP-MS. The results show that trace metals Cd, Bi, Sn, Sc, Cr, Mn, Co, Ni, Cu, Zn, Sb, Pb and Tl are enriched in the sediments. Among these metals, Cd, Bi and Sn are extremely highly enriched (EF values >40), metals Zn, Sn, Sb and Pb significantly highly (5 < EF < 20), and metals Sc, Cr, Mn, Co, Ni, Cu and Tl moderately highly (2 < EF < 5) enriched in the river sediments. All these metals, however, are moderately enriched in the lake sediments. Geochemical results of trace metals Th, Sc, Co, Cr, Zr, Hf and La, and Pb isotopes suggest that metals in the river sediments are of multi-sources, including both natural and anthropogenic sources. Metals of the natural sources might be contributed mostly from weathering of the Indosinian granites (GR) and Palaeozoic sandstones (PL), and metals of anthropogenic sources were contributed from Pb–Zn ore deposits distributed in upper river areas. Metals in the lake sediments consist of the anthropogenic proportions, which were contributed from automobile exhausts and coal dusts. Thus, heavy-metal contamination for the river sediments is attributed to the exploitation and utilization (e.g., mining, smelting, and refining) of Pb–Zn ore mineral resources in the upper river areas, and this for the lake sediments was caused by automobile exhausts and coal combustion. Metals Bi, Cd, Pb, Sn and Sb have anthropogenic proportion of higher than 90%, with natural contribution less than 10%. Metals Mn and Zn consist of anthropogenic proportion of 60–85%, with natural proportion higher than 15%. Metals Sc, Cr, Co, Cu, Tl, Th, U and Ta have anthropogenic proportion of 30–70%, with natural contribution higher than 30%. Metals Ba, V and Mo might be contributed mostly from natural process.  相似文献   

5.
The paper presents data on the specifics of the distributions of chemical elements in natural waters of the Kola North depending on the landscape–geochemical characteristics of the water catchment areas and aerotechnogenic pollution. The territory is subdivided into seven zones with different dominant rock types and typical landscapes. Lakes in the Kola region generally contain elevated concentrations of Cu, Ni, Co, Cr, V, Mo, U, Sb, Bi, Al, Fe, Mn, Sr, Li, Rb, Pb, Zn, Cd, La, and Ce. The waters of lakes in the influence zones of Cu–Ni mines are enriched in La, Ce, Sm, Gd, Pr, and Nd. In waterlogged landscapes, waters are enriched in certain trace elements because of their migration with humic acids. Technogenic acidic precipitation is proved to result in leaching of several elements, first of all Cd, Zn, and As (as well as other elements contained in rocks composing the water catchment areas) and their transfer into the waters.  相似文献   

6.
The water quality of the Vacacaí River was assessed at different sites in the period between winter 2005 and autumn 2006. All samples were analyzed for 52 elements (Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Th, Li, Be, Mg, Al, Ca, V, Cr, Mn, Fe, Ni, Co, Cu, Zn, Ga, As, Se, Rb, Sr, Ag, Cd, In, Cs, Ba, Tl, Pb, Bi, U, Na, K, Hg, B, Mo, Sn, Te, Ti), temperature, pH, ammonia, and alkalinity levels. Water from the Vacacaí River ranged from slightly acidic to alkaline. No difference was observed in the chemical composition at different sites of the Vacacaí River. Levels of Ba, Ca, Sr and Mg increase in the dry seasons and reach their highest concentrations in autumn; Be and U decrease in the dry season and reach their highest concentration in spring. Al, Fe, Cr, Ni, Th, U Mn, Ca and Mg are highly positively related, indicating a common origin. Se and Cu are probably from anthropogenic source, from the rice crops of the margins of the river. Waterborne Al and Fe levels were above the desirable level for drinking water at all sites during all seasons. These results demonstrate the need for constant monitoring of water parameters, which is crucial to ensure water quality for the population of this region.  相似文献   

7.
The knowledge of the variability, the anthropogenic versus natural origin and corresponding environmental risk for potentially harmful elements in urban topsoils is of importance to assess human impact. The aims of the present study were: (1) to assess the distribution of heavy metals (Sn, Li, Ga, Ba, Fe, Mn, Co, Be, Ti, Al, Hg, Cr, Sb, As, Bi, Pd, Pt, Au, Ni, Cd, Zn, Cu, Pb, Se, Mo, Sc and Ag) in urban environment; (2) to discriminate natural and anthropogenic contributions; and (3) to identify possible sources of pollution. Multivariate statistic approaches (principal component analysis and cluster analysis) were adopted for data treatment, allowing the identification of three main factors controlling the heavy metal variability in Xuzhou urban topsoils. Results demonstrate that Hg, Cr, Sb, As, Bi, Pd, Pt, Au, Ni, Cd, Br, Zn, Cu, S, Pb, Se, Mo, Sc and Ag could be inferred to be tracers of anthropogenic pollution, whereas Al, Ti, Ga, Li, V, Co, Pt, Mn and Be were interpreted to be mainly inherited from parent materials. Iron, Ba, Sn, Pd and Br were interpreted to be affected by mixed sources.  相似文献   

8.
Weathering of heavy metal enriched black shales may be one of the most important sources of environmental contamination in areas where black shales are distributed. Heavy metal release during weathering of the Lower Cambrian Black Shales (LCBS) in western Hunan, China, was investigated using traditional geochemical methods and the ICP-MS analytical technique. Concentrations of 16 heavy metals, 8 trace elements and P were measured for samples from selected weathering profiles at the Taiping vanadium ore mine (TP), the Matian phosphorous ore mine (MT), and Taojiang stone-coal mine (TJ). The results show that the bedrock at these three profiles is enriched with Sc, V, Cr, Co, Ni, Cu, Zn, Pb, Th, U, Mo, Cd, Sb, Tl, and P. Based on mass-balance calculation, the percentages of heavy metals released (in % loss) relative to immobile element Nb were estimated. The results show significant rates of release during weathering of: V, Cr, Co, Ni, Cu, Zn, U, Mo, Cd, Sn, Sb, and Tl for the TP profile; Sc, Cr, Mn, Co, Ni, Cu, Zn, Pb, Th, Cd, and Sn for the MT profile; and Sc, Mn, Co, Ni, Zn, Th, Cd, Sn, and Tl for the TJ profile. Among these heavy metals, Co, Ni, Zn, Cd, and Sn show very similar features of release from each of the three weathering profiles. The heavy metals released during weathering may affect the environment (especially topsoil and surface waters) and are possibly related to an observed high incidence of endemic diseases in the area.  相似文献   

9.
With the aim of better understanding geochemistry of coal, 71 Late Permian whole-seam coal channel samples from western Guizhou Province, Southwest China were studied and 57 elements in them were determined. The contents of Al, Ca, Co, Cr, Cu, Fe, Ga, Hf, K, Li, Mn, Mo, Nb, Ni, Sn, Ta, Ti, Th, U, V, Zr, and REEs in the Late Permian coals from western Guizhou Province are higher than the arithmetic means for the corresponding elements in the US coals, whereas As, Ba, Br, F, Hg, P, Se, and Tl are lower. Compared to common Chinese coals, the contents of Co, Cr, Cu, Ga, Hf, Li, Mn, Mo, Ni, Sc, Sn, Ti, U, V, Zn, and Zr in western Guizhou coals are higher, and As, F, Hg, Rb, Sb, Tl, and W are lower. Five groups of elements may be classified according to their mode of occurrence in coal: The first two, Group A, Tm–Yb–Lu–Y–Er–Ho–Dy–Tb–Ce–La–Nd–Pr–Gd–Sm, and Group B, As–Sr–K–Rb–Ba–F–Ash–Si–Sn–Ga–Hf–Al–Ta–Zr–Be–Th–Na, have high positive correlation coefficients with ash yield and they show mainly inorganic affinity. Some elements from Group B, such as Ba, Be, Ga, Hf, and Th, are also characterized by significant aluminosilicate affinity. In addition, arsenic also exhibits high sulfide affinity (rS–Fe>0.5). The elements, which have negative or lower positive correlation coefficients with ash yield (with exceptions of Bi, Cs, Nb, Mn, Se, and Ti), are grouped in other four associations: Group C, Cr–V–Mo–U–Cd–Tl; Group D, Hg–Li–Sc–Ti–Eu–Nb–Cs–W; Group E, Bi–Sb; and Group F, Co–Ni–Cu–Pb–Zn–Mg–Se–Ca–Mn–S–Fe. The correlation coefficients of some elements, including Co, Cr, Cu, Fe, Hg, Li, Mo, Ni, P, S, Sc, U, V, and Zn, with ash yield are below the statistically significant value. Only Cr and Cu are negatively correlated to ash yield (−0.07 and −0.01, respectively), showing intermediate (organic and inorganic) affinity. Manganese and Fe are characterized by carbonate affinity probably due to high content of epigenetic veined ankerite in some coals. Phosphorus has low correlation coefficients with any other elements and is not included in these six associations. There are five possible genetic types of enrichment of elements in coal from western Guizhou Province: source rock, volcanic ash, low-temperature hydrothermal fluid, groundwater, and magmatic hydrothermal inputs.  相似文献   

10.
Major and trace element analyses have been obtained by wavelength dispersive X-ray fluorescence for the Geological Survey of Japan Igneous rock series and selected samples from the Sedimentary rock series reference samples. Additional trace element data for the Igneous rock series were obtained by instrumental neutron activation analysis. Samples were analyzed multiple times for 10 major elements (with loss-on-ignition) and the following trace elements; As, Ba, Ce, Co, Cr, Cs, Cu, Eu, Ga, Hf, La, Lu, Nb, Nd, Ni, Pb, Rb, Sb, Sc, Sm, Sr, Ta, Tb, Th, U, V, W, Y, Yb, Zn and Zr.  相似文献   

11.
Chemistry of Aerosols over Chukchi Sea and Bering Sea   总被引:2,自引:0,他引:2  
The contents of elements in aerosols sampled during the First Chinese Arctic Research Expedition (CHINARE-1) show great differences from one element to another. Na, K,Ca, Mg, A1, F, and Cl are the major components in the aerosols, whose contents are larger than 30 ng/m^3. The chemical elements whose contents vary between 0.1 - 30 ng/m^3 are Br,Sr, Cr, Ni, and Zn. The chemical elements whose contents are close to or slightly higher than 0.1 ng/m^3 are Rb, Ba, Zr, Th, and Pb. The contents of As, Sb, W, Mo, Au, La, Ce, Nd,Sin, Eu, Tb, Yb, Lu, Sc, Co, Hf, Ta, and Cd are less than 0.1 ng/m^3. The mass concentration data for the same element, as observed during CHINARE-1, are almost accordant, but much lower than what is observed in the China‘ s seas or the coasts of China. The enrichment factor and electron microscopic analyses and lead isotope tracing were used to distinguish their sources.Four groups of sources can be classified as follows: anthropogenic: As, Sb, W, F, Mo, Au,Cu, Pb, Cd, V; crustal: La, Ce, Nd, Sm, Eu, Tb, Yb, Lu, Fe, Sc, Cr, Co, Ba, Zr, Hf,Ta, Cs, Mn, Th, U; oceanic:Na, K, Ca, and Mg; and mixing: Rb, Sr, Ca, and Mg.  相似文献   

12.
Total concentrations of chemical elements in soils may not be enough to understand the mobility and bioavailability of the elements. It is important to characterise the degree of association of chemical elements in different physical and chemical phases of soil. Another geochemical characterisation methodology is to apply sequential selective chemical extraction techniques. A seven-step sequential extraction procedure was used to investigate the mobility and retention behaviour of Al, Fe, Mn, Cu, Zn, Pb, Cr, Co, Ni, Mo, Cd, Bi, Sn, W, Ag, As and U in specific physical–chemical and mineral phases in mine tailings and soils in the surroundings of the abandoned Ervedosa mine. The soil geochemical data show anomalies associated with mineralised veins or influenced by mining. Beyond the tailings, the highest recorded concentrations for most elements are in soils situated in mineralised areas or under the influence of tailings. The application of principal components analysis allowed recognition of (a) element associations according to their geochemical behaviour and (b) distinction between samples representing local geochemical background and samples representing contamination. Some metal cations (Mn, Cd, Cu, Zn, Co, Cr, Ni) showed important enrichment in the most mobilisable and bioavailable (i.e., water-soluble and exchangeable) fractions due likely to the acidic conditions in the area. In contrast, oxy-anions such as Mo and As showed lower mobility because of adsorption to Fe oxy-hydroxides. The residual fraction comprised largest proportions of Sn and Al and to a lesser extent Zn, Pb, Ni, Cr, Bi, W, and Ag, which are also present at low concentrations in the bioavailable fractions. The elements in secondary mineral phases (mainly Fe, Mn, Cu, Zn, Cd, Pb, W, Bi, Mo, Cr, Ni, Co, As and U) as well as in organic matter and sulphides are temporarily withheld, suggesting that they may be released to the environment by changes in physico-chemical conditions.  相似文献   

13.
四川省土壤元素含量和生态农业地质研究   总被引:7,自引:0,他引:7  
论述了四川省土壤元素含量和农作物优质高产与土壤环境中化学元素N、P、K、S、Fe、Mn、Cu、Zn、B、Mo、V、Sr、Ti、Mg、La、Ce、Pr、Nd、Sm、Eu、Y、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Ca、Co、Ni、F、F、Tl、Si、Na、Cr、Pb、Cd、Hg、Se、Ba、Te、Ta有密切的关系。提出了生态农业地质研究的目的、内容、方法、管理及其前景。  相似文献   

14.
固体聚合膜电解浓集法是浓缩氚含量较低(1 Bq/m~3)的天然水样的常用方法,但因水样自身含有杂质离子或电解装置聚合膜带入杂质进入浓集液,使浓集液偏酸性,在测量过程中易产生化学淬灭效应,导致氚的测量值偏低。本文研究了水样自身存在的杂质离子和聚合膜上残留的杂质离子、样品溶液的pH值及其电导率所产生的化学淬灭效应的影响,实验表明,为减少化学淬灭效应,提高测量低含量氚的准确性,需保证水样溶液呈中性,电导率≤1μS/cm,同时避免杂质沉积在聚合膜上。如果水样溶液的pH值偏酸性、电导率大于1μS/cm,可采用酸碱混合型离子交换树脂去除水样中自身的杂质;对于聚合膜引入的杂质,可在电解后的水样中加入微量氨水将其pH值调节至中性。  相似文献   

15.
曾昭华 《西北地质》2005,38(3):111-118
论述了宁夏回族自治区土壤元素含量和农作物优质高产与土壤环境中化学元素N、P、K、S、Fe、Mn、Cu、Zn、B、Mo、V、Sr、Ti、Mg、La、Ce、Pr、Nd、Sm、Eu、Y、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Ca、Co、Ni、F、Tl、Si、Na、Cr、Pb、Cd、Hg、Se、Ba、Te、Ta有密切的关系.提出了生态农业地质研究的目的、内容、方法、管理及其前景。  相似文献   

16.
为了解包头市典型工业企业对其所在地土壤中重金属含量的影响及污染现状,利用相关性系数对其表层土壤中7种重金属(Cu、Zn、Pb、Cr、Cd、Mn、Ni)来源进行研究,并采用内梅罗综合污染指数法和潜在生态危害指数对其污染状况进行评价。结果表明,7种重金属含量平均值均高于内蒙古土壤背景值,其中Cd、Mn、Ni超标率已达100%,而Cu、Pb、Zn的超标率分别为97%、93%和93%,只有Cr超标率较低(53%),污染程度依次为CdPbCuNiZnMnCr,其中Pb和Cd为重度污染,Cu、Zn、Ni为中度污染,Cr、Mn为轻度污染;Cu、Zn、Cr、Mn、Ni可能同时来自工业生产和交通运输两个源,而Pb和Cd除上述来源外,燃煤烟气的排放有较大贡献。潜在生态危害依次为CdPbCuNiCrZnMn,其中Cd的潜在生态风险最大,应予以高度重视,其他金属的风险均为轻微。  相似文献   

17.
The contamination of soils by metals from various sources is a subject of increasing concern in recent times. Twenty-eight elements (Fe, Ti, Cr, Al, Ga, Pb, Sc, Ba, Li, Cd, Be, Co, Cu, Mn, Ni, V, Zn, Mo, Pt, Pd, Au, As, Sb, Se, Hg, Bi, Ag and Sn) have been analyzed from urban topsoil from the city of Xuzhou. The concentrations of these analyzed elements have been correlated to some soil parameters such as organic matter, pH, cation exchange capacity, carbonate content, and granulometric fractions (clay, silt and sand). Results of the statistical analysis show a large variety and complexity in these relationships. The spatial distributions of these metal concentrations were also constructed using geographical information system. The spatial distribution patterns of the elements analyzed show that traffic and industrial activities are the principal anthropogenic pollutant sources.  相似文献   

18.
作者用不同方法研究了粤北某铅锌矿区近矿灰岩风化土壤中铁锰氧化物对微量元素的富集作用。发现铁锰氧化物对Sb、Pb、Cd、Ni等元素具有强烈的吸附作用;对Zn、Cu等21种元素有程度不等的吸附;对Ti、Sr等12种元素不吸附。据此,作者认为在土壤地球化学找矿中,应着重在铁锰结核层和铁锰粘土层取样,或用编提取方法分析铁锰氧化物相的元素含量,强化异常,提高找矿效果。  相似文献   

19.
Komatiites are mantle-derived ultramafic volcanic rocks. Komatiites have been discovered in several States of India, notably in Karnataka. Studies on the distribution of trace-elements in the komatiites of India are very few. This paper proposes a simple, accurate, precise, rapid, and non-destructive wavelength-dispersive x-ray fluorescence (WDXRF) spectrometric technique for determining Sc, V, Cr, Co, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Ba, Pb, and Th in komatiites, and discusses the accuracy, precision, limits of detection, x-ray spectral-line interferences, inter-element effects, speed, advantages, and limitations of the technique. The accuracy of the technique is excellent (within 3%) for Sc, V, Cr, Co, Ni, Cu, Zn, Rb, Sr, Zr, Nb, Ba, Pb, and Th and very good (within 4%) for Y. The precision is also excellent (within 3%) for Sc, V, Cr, Co, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Ba, Pb, and Th. The limits of detection are: 1 ppm for Sc and V; 2 ppm for Cr, Co, and Ni; 3 ppm for Cu, Zn, Rb, and Sr; 4 ppm for Y and Zr; 6 ppm for Nb; 10 ppm for Ba; 13 ppm for Pb; and 14 ppm for Th. The time taken for determining Sc, V, Cr, Co, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Ba, Pb, and Th in a batch of 24 samples of komatiites, for a replication of four analyses per sample, by one operator, using a manual WDXRF spectrometer, is only 60 hours.  相似文献   

20.
采用粉末压片法制样,使用新型X射线荧光光谱仪,对土壤样品中的C、N、S、Cl、Na、Mg、Al、Si、K、Ca、Fe、As、Ba、Br、Ce、Co、Cr、Cu、Ga、Hf、La、Mn、Nb、Ni、P、Pb、Rb、Sc、Sr、Th、Ti、U、V、Y、Zn、Zr等36种组分的直接同时测试进行了探讨测试。研究了测试中各种分析条件及存在问题。结果表明,方法的检出限、精密度和准确度大多数满足多目标地球化学调查样品分析质量的要求,标准物质的测定值与其标准值相吻合,适合土壤样品中多组分的同时直接测定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号