首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have used data from the Mars Reconnaissance Orbiter to study 30-80 m thick light-toned layered deposits on the plateaus adjacent to Valles Marineris at five locations: (1) south of Ius Chasma, (2) south of western Melas Chasma, (3) south of western Candor Chasma, (4) west of Juventae Chasma, and (5) west of Ganges Chasma. The beds within these deposits have unique variations in brightness, color, mineralogy, and erosional properties that are not typically observed in light-toned layered deposits within Valles Marineris or many other equatorial areas on Mars. Reflectance spectra indicate these deposits contain opaline silica and Fe-sulfates, consistent with low-temperature, acidic aqueous alteration of basaltic materials. We have found valley or channel systems associated with the layered deposits at all five locations, and the volcanic plains adjacent to Juventae, Ius, and Ganges exhibit inverted channels composed of light-toned beds. Valleys, channels, and light-toned layering along the walls of Juventae and Melas Chasmata are most likely coeval to the aqueous activity that affected the adjacent plateaus and indicate some hydrological activity occurred after formation of the chasmata. Although the source of water and sediment remains uncertain, the strong correlation between fluvial landforms and light-toned layered deposits argues for sustained precipitation, surface runoff, and fluvial deposition occurring during the Hesperian on the plateaus adjacent to Valles Marineris and along portions of chasmata walls.  相似文献   

2.
Layered deposits have been observed in different locations at the surface of Mars, as crater floors and canyons systems. Their high interest relies in the fact they imply dynamical conditions in their deposition medium. Indeed, in opposition to most of the rocks of the martian surface, which have a volcanic origin, bright layered deposits seems to be sedimentary outcrops.Capri Chasma, a canyon located at the outlet of Valles Marineris, exhibits such deposits called Interior Layered Deposits (ILD). A large array of visible and infrared spacecraft data were used to build a Geographic Information System (GIS). We added HiRiSE images, from the recent MRO mission, which offer a spatial resolution of 25 cm per pixel. It allowed the mapping and the analysis of morphologies in the canyon. We highlighted that the ILD are several kilometers thick and flat-top stratified deposits. They overlap the chaotic floor. They are surrounded and cut by several flow features that imply that liquid water was still acting after the formation of these stratified deposits. The density of crater on the floor of Capri Chasma was quantified. The current topography was aged to 3 Gyr. All these morphological information allow us to suggest a plausible geological history for Capri Chasma. We propose that the Interior Layered Deposits have formed during the Hesperian, during or after the opening of the canyon. Some observations argue that water discharges have happened at several times before and just after the formation of the ILD. Liquid water must have played a major role in the formation of these deposits after 3.5 Gyr, implying that it was present in surface at least locally and temporarily. If this can be applied to ILD in others canyons of Valles Marineris, it would imply that liquid water was stable in surface or sub-surface during the Hesperian. Or in the actual conditions, with a cold and dry martian surface, long-term standing water bodies are not possible. Thus we suggest that either the climate at the Hesperian was cold, but wetter, or as warm as the Noachian climate, what is less likely. Nevertheless, the global climate change which has occurred at the beginning of Mars history may have been later than announced.  相似文献   

3.
C. Quantin  P. Allemand  C. Delacourt 《Icarus》2004,172(2):555-572
The chronology of landslides of Valles Marineris, the equatorial trough system of Mars, has been investigated by a crater population study. Valles Marineris landslides have widespread debris aprons which offer a remarkable opportunity to study the crater population with high resolution images from Mars Orbiter Camera (MOC) and from Mars Odyssey Thermal Emission Imaging System (THEMIS). Sixty-six ages were determined within Valles Marineris including 56 landslide ages and 10 ages of the canyon floor. Results reveal that landslides of Valles Marineris system of canyons occurred during a widespread period of time between 3.5 Gy and 50 My. In some locations, the canyon floor has an apparent age of 3.5 Gy suggesting that at least locally within Valles Marineris no major refreshing processes have occurred for 3.5 Gy. The temporal repetitivity of landslides implies that the triggering mechanisms of the landslides are reproducible in time. Landslides have the same features whatever their age. The dynamic of these landslides is probably the same either with intervention of water up to recently (the last 100 My) or without water since 3.5 Gy.  相似文献   

4.
The Valles Marineris canyon system of Mars is closely related to large flood channels, some of which emerge full born from chaotic terrain in canyon floors. Coprates Chasma, one of the largest Valles Marineris canyons, is connected at its west end to Melas Chasma and on its east end to chaotic terrain-filled Capri and Eos Chasmata. The area from central Melas to Eos Chasmata contains a 1500 km long and about 1 km deep depression in its floor. Despite the large volumes of groundwater that likely discharged from chaotic terrain in this depression, no evidence of related fluvial activity has thus far been reported. We present an analysis of the regional topography which, together with photogeologic interpretation of available imagery, suggests that ponding due to late Hesperian discharge of water possibly produced a lake (mean depth 842 m) spanning parts of the Valles Marineris depression (VMD). Overflow of this lake at its eastern end resulted in delivery of water to downstream chaos regions and outflow channels. Our ponding hypothesis is motivated primarily by the identification of scarp and terrace features which, despite a lateral spread of about 1500 km, have similar elevations. Furthermore, these elevations correspond to the maximum ponding elevation of the region (−3560 m). Simulated ponding in the VMD yields an overflow point at its eastern extremity, in Eos Chasma. The neighborhood of this overflow point contains clear indicators of fluvial erosion in a consistent east-west orientation.  相似文献   

5.
Previous orbital mapping of crystalline gray haematite, ferric oxides, and sulfates has shown an association of this mineralogy with light-toned, layered deposits on the floor of Valles Marineris, in chaos terrains in the canyon’s outflow channels, and in Meridiani Planum. The exact nature of the relationship between ferric oxides and sulfates within Valles Marineris is uncertain. The Observatoire pour la Mineralogie, l’Eau, les Glaces et l’Activite (OMEGA) spectrometer initially identified sulfate and ferric oxides in the layered deposits of Valles Marineris. The Thermal Emission Spectrometer (TES) has also mapped coarse (gray) haematite in or at the base of these deposits. We use Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) spectra and Context Camera (CTX) and High Resolution Imaging Science Experiment (HiRISE) imagery from the Mars Reconnaissance Orbiter (MRO) to explore the mineralogy and morphology of the large layered deposit in central Capri Chasma, part of the Valles Marineris canyon system that has large, clear exposures of sulfate and haematite. We find kieserite (MgSO4·H2O) and ferric oxide (often crystalline red haematite) in the lower bedrock exposures and a polyhydrated sulfate without ferric oxides in the upper bedrock. This stratigraphy is duplicated in many other basinal chasmata, suggesting a common genesis. We propose the haematite and monohydrated sulfate formed by diagenetic alteration of a sulfate-rich sedimentary deposit, where the upper polyhydrated sulfate-rich, haematite-poor layers either were not buried sufficiently to convert to a monohydrated sulfate or were part of a later depositional phase. Based on the similarities between the Valles Marineris assemblages and the sulfate and haematite-rich deposits of Meridiani Planum, we hypothesize a common evaporite and diagenetic formation process for the Meridiani Planum sediments and the sulfate-bearing basinal Interior Layered Deposits.  相似文献   

6.
The walls of the Valles Marineris canyons are affected by about 45 landslides. The study of these landslides provides a test of the hypothesis of processes having affected Martian wallslopes after their formation. The dynamics of Valles Marineris landslides are controversial : either the landslides are interpreted as large debris flows or as dry rock avalanches. Their morphology and their topography are basic parameters to understand their dynamics. From topographic MOLA data and remote sensing images acquired with different spatial resolutions (Viking, THEMIS, MOC), the 3D geometry of 45 landslides of Valles Marineris has been studied. The landslides have been classified in 3 geomorphologic classes from the topography of the landslide deposits: the “chaotic” landslides without well identified structures, the “structured deposit without debris aprons” landslides with tectonic structures and small roughness at the deposit front and the “structured deposit with debris aprons” which display circular normal faults at the back of the deposit and several debris aprons at the front of the landslide. The spatial distribution of the three morphological types is in relation with the confinement of the canyons. The initial volume and the total deposited volume were also measured to compute volume balances. The deposited volumes range from 50 to . All volume balances display a maximum deficit ranging from 5% to 70%. The landslides with the largest deficits take place within an enclosed-canyon (Hebes Chasma). Lacking material exportation, these deficits could be interpreted as reflecting the porosity of the landslide source. This fact is in agreement with the hypothesis of a karstic origin of these enclosed-canyons. The Valles Marineris landslides have large mobilities (length/vertical drop) ranging from 1.8 to 12 implying low coefficients of friction and so fluidization mechanisms. The possible filling up of the porosity by volatile could be compatible with the fluidization patterns of Valles Marineris landslides.  相似文献   

7.
There is much interest on the occurrence of water and ice in the past history of Mars. Because landslides on Mars are much better conserved than their terrestrial counterparts, a physical examination and morphological analysis can reveal significant details on the depositional environment at the instant of failure. A study of the landslides in Valles Marineris based on their physical aspect is presented and the velocity of the landslides is calculated with a stretching block model. The results show that the landslides were subject to strong basal lubrication that made them travel at high speed and to long distances. We use physical analysis to explore the four alternative possibilities that the natural lubricant of the landslides in Valles Marineris was either ice, deep water, a shallow carpet of water, or evaporites. Examination of the furrows present on the surface of the landslide deposits shows that either sub-surface ice or evaporites were likely present on the floor of Valles Marineris during the mass failures.  相似文献   

8.
Gray crystalline hematite on Mars has been detected in three regions, Sinus Meridiani, Aram Chaos, and Valles Marineris, first by the Thermal Emission Spectrometer (TES) onboard the Mars Global Surveyor (MGS) orbiter, and then confirmed by other instruments. The hematite-rich spherules were also detected by the Mars Exploration Rover (MER) Opportunity at Meridiani Planum (Sinus Meridiani). Formation mechanisms of the hematite-rich spherules have been discussed widely since then. Here, we argue for an alternative formation mechanism, that is, the spherules originally formed at Valles Marineris due to the interaction of volcanic deposits and acidic hydrothermal fluids, and then were transported to and deposited at Meridiani Planum and Aram Chaos as alluvial/fluvial sedimentary deposits with other materials such as sulfates and rock fragments during the wash-out flows from Valles Marineris to Meridiani Planum and Aram Chaos. Diagenesis of the hematite-rich spherules may have also been a possible mechanism following sediment transport and emplacement. The hypothesis is consistent with available relevant information to date and provides an insight into the understanding of Martian surficial processes.  相似文献   

9.
We use a dynamic finite-difference model to simulate martian landslides in the Valles Marineris canyon system and Olympus Mons aureole using three different modal rheologies: frictional, Bingham, and power law. The frictional and Bingham modes are applied individually. Fluidized rheology is treated as a combination of frictional and power-law modes; general fluidization can include pore pressure contributions, whereas acoustic fluidization does not. We find that general fluidization most often produces slides that best match landslide geometry in the Valles Marineris. This implies that some amount of supporting liquid or gas was present in the material during failure. The profile of the Olympus Mons aureole is not well matched by any landslide model, suggesting an alternative genesis. In contrast, acoustic fluidization produces the best match for a lunar slide, a result anticipated for dry crust with no overlying atmosphere. The presence of pressurized fluid during Valles Marineris landsliding may be due to liquid water beneath a thin cryosphere (<1-2 km) or flash sublimation of CO2.  相似文献   

10.
An extensive layered formation covers the high plateaus around Valles Marineris. Mapping based on HiRISE, CTX and HRSC images reveals these layered deposits (LDs) crop out north of Tithonium Chasma, south of Ius Chasma, around West Candor Chasma, and southwest of Juventae Chasma and Ganges Chasma. The estimated area covered by LDs is ∼42,300 km2. They consist of a series of alternating light and dark beds, a 100 m in total thickness that is covered by a dark unconsolidated mantle possibly resulting from their erosion. Their stratigraphic relationships with the plateaus and the Valles Marineris chasmata indicate that the LDs were deposited during the Early- to Late Hesperian, and possibly later depending on the region, before the end of the backwasting of the walls near Juventae Chasma, and probably before Louros Valles sapping near Ius Chasma. Their large spatial coverage and their location mainly on highly elevated plateaus lead us to conclude that LDs correspond to airfall dust and/or volcanic ash. The surface of LDs is characterized by various morphological features, including lobate ejecta and pedestal craters, polygonal fractures, valleys and sinuous ridges, and a pitted surface, which are all consistent with liquid water and/or water ice filling the pores of LDs. LDs were episodically eroded by fluvial processes and were possibly modified by sublimation processes. Considering that LDs correspond to dust and/or ash possibly mixed with ice particles in the past, LDs may be compared to Dissected Mantle Terrains currently observed in mid- to high latitudes on Mars, which correspond to a mantle of mixed dust and ice that is partially or totally dissected by sublimation. The analysis of CRISM and OMEGA hyperspectral data indicates that the basal layer of LDs near Ganges Chasma exhibits spectra with absorption bands at ∼1.4 μm, and ∼1.9 μm and a large deep band between ∼2.21 and ∼2.26 μm that are consistent with previous spectral analysis in other regions of LDs. We interpret these spectral characteristics as an enrichment of LDs in opaline silica or by Al-phyllosilicate-rich layers being overlain by hydroxylated ferric sulfate-rich layers. These alteration minerals are consistent with the aqueous alteration of LDs at low temperatures.  相似文献   

11.
Herbert Frey 《Icarus》1979,37(1):142-155
The resistant parts of the canyon walls of the Martian rift complex Valles Marineris have been used to infer an earlier, less eroded reconstruction of the major troughs. The individual canyons were then compared with individual rifts of East Africa. When measured in units of planetary radius, Martian canyons show a distribution of lengths nearly identical to those in Africa, both for individual rifts and for compound rift systems. A common mechanism which scales with planetary radius is suggested. Martian canyons are significantly wider than African rifts. This is consistent with the long-standing idea that rift width is related to crustal thickness: most evidence favors a crust on Mars at least 50% thicker than that of Africa. The overall pattern of the rift systems of Africa and Mars are quite different in that the African systems are composed of numerous small faults with highly variable trend. On Mars the trends are less variable; individual scarps are straighter for longer than on Earth. This is probably due to the difference in tectonic histories of the two planets: the complex history of the Earth and the resulting complicated basement structures influence the development of new rifts. The basement and lithosphere of Mars are inferred to be simple, reflecting a relatively inactive tectonic history prior to the formation of the canyonlands.  相似文献   

12.
We examine here the close spatial and temporal associations among several unique features of Xanthe and Margaritifer Terrae, specifically the Valles Marineris troughs or chasmata and their interior deposits, chaotic terrain, the circum-Chryse outflow channels, and the subdued cratered material that covers Xanthe, Margaritifer, and Meridiani Terrae. Though previous hypotheses have attempted to explain the origin of individual features or subsets of these, we suggest that they may all be related. All of these features taken together present a consistent scenario that includes the processes of sub-ice volcanism and other magma/ice interactions, results of intrusive events during Late Noachian to Early Amazonian times.  相似文献   

13.
《Icarus》1987,72(2):411-429
Detailed study of the Valles Marineris equatorial troughs suggests that the landslides in that area contained water and probably were gigantic wet debris flows: one landslide complex generated a channel that has several bends and extends for 250 km. Further support for water or ice in debris masses includes rounded flow lobes and transport of some slide masses in the direction of the local topographic slope. Differences in speed and emplacement efficiency between Martian and terrestrial landslides can be attributed to the entrainment of volatiles on Mars, but they can also be explained by other mechanisms. Support that the wall rock contained water comes from the following observations: (1) the water within the landslide debris must have been derived from wall rock; (2) debris appears to have been transported through tributary canyons; (3) locally, channels emerged from the canyons; (4) the wall rock apprarently disintegrated and flowed easily; and (5) fault zones within the troughs are unusually resistant to erosion. The study further suggests that, in the equatorial region of Mars, material below depths of 400–800 m was not desiccated during the time of landslide activity (within the last billion years of Martian history). Therefore the Martian ground-water or groundice reservoir, if not a relic from ancient times, must have been replenished.  相似文献   

14.
The extensive light-toned deposits in canyons and troughs in Valles Marineris provide evidence of formation through water-related processes. As such, these deposits offer a window to past conditions on Mars. We study a small outcrop of light-toned deposits in a closed trough in Coprates Catena, a chain of collapse pits to the south-east of the main Valles Marineris system. A well-exposed sequence of deposits on the base of the north wall of the trough offers a 220 m section for geochemical and morphologic analysis. Using CRISM data we identify the presence of both phyllosilicates and sulfates and/or opaline silica in the light toned deposits, which vary in relative strength with elevation. We observe a trend in the dominant mineralogical signal, with Al phyllosilicates occurring near the base of the deposits, both below and above a band of Fe/Mg phyllosilicates, before a transition to more sulfate- or opaline silica-rich material near the top of the section. This trend likely reflects a change in the chemistry of the water in which the deposits formed. Using a HiRISE Digital Elevation Model, we find that the layers in the light-toned deposits on both sides of the trough dip gently towards the center of the trough, with a dip direction that aligns with the strike of the trough, suggesting that the light-toned deposits formed after the trough. Our general morphologic and mineralogical observations fit well with significant amounts of water in the trough. The deposits are too small to be dated using crater counting techniques, however, our crater analysis suggests that the plains in which the trough formed are probably Late Hesperian in age. If the chemistry of the light-toned deposits reflects the primary depositional mineralogy, then this and other small troughs in Coprates Catena might provide evidence of limited phyllosilicate formation in this region towards the end of the Hesperian era on Mars.  相似文献   

15.
The central Valles Marineris is the widest part of the equatorial trough system of Mars. Melas Chasma and parts of Coprates and Candor Chasmata provide some of the clearest clues on the relationships between erosional landforms, deposits and various volcanic and tectonic features. A detailed geomorphic study of the troughs allows the identification of faults and other structures in most parts of this area, in spite of local obliteration by erosional and depositional processes. Tectonic control on erosional landforms appears mainly in the northern walls of Melas Chasma and in the edge of the inner plateau above the trough floor. Longitudinal major faults are identified only along the northern wall. However the trough may not be a simple half graben: another fault line is inferred inside Melas Chasma southern walls along the edge of a wide bench of layered deposits. A deep and relatively narrow graben linking those of Ius and Coprates Chasmata appears to be downfaulted inside a wider basin with eroded sides. Transverse or oblique faults control some outlines of these erosional landforms, whereas a few monoclines or faults restricted to the basin beds reveal compressional stresses or differential vertical movements related to the basin development.  相似文献   

16.
Abstract— We are testing the idea of Squyres et al. (1992) that rampart craters on Mars may have formed over a significant time period and therefore the onset diameter (minimum diameter of a rampart crater) only reflects the ground ice depth at a given time. We measured crater size frequencies on the layered ejecta of rampart craters in three equatorial regions to derive absolute model ages and to constrain the regional volatile history. Nearly all rampart craters in the Xanthe Terra region are ?3.8 Gyr old. This corresponds to the Noachian fluvial activity that region. Rampart crater formation declines in the Hesperian, whereas onset diameters (minimum diameter) increase. No new rampart craters formed after the end of the Hesperian (?3 Gyr). This indicates a lowering of the ground ice table with time in the Xanthe Terra region. Most rampart craters in the Valles Marineris region are around 3.6 Gyr old. Only one large, probably Amazonian‐aged (?2.5 Gyr), rampart crater exists. These ages indicate a volatile‐rich period in the Early Hesperian and a lowering of the ground ice table with time in the Valles Marineris study region. Rampart craters in southern Chryse Planitia, which are partly eroded by fluvial activity, show ages around 3.9 Gyr. Rampart craters superposed on channels have ages between ?1.5 and ?0.6 Gyr. The onset diameter (3 km at ?1.5 Gyr) in this region may indicate a relatively shallow ground ice table. Loss of volatiles due to diffusion and sublimation might have lowered the ground ice table even in the southern Chryse Planitia region afterwards. In general, our study implies a formation of the smallest rampart craters within and/or shortly after periods of fluvial activity and a subsequent lowering of the ground ice table indicated by increasing onset diameter to the present. These results question the method to derive present equatorial ground ice depths from the onset diameter of rampart craters without information about their formation time.  相似文献   

17.
New high-resolution spectral and morphologic imaging of deposits on walls and floor of Ius Chasma extend previous geomorphic mapping, and permit a new interpretation of aqueous processes that occurred during the development of Valles Marineris. We identify hydrated mineralogy based on visible-near infrared (VNIR) absorptions. We map the extents of these units with CRISM spectral data as well as morphologies in CTX and HiRISE imagery. Three cross-sections across Ius Chasma illustrate the interpreted mineral stratigraphy. Multiple episodes formed and transported hydrated minerals within Ius Chasma. Polyhydrated sulfate and kieserite are found within a closed basin at the lowest elevations in the chasma. They may have been precipitates in a closed basin or diagenetically altered after deposition. Fluvial or aeolian processes then deposited layered Fe/Mg smectite and hydrated silicate on the chasma floor, postdating the sulfates. The smectite apparently was weathered out of Noachian-age wallrock and transported to the depositional sites. The overlying hydrated silicate is interpreted to be an acid-leached phyllosilicate transformed from the underlying smectite unit, or a smectite/jarosite mixture. The finely layered smectite and massive hydrated silicate units have an erosional unconformity between them, that marks a change in surface water chemistry. Landslides transported large blocks of wallrock, some altered to contain Fe/Mg smectite, to the chasma floor. After the last episode of normal faulting and subsequent landslides, opal was transported short distances into the chasma from a few m-thick light-toned layer near the top of the wallrock, by sapping channels in Louros Valles. Alternatively, the material was transported into the chasma and then altered to opal. The superposition of different types of hydrated minerals and the different fluvial morphologies of the units containing them indicate sequential, distinct aqueous environments, characterized by alkaline, then circum-neutral, and finally very acidic surface or groundwater chemistry.  相似文献   

18.
Philippe Masson 《Icarus》1977,30(1):49-62
The Coprates and Phoenicis Lacus quadrangles of Mars contain the Valles Marineris, Noctis Labyrinthus, and Claritas Fossae areas, each of which shows distinctive structural patterns. Analyses of the structural trends seen within these quadrangles show four principal trend directions. The chronological relationships among these trends and their relation to the stratigraphy has been determined. It appears that the two oldest trends (essentially WSW/ENE and NNE/ SSW), on the basis of transection relations, are best defined in what have been mapped on stratigraphic criteria as older Martian terrains (troughed and furrowed and cratered terrains). Younger trends (WNW/ESE and N/S), also on the basis of transection relations, appear to be related to opening and widening of the canyon. These are present only in the younger stratigraphic units. A comparison between the structural pattern of the Valles Marineris region and that of the Eastern African Rift system at the same scale reveals regional similarities. These suggest that a common major process, lateral extensions in the crust, was involved in the formation of both features.  相似文献   

19.
Building upon previous studies, we have used Mars Orbiter Camera and Mars Orbiter Laser Altimeter data to characterize in detail the newly discovered north polar basal unit. Lying stratigraphically between the polar layered deposits, from which it is likely separated by an unconformity, and the Vastitas Borealis Formation, this unit has introduced new complexity into north polar stratigraphy and has important implications for polar history. Exposures of the basal unit in Olympia Planitia and Chasma Boreale reveal relatively dark layers which exhibit differential erosion. Eroded primarily by wind, the basal unit may be the major if not sole source for the north polar dunes and ergs and has contributed material to the lower polar cap layers. We investigate four possible origins for the basal unit (outflow channel/oceanic deposits, basal ice, paleopolar deposits, and eolian deposits). The patchy layering within the unit, its likely sandy grain size, and presence only in the north polar basin suggest that it is primarily an eolian deposit, supporting Byrne and Murray's 2002 earlier conclusion. This implies that at some time during the Early to Late Amazonian, migrating sand was mixed with water ice, forming a relatively dark, sandy deposit. During this time, either no classic polar layered deposits were forming or smaller caps were growing and shrinking, possibly adding material to the basal unit.  相似文献   

20.
Steven W. Squyres 《Icarus》1979,40(2):244-261
The origin and evolution of two major eolian deposits of the Martian north polar region, the layered deposits and the debris mantle, are examined. Both apparently result from deposition of dust along with the seasonal CO2 frost cap. Dust deposited onto the perennial ice is incorporated into the layered deposits, while dust deposited directly onto the surface becomes part of the debris mantle. Climatically induced fluctuation of the perennial ice margin has influenced the evolution of both units. Periodic exposure to the atmosphere has allowed erosion of curvillinear troughs in the surface of the layered deposits. Intervening periods of deposition may have resulted in gradual poleward migration of the trough forms, leaving behind sets of low-amplitude surface undulations in former trough locations. Advance and retreat of the perennial ice margin has also probably resulted in a fine interfingering of the layered deposits-debris mantle contract. Limited post-depositional stripping of the debris mantle has been accomplished by intense winds blowing outward from the pole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号