首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Dunans Clay and Upper Oxford Clay of Britain show the importance of bioturbating organisms in controlling the formation of pyrite in the surface layers of normal shales. These clays are characterized by low pyrite sulphur content (< 1.3%), low organic carbon content (2%) and light δ34S values (generally lighter than −29%.). These values are consistent with the formation of pyrite close to the surface where contact with the overlying seawater is maintained by the bioturbating fauna. Low inputs of organic carbon and its consumption by both aerobic and anaerobic bacteria limits the formation of pyrite. It is thought that particularly large apparent fractionations between pyrite and Jurassic seawater (up to −58%.) are the result of incorporation of isotopically light sulphate from extensive reoxidation of sulphide.  相似文献   

2.
In order to better understand the paleoceanographic sedimentary environment of the Lower Cambrian black shales extensively distributed in South China, outcropped along the present southern margin of the Yangtze Platform with a width of ca. 200-400 km and a length of more than 1500 km, we present new paired δ13C data on carbonates (δ13Ccarb) and associated organic carbon (δ13Corg) and δ34Spy data on sedimentary pyrite in black shales from three sections (Ganziping, Shancha and Xiaohekou) located in NW Hunan, China. In these sections, a total of 82 Lower Cambrian black shale samples have δ13Ccarb values ranging from -4.0‰ to 1.7‰ with an average value of -2.1‰, and δ13Corg values between -34.9‰ and -28.8‰, averaging -31.9‰. The ?34Spy values of 16 separated sedi-mentary pyrite samples from the black shales vary between +10.2‰ and +28.7‰ with an average value of +19.5‰, presenting a small isotope fractionation between seawater sulfate and sedimentary sulfide. The model calculation based on credible data from the paired analyses for δ13Ccarb and δ13Corg of 11 black shale samples shows a high CO2 concentration in the Early Cambrian atmosphere, about 20 times higher than pre-industrial revolution values, consis-tent with previous global predictions. The small sulfur isotope fractionation between seawater sulfate and sedimen-tary sulfide in black shales, only 15.5‰ on average, implies a low sulfate level in the Early Cambrian seawater around 1 mmol. In combination with a high degree of pyritization (DOP) in the black shales, it is suggested that sul-fidic deep-ocean water could have lingered up to the earliest Cambrian in this area. The black shale deposition is envisaged in a stratified marine basin, with a surface euphotic and oxygenated water layer and sulfidic deeper water, controlled by a continental margin rift.  相似文献   

3.
An anomalous enrichment in marine sulfate δ34SSO4 is preserved in globally-distributed latest Ediacaran-early Cambrian strata. The proximity of this anomaly to the Ediacaran-Cambrian boundary and the associated evolutionary radiation has invited speculation that the two are causally related. Here we present a high-resolution record of paired sulfate (δ34SSO4) and pyrite (δ34Spyr) from sediments spanning ca. 547-540 million years ago (Ma) from the Ara Group of the Huqf Supergroup, Sultanate of Oman. We observe an increase in δ34SSO4 from ∼20‰ to ∼42‰, beginning at ca. 550 Ma and continuing at least through ca. 540 Ma. There is a concomitant increase in δ34Spyr over this interval from ∼ −15‰ to 10‰. This globally correlative enrichment, here termed the Ara anomaly, constitutes a major perturbation to the sulfur cycle. The absolute values of δ34Spyr reported here and in equivalent sections around the world, require the isotopic composition of material entering the ocean (δ34Sin) to be significantly more enriched than modern (∼3‰) values, likely in excess of 12‰ during the late Ediacaran-early Cambrian. Against this background of elevated δ34Sin, the Ara anomaly is explained not by increased fractionation between sulfate and pyrite (Δδ34S), but by an increase in pyrite burial (fpyr), most likely driven by enhanced primary production and sequestration of organic carbon, consistent with earlier reports of elevated organic carbon burial and widespread phosphorite deposition.  相似文献   

4.
Subaerial exposure and oxidation of organic carbon (Corg)-rich rocks is believed to be a key mechanism for the recycling of buried C and S back to Earth's surface. Importantly, processes coupled to microbial Corg oxidation are expected to shift new biomass δ13Corg composition towards more negative values relative to source. However, there is scarcity of information directly relating rock chemistry to oxidative weathering and shifting δ13Corg at the rock-atmosphere interface. This is particularly pertinent to the sulfidic, Corg-rich alum shale units of the Baltoscandian Basin believed to constitute a strong source of metal contaminants to the natural environment, following subaerial exposure and weathering. Consistent with independent support, we show that atmospheric oxidation of the sulfidic, Corg-rich alum shale sequence of the Cambrian-Devonian Baltoscandian Basin induces intense acid rock drainage at the expense of progressive oxidation of Fe sulfides. Sulfide oxidation takes priority over microbial organic matter decomposition, enabling quantitative massive erosion of Corg without producing a δ13C shift between acid rock drainage precipitates and shale. Moreover, 13C enrichment in inorganic carbon of precipitates does not support microbial Corg oxidation as the predominant mechanism of rock weathering upon exposure. Instead, a Δ34S = δ34Sshale − δ34Sprecipitates ≈ 0, accompanied by elevated S levels and the ubiquitous deposition of acid rock drainage sulfate minerals in deposited efflorescent precipitates relative to shales, provide strong evidence for quantitative mass oxidation of shale sulfide minerals as the source of acidity for chemical weathering. Slight δ15N depletion in the new surface precipitates relative to shale, coincides with dramatic loss of N from shales. Collectively, the results point to pyrite oxidation as a major driver of alum black shale weathering at the rock-atmosphere interface, indicating that quantitative mass release of Corg, N, S, and key metals to the environment is a response to intense sulfide oxidation. Consequently, large-scale acidic weathering of the sulfide-rich alum shale units is suggested to influence the fate and redistribution of the isotopes of C, N, and S from shale to the immediate environment.  相似文献   

5.
Bituminous rocks in the Ozankoey (Ankara) field are different from those of the Paleocene- Eocene Mengen and Giineytepe (Bolu) regions in metal enrichment levels. Organic carbon (Corg) content of organic material-rich rocks in the Ozankoey (Ankara) field is 3.66-40.72% wt averaging 14.34%. The dominant organic materials are algae/amorphous accompanied by minor amount of herbaceous material (The dominant kerogen type is Type-I with a limited amount of Type-Ⅱ kerogen.). The bituminous rocks in the Ozankoey field are enriched in heavy metals such as Ni, Mn, As and Cr. In comparison with the average enrichment values of dements, Ni, Mn, As and Cr in bituminous shales of the Ozankoey field are as about 4.38, 14.93, 10.90 and 5.58 times as average values. The average concentrations of these heavy metals are also as high as 215× 10^-6, 828 × 10^-6, 58.54 × 10^-6, and 148 × 10^-6 respectively. In addition, sorption properties of day and organic materials are also important for metal enrichments in the bituminous shales.  相似文献   

6.
Black shales and massive sulfides represent reduced lithofacies that require isolation from oxic environments to be preserved. This, together with the sedimentary affinity of both lithofacies, can explain their common concurrence in the geologic record. The present study is based on the comparison of Rammelsberg in Germany, Tharsis in Spain, and Draa Sfar in Morocco, three massive sulfide deposits closely associated with black shales that are distributed along the European and North African Variscan orogen. The study entails geochemical, biostratigraphic, and stratigraphic analyses of the black shale sequences hosting the three deposits and mineralogical and textural analyses of the sulfides. All three deposits were formed in immature, tectonically unstable basins within an active continental margin or continental magmatic arc. Their stratigraphic records consist of a sequence of black shales enclosing massive sulfides and variable proportions of bimodal volcanic and subvolcanic rocks. The major differences among the three deposits concern the size, composition, and mineralogy. Regarding age, they are diachronous and younger southward: Rammelsberg is middle Eifelian, Tharsis latest Famennian, and Draa Sfar late Viséan. The study of redox conditions of the paleoenvironment using organic and inorganic proxies highlights similarities and significant differences among the three ore-hosting basins during massive sulfide and black shale deposition. The black shales generally display low Corg and high Stot contents. At Rammelsberg, the Stot/Ctot ratios provide values typical for normal Middle Devonian marine environments, which suggests that the original reactive organic C is now fixed in carbonates. At Tharsis, most of the samples have Corg >1 and Stot/Corg values equivalent to those of Devonian?CCarboniferous normal marine sediments. However, some pyritic hanging-wall samples have Corg <1 and Stot up to 5?wt.%, suggesting the epigenetic addition of HS?. The Stot/Corg ratio for the Draa Sfar samples resembles that of Middle Carboniferous normal marine environments. Geochemical inorganic proxies used to define the environmental conditions include the enrichment factors of U (UEF) and Mo (MoEF) together with V/Cr and V/(V?+?Ni) ratios. Footwall shales at Filón Norte (Tharsis) show positive and eventually elevated UEF and MoEF values, which suggests anoxic conditions, whereas at Rammelsberg and Draa Sfar oxic bottom water is indicated. The relations V/Cr and V/(V + Ni) in all three cases point to a redox boundary near the sediment?Cwater interface, although at Tharsis some samples indicate anoxic/euxinic conditions (i.e., V/(V + Ni) >0.9). Regarding the environmental conditions of the source areas, feldspar illitization and selective depletion in Na and Ca occurred at the three studies sites. Available sulfur isotopic data from the Rammelsberg and Tharsis sulfide ore indicate that biogenic reduction of marine sulfate was a major sulfur source during massive sulfide generation. Nevertheless, a hydrothermal sulfur source has also been detected. At Rammelsberg, this is indicated from the polymetallic sulfides that replace sedimentary and diagenetic pyrite. At Tharsis, the bacteriogenic sulfur signature is also restricted to sulfide with less evolved textures, whereas a hydrothermal source is more evident in sulfides showing evidence of recrystallization. Both geochemical and isotopic data suggest that the bacteriogenic reduction process was inhibited by rapid burial. The sedimentation rates calculated for Rammelsberg, Tharsis, and Draa Sfar were in the range 7?C13, 8?C14, and 19?C27?cm/ka, respectively. Continuous sedimentation of black shale favored the isolation of the massive sulfides and organic material from bottom waters and hence favored their preservation. Accordingly, the relationships between black shales and massive sulfides are considered to be casual. Nevertheless, the tectono-sedimentary evolution of each basin controlled the deposition of both black shales and massive sulfides and the parameters that favored their coeval deposition.  相似文献   

7.
The sulfur isotopic composition of the Herrin (No. 6) Coal from several localities in the Illinois Basin was measured. The sediments immediately overlying these coal beds range from marine shales and limestones to non-marine shales. Organic sulfur, disseminated pyrite, and massive pyrite were extracted from hand samples taken in vertical sections.The δ 34S values from low-sulfur coals (< 0.8% organic sulfur) underlying nonmarine shale were +3.4 to +7.3%0 for organic sulfur, +1.8 to +16.8%0 for massive pyrite, and +3.9 to +23.8%0 for disseminated pyrite. In contrast, the δ 34S values from high-sulfur coals (> 0.8% organic sulfur) underlying marine sediments were more variable: organic sulfur, ?7.7 to +0.5%0, pyrites, ?17.8 to +28.5%0. In both types of coal, organic sulfur is typically enriched in 34S relative to pyritic sulfur.In general, δ 34S values increased from the top to the base of the bed. Vertical and lateral variations in δ 34S are small for organic sulfur but are large for pyritic sulfur. The sulfur content is relatively constant throughout the bed, with organic sulfur content greater than disseminated pyrite content. The results indicate that most of the organic sulfur in high-sulfur coals is derived from post-depositional reactions with a 34S-depleted source. This source is probably related to bacterial reduction of dissolved sulfate in Carboniferous seawater during a marine transgression after peat deposition. The data suggest that sulfate reduction occurred in an open system initially, and then continued in a closed system as sea water penetrated the bed.Organic sulfur in the low-sulfur coals appears to reflect the original plant sulfur, although diagenetic changes in content and isotopic composition of this fraction cannot be ruled out. The wide variability of the δ 34S in pyrite fractions suggests a complex origin involving varying extents of microbial H2S production from sulfate reservoirs of different isotopic compositions. The precipitation of pyrite may have begun soon after deposition and continued throughout the coalification process.  相似文献   

8.
The organic geochemical methods of hydrocarbon prospecting involve the characterization of sedimentary organic matter in terms of its abundance, source and thermal maturity, which are essential prerequisites for a hydrocarbon source rock. In the present study, evaluation of organic matter in the outcrop shale samples from the Semri and Kaimur Groups of Vindhyan basin was carried out using Rock Eval pyrolysis. Also, the adsorbed low molecular weight hydrocarbons, methane, ethane, propane and butane, were investigated in the near surface soils to infer the generation of hydrocarbons in the Vindhyan basin. The Total Organic Carbon (TOC) content in shales ranges between 0.04% and 1.43%. The S1 (thermally liberated free hydrocarbons) values range between 0.01–0.09 mgHC/gRock (milligram hydrocarbon per gram of rock sample), whereas the S2 (hydrocarbons from cracking of kerogen) show the values between 0.01 and 0.14 mgHC/gRock. Based on the Tmax (temperature at highest yield of S2) and the hydrogen index (HI) correlations, the organic matter is characterized by Type III kerogen. The adsorbed soil gas, CH4 (C1), C2H6 (C2), C3H8 (C3) and nC4H10, (nC4), concentrations measured in the soil samples from the eastern part of Vindhyan basin (Son Valley) vary from 0 to 186 ppb, 0 to 4 ppb, 0 to 5 ppb, and 0 to 1 ppb, respectively. The stable carbon isotope values for the desorbed methane (δ13C1) and ethane (δ13C2) range between −45.7‰ to −25.2‰ and −35.3‰ to −20.19‰ (VPDB), respectively suggesting a thermogenic source for these hydrocarbons. High concentrations of thermogenic hydrocarbons are characteristic of areas around Sagar, Narsinghpur, Katni and Satna in the Son Valley. The light hydrocarbon concentrations (C1–C4) in near surface soils of the western Vindhyan basin around Chambal Valley have been reported to vary between 1–2547 ppb, 1–558 ppb, 1–181 ppb, 1–37 ppb and 1–32 ppb, respectively with high concentrations around Baran-Jhalawar-Bhanpur-Garot regions (Kumar et al., 2006). The light gaseous hydrocarbon anomalies are coincident with the wrench faults (Kota – Dholpur, Ratlam – Shivpuri, Kannod – Damoh, Son Banspur – Rewa wrench) in the Vindhyan basin, which may provide conducive pathways for the migration of the hydrocarbons towards the near surface soils.  相似文献   

9.
Oceania supplies ∼40% of the global riverine flux of organic carbon, approximately half of which is injected onto broad continental shelves and processed in shallow deltaic systems. The Gulf of Papua, on the south coast of the large island of New Guinea, is one such deltaic clinoform complex. It receives ∼4 Mt yr−1 particulate terrestrial organic carbon with initial particle Corg loading ∼0.7 mg m−2. Corg loading is reduced to ∼0.3 mg m−2 in the topset-upper foreset zones of the delta despite additional inputs of mangrove and planktonic detritus, and high net sediment accumulation rates of 1-4 cm yr−1. Carbon isotopic analyses (δ13C, Δ14C) of ΣCO2 and Corg demonstrate rapid (<100 yr) remineralization of both terrestrial (δ13C <−28.6) and marine Corg13C ∼−20.5) ranging in average age from modern (bomb) (Δ14C ∼60) to ∼1000 yr (Δ14C ∼−140). Efficient and rapid remineralization in the topset-upper foreset zone is promoted by frequent physical reworking, bioturbation, exposure, and reoxidation of deposits. The seafloor in these regions, particularly <20 m, apparently functions as a periodically mixed, suboxic batch reactor dominated by microbial biomass. Although terrestrial sources can be the primary metabolic substrates at inshore sites, relatively young marine Corg often preferentially dominates pore water ΣCO2 relative to bulk Corg in the upper foreset. Thus a small quantity of young, rapidly recycled marine organic material is often superimposed on a generally older, less reactive terrestrial background. Whereas the pore water ΣCO2 reflects both rapidly cycled marine and terrestrial sources, terrestrial material dominates the slower overall net loss of Corg from particles in the topset-upper foreset zone (i.e. recycled marine Corg leaves little residue). Preferential utilization of Corg subpools and diagenetic fractionation of C isotopes supports the reactive continuum model as a conceptual basis for net decomposition kinetics. Early diagenetic fractionation of C isotopes relative to the bulk sedimentary Corg composition can produce changes in 14C activity independent of radioactive decay. In the Gulf of Papua topset-upper foreset, Δ14C of pore water ΣCO2 averaged ∼ 300‰ greater than Corg sediment between ∼1-3 m depth in deposits. Diagenetic fractionation and decomposition aging of sedimentary Corg compromises simple application of 14C for determination of sediment accumulation rates in diagenetically reactive deposits.  相似文献   

10.
《Gondwana Research》2014,25(3-4):1276-1282
Concentrations of total organic matter (TOC), carbon isotopic compositions of carbonate and organic matter (δ13Ccarb, δ13Corg), and sulfur isotopic compositions of carbonate associated sulfate (δ34Ssulfate) across the Guadalupian–Lopingian (G–L) boundary were analyzed from identical samples of Tieqiao section, Laibin, Guangxi province, South China. The δ13Ccarb values show a positive excursion from − 0.45‰ to the peak of 3.80‰ in the Laibin limestone member of the Maokou Formation, followed by a drastic drop to − 2.60‰ in the lowest Heshan formation, then returned to about 1.58‰. Similar to the trends of the δ13Ccarb values, Δ13Ccarb–org values also show a positive excursion followed by a sharp negative shift. The onset of a major negative carbon isotope excursion postdates the end Guadalupian extinction that indicates subsequent severe disturbance of the ocean–atmosphere carbon cycle. The first biostratigraphic δ34Ssulfate values during the G–L transition exhibit a remarkable fluctuation: a dramatic negative shift followed by a rapid positive shift, ranging from 36.88‰ to − 37.41‰. These sulfate isotopic records suggest that the ocean during the G–L transition was strongly stratified, forming an unstable chemocline separating oxic shallow water from anoxic/euxinic deep water. Chemocline excursions, together with subsequent rapid transgression and oceanic anoxia, were likely responsible for the massive diversity decline of the G–L biotic crisis.  相似文献   

11.
An experimental arrangement suitable for application of high temperature calorimetry to liquid sulfide systems has been developed. Using this approach, we have measured the integral enthalpies of mixing of Ni + NiS at 1100 K to form liquid alloys with compositions from XNis = 0.576 to XNis = 0.754. Partial enthalpies of the two components also were measured. After correcting for the enthalpies of fusion of Ni and NiS at 1100 K, the results of all measurements can be represented by an analytical expression which reflects subregular behavior of the mixing enthalpies ΔHmixl−1 = XNis2XNiA + XNisXNiS2B with A = −97.712 kJ mol−1 and B = −4.772 kJ mol−1.The standard enthalpies of formation of the high and low temperature forms of NiS were evaluated from the calorimetrically measured enthalpy change associated with the reaction between nickel and sulfur at 1021 K. The standard enthalpies of formation of Ni3S2 (heazlewoodite), Ni7S6 and Ni0.958S were determined from the enthalpy changes of reactions in which the compounds were formed from NiS and Ni at 873 K and 833 K. The standard enthalpy of formation of NiS2(vaesite) was obtained from the enthalpy change of the reaction of NiS2 with Ni to give NiS at 873 K. The following values are reported for the standard enthalpies of formation of the phases studied (in kJ mol−1): ΔHf,NiS(HT)0 = −88.1 ± 1.0 ΔHf, Ni0.958S0 = −93.2 ± 0.7ΔHf,Ni7S60 = −582.8 ± 5.7 ΔHf,NiS(LT)0 = −91.0 ± 1.0ΔHf,Ni3S2(LT)0 = −217.2 ± 1.6 ΔHf,NiS20 = −124.9 ± 1.0.  相似文献   

12.
Recent data were summarized on the concentration and mass of inorganic and organic carbon in reservoirs of the Earth’s hydrosphere. We compared carbon masses and accumulation conditions in the surface hydrosphere and waters of the sedimentary shell and proportions between carbonate, dissolved, and suspended particulate organic carbon. It was shown that the total masses of carbon in the surface hydrosphere and in the waters of the sedimentary shell are approximately equal to 80 × 1018 g C at an organic to carbonate carbon ratio of 1 : 36 and 1 : 43, respectively. Three main forms of organic compounds in the ocean (living organisms, suspended particles, and dissolved species) occur in the proportion 1 : 13 : 250 and form the pyramid of masses 4 × 1015 g, 50 × 1015 g, and 1000 × 1015 g Corg. The descending sequence of the organic to carbonate carbon ratio in water, ocean (1 : 36) > glaciers (1 : 8) > lakes (1 : 2) > rivers (1 : 0.6) > wetlands (1 : 0.3), is in general consistent with an increase in the same direction in the mean concentrations of organic matter: 0.77 mg Corg/L in the ocean, 0.7 mg Corg/L in glaciers, 6–30 mg Corg/L in lakes, 15 mg Corg/L in rivers, and 75 mg Corg/L in wetlands. Both the mean concentrations and masses of dissolved organic matter in the pore waters of oceanic sediments and in the waters of the sedimentary shell are similar: 36–37 mg/L and 5 × 1018 and 5.6 × 1018 g, respectively. The mass of carbonate carbon in the pore waters of the ocean, (19–33) × 1018 g, is comparable with its mass in the water column, 38.1 × 1018 g.  相似文献   

13.
The chemical composition of organic matter (Corg, Norg, δ13C, δ15N, and n-alkanes) was studied in the top layer of bottom sediments of the East Siberian Sea. Possible ways were proposed to estimate the amount of the terrigenous component in their organic matter (OM). The fraction of terrigenous OM estimated by the combined use of genetic indicators varied from 15% in the eastern part of the sea, near the Long Strait, to 95% in the estuaries of the Indigirka and Kolyma rivers, averaging 62% over the sea area.  相似文献   

14.
Surface sediment samples were collected from the Squamish River Delta, British Columbia, in order to determine the role of sediment surface area in the preservation of organic matter (OM) in a paralic sedimentary environment. The Squamish Delta is an actively prograding delta, located at the head of Howe Sound.Bulk total organic carbon (TOC) values across the Squamish Delta are low, ranging from 0.1 to 1.0 wt.%. The carbon/total nitrogen ratio (Corg/N) ranges from 6 to 17, which is attributed to changes in OM type and facies variations. The <25-μm fraction has TOC concentrations up to 2.0 wt.%, and a Corg/N ratio that ranges from 14 to 16. The 53–106-μm fraction has higher TOC concentrations and Corg/N ratios relative to the 25–53-μm fraction. The Corg/N ratio ranges from 9 to 18 in the 53–106-μm fraction and 5.5–10.5 in the 25–53-μm fraction. Surface area values for bulk sediments are low (0.5–3.0 m2/g) due to the large proportion of silt size material. Good correlation between surface area and TOC in bulk samples suggests that OM is adsorbed to mineral surfaces. Similar relationships between surface area and TOC were observed in size-fractionated samples. Mineralogy and elemental composition did not correlate with TOC concentration.The relationships between surface area, TOC and total nitrogen (TN) can be linked to the hydrodynamic and sedimentological conditions of the Squamish Delta. As a result, the Squamish Delta is a useful modern analogue for the formation of petroleum source rocks in ancient deltaic environments, where TOC concentrations are often significantly lower than those in source rocks formed in other geological settings.  相似文献   

15.
Geochemical and isotopic data for the uppermost 1.2 m of the sediments of the central Santa Monica Basin plain were examined to better understand organic matter deposition and recycling at this site. Isotopic signatures (Δ14C and δ13C) of methane (CH4) and dissolved inorganic carbon (DIC) indicate the occurrence of anaerobic oxidation of CH4 that is fueled by CH4 supplied from a relict reservoir that is decoupled from local organic carbon (Corg) degradation and methanogenesis. This finding was corroborated by a flux budget of pore-water solutes across the basal horizon of the profile. Together these results provide a plausible explanation for the anomalously low ratio between alkalinity production and sulfate consumption reported for these sediments over two decades ago. Shifts in Δ14C and δ13C signatures of Corg have previously been reported across the 20-cm depth horizon for this site and attributed to a transition from oxic to anoxic bottom water that occurred ~350 years BP. However, we show that this horizon also coincides with a boundary between the base of a hemipelagic mud section and the top of a turbidite interval, complicating the interpretation of organic geochemical data across this boundary. Radiocarbon signatures of DIC diffusing upward into surface sediments indicate that remineralization at depth is supported by relatively 14C-enriched Corg within the sedimentary matrix. While the exact nature of this Corg is unclear, possible sources are hemipelagic mud sections that were buried rapidly under thick turbidites, and 14C-rich moieties dispersed within Corg-poor turbidite sections.  相似文献   

16.
Ocean Drilling Program Leg 207 recovered thick sequences of Albian to Santonian organic-carbon-rich claystones at five drill-sites on the Demerara Rise in the western equatorial Atlantic Ocean. Dark-colored, finely laminated, Cenomanian–Santonian black shale sequences contain between 2% and 15% organic carbon and encompass Oceanic Anoxic Events 2 and 3. High Rock-Eval hydrogen indices signify that the bulk of the organic matter in these sequences is marine in origin. However, δ13Corg values lie mostly between −30‰ and −27‰, and TOC/TN ratios range from 15 to 42, which both mimic the source signatures of modern C3 land plants. The contradictions in organic matter source indicators provide important implications about the depositional conditions leading to the black shale accumulations. The low δ13Corg values, which are actually common in mid-Cretaceous marine organic matter, are consequences of the greenhouse climate prevailing at that time and an associated accelerated hydrologic cycle. The elevated C/N ratios, which are also typical of black shales, indicate depressed organic matter degradation associated with low-oxygen conditions in the water column that favored preservation of carbon-rich forms of marine organic matter over nitrogen-rich components. Underlying the laminated Cenomanian–Santonian sequences are homogeneous, dark-colored, lower to middle Albian siltstones that contain between 0.2% and 9% organic carbon. The organic matter in these rocks is mostly marine in origin, but it occasionally includes large proportions of land-derived material.  相似文献   

17.
Six samples of non-mineralized black shale from a Kupferschiefer section in the northern part of the Polish Zechstein Basin (Zdrada IG-8 drill hole: 1026.16–1026.90 m) were studied for Re–Os isotopes and selected major and trace elements. These black shales, averaging 5.82 wt.% Corg and 1.69 wt.% Stot, display very low base metal values (up to 106 ppb Cu, 792 ppb Pb, and 144 ppb Zn) and have abundances of 64–1376 ppb Re and 0.37–1.25 ppb Os, with a 187Os/188Os ratio of 6.95–22.5. The regression of all Re–Os data yields an age of 247 ± 20 Ma, which is within the range of uncertainties of previous Rb–Sr and K–Ar geochronological studies. The scatter in the Re–Os data can be explained in terms of fluctuations in sedimentary conditions, i.e., restricted basin with terrestrial influence.  相似文献   

18.
We use the evolution of river sediment characteristics and sedimentary Corg from the Himalayan range to the delta to study the transport of Corg in the Ganga-Brahmaputra system and especially its fate during floodplain transit.A detailed characterisation of both mineral and organic particles for a sampling set of river sediments allows taking into account the sediment heterogeneity characteristic of such large rivers. We study the relationships between sediment characteristics (mineralogy, grain size, specific area) and Corg content in order to evaluate the controls on Corg loading. Contributions of C3 and C4 plants are estimated from Corg stable isotopic composition (δ13Corg). We use the evolution of δ13Corg values from the Himalayan range to the delta in order to study the fate of Corg during floodplain transit.Ganga and Brahmaputra sediments define two distinct linear relations with specific area. In spite of 4-5 times higher specific area, Ganga sediments have similar Corg content, grain size and mineralogy as Brahmaputra sediments, indicating that specific area does not exert a primary control on Corg loading. The general correlation between the total Corg content and Al/Si ratio indicates that Corg loading is mainly related to: (1) segregation of organic particles under hydrodynamic forces in the river, and (2) the ability of mineral particles to form organo-mineral aggregates.Bed and suspended sediments have distinct δ13Corg values. In bed sediments, δ13Corg values are compatible with a dominant proportion of fossil Corg derived from Himalayan rocks erosion. Suspended sediments from Himalayan tributaries at the outflow of the range have low δ13Corg values (−24.8‰ average) indicating a dominant proportion of C3 plant inputs. In the Brahmaputra basin, δ13Corg values of suspended sediments are constant along the river course in the plain. On the contrary, suspended sediments of the Ganga in Bangladesh have higher δ13Corg values (−22.4‰ to −20.0‰), consistent with a significant contribution of C4 plant derived from the floodplain. Our data indicate that, during the plain transit, more than 50% of the recent biogenic Corg coming from the Himalaya is oxidised and replaced by floodplain Corg. This renewal process likely occurs during successive deposition-erosion cycles and river course avulsions in the plain.  相似文献   

19.
The contribution of soil organic matter (SOM) to continental margins is largely ignored in studies on the carbon budget of marine sediments. Detailed geochemical investigations of late Quaternary sediments (245-0 ka) from the Niger and Congo deep-sea fans, however, reveal that Corg/Ntot ratios and isotopic signatures of bulk organic matter (δ13Corg) in both fans are essentially determined by the supply of various types of SOM from the river catchments thus providing a fundamentally different interpretation of established proxies in marine sciences. On the Niger fan, increased Corg/Ntot and δ13Corg (up to −17‰) were driven by generally nitrogen-poor but 13C-enriched terrigenous plant debris and SOM from C4/C3 vegetation/Entisol domains (grass- and tree-savannah on young, sandy soils) supplied during arid climate conditions. Opposite, humid climates supported drainage of C3/C4 vegetation/Alfisol/Ultisol domains (forest and tree-savannah on older/developed, clay-bearing soils) that resulted in lower Corg/Ntot and δ13Corg (< −20‰) in the Niger fan record. Sediments from the Congo fan contain a thermally stable organic fraction that is absent on the Niger fan. This distinct organic fraction relates to strongly degraded SOM of old and highly developed, kaolinite-rich ferallitic soils (Oxisols) that cover large areas of the Congo River basin. Reduced supply of this nitrogen-rich and 12C-depleted SOM during arid climates is compensated by an elevated input of marine OM from the high-productive Congo up-welling area. This climate-driven interplay of marine productivity and fluvial SOM supply explains the significantly smaller variability and generally lower values of Corg/Ntot and δ13Corg for the Congo fan records. This study emphasizes that ignoring the presence of SOM results in a severe underestimation of the terrigenous organic fraction leading to erroneous paleoenvironmental interpretations at least for continental margin records. Furthermore, burial of SOM in marine sediments needs more systematic investigation combining marine and continental sciences to assess its global relevance for long-term sequestration of atmospheric CO2.  相似文献   

20.
The rates of organic carbon oxidation by O2, NO3?, MnO2, Fe2O3 and SO4? have been calculated for five pelagic Pacific and Atlantic sites using simple diffusion-reaction models. O2 everywhere oxidizes > 90% of the raining Corg; the fraction oxidized by the secondary oxidants decreases as the rain rate of organic C to the seafloor decreases. A large fraction of the Corg escaping oxidation by O2 is oxidized by the secondary oxidants. Hence while these oxidants play a small role in remineralization, they are important in regulating the burial of organic matter and the consequent removal from the oceans of reduced carbon and nutrients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号