首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Fourteen ureilites were analyzed for stable C isotopic composition using stepped combustion. The δ13C values over the temperature range 500 to 1000°C are fairly constant for any particular meteorite although there are differences between samples. The similarity in combustion temperatures of pure diamond (600–1000δC) and pure graphite (600–800°C) makes it difficult to ascertain the relative proportions of either component within each sample. However, the constant δ13C values observed over the range 500 to 1000°C strongly suggests that ureilite diamond and graphite have the same isotopic composition. This would seem to confirm that the diamond in ureilites formed from the graphite during a process, presumably an impact event, which did not fractionate C isotopes.There is a variation in C isotopic composition of graphite/diamond intergrowths among ureilites, which is not continuous—the samples fall into two groups, with δ13C values clustered around ?10%. and ?2%. PDB. These groups are also distinguishable on the basis of the Fe content of their olivines, which may reflect the existence of more than one ureilite parent body. The brecciated ureilite North Haig has a δ13C value of ?6.5%. and it is thus possible that this sample contains components from mixed parent materials.Nitrogen abundance and stable isotope measurements were made on five samples using stepped combustion analysis. Nitrogen concentrations range from 25 to 150 ppm and CN ratios are substantially less than for carbonaceous chondrites. Variation in N isotopic composition is wide and there is evidence of different ratios in diamond/graphite, silicate and metal.  相似文献   

3.
Here we report the elemental and isotopic compositions of the insoluble organic material (IOM) isolated from several previously unanalyzed meteorites, as well as the reanalyses of H isotopic compositions of some previously measured samples (Alexander et al., 2007). The IOM in ordinary chondrites (OCs) has very large D enrichments that increase with increasing metamorphism and decreasing H/C, the most extreme δD value measured being almost 12,000‰. We propose that such large isotopic fractionations could be produced in the OC parent bodies through the loss of isotopically very light H2 generated when Fe was oxidized by water at low temperatures (<200 °C). We suggest that similar isotopic fractionations were not generated in the IOM of CV and CO chondrites with similar metamorphic grades and IOM H/C ratios because proportionately less water was consumed during metamorphism, and the remaining water buffered the H isotopic composition of the IOM even a H was being lost from it.Hydrogen would also have been generated during the alteration of CI, CM and CR carbonaceous chondrites. The IOM in these meteorites exhibit a considerable range in isotopic compositions, but all are enriched in D, as well as 15N, relative to terrestrial values. We explore whether these enrichments could also have been produced by the loss of H2, but conclude that the most isotopically anomalous IOM compositions in meteorites from these groups are probably closest to their primordial values. The less isotopically anomalous IOM has probably been modified by parent body processes. The response of IOM to these processes was complex and varied, presumably reflecting differences in conditions within and between parent bodies.The D enrichments associated with H2 generation, along with exchange between D-rich IOM and water in the parent bodies, means that it is unlikely that any chondrites retain the primordial H isotopic composition of the water ice that they accreted. The H isotopic compositions of the most water-rich chondrites, the CMs and CIs, are probably the least modified and their compositions (δD ? −25‰) suggest that their water did not form at large radial distances from the Sun where ice is predicted to be very D-rich. Yet models to explain the O isotopic composition of inner Solar System bodies require that large amounts of ice were transported from the outer to the inner Solar System.  相似文献   

4.
The Bovedy L-group chondrite contains a light-colored poikilitic lithic fragment with olivine, low-Ca pyroxene and kamacite compositions characteristic of porphyritic chondrules from unequilibrated ordinary chondrites. Its texture, compositional similarities to porphyritic chondrules, and low Na2O, K2O and P2O5 content indicate that the fragment represents a solidified, slightly fractionated impact melt formed from a source that was rich in porphyritic chondrules. The fragment is heterogeneous, with a progressive increase in the bulk MgOFeO ratio and in MgO content of olivines and low-Ca pyroxenes across its length. 39Ar40Ar analyses of the fragment and host indicate that the meteorite experienced extensive degassing due to reheating. The approximate age of 0.5–0.94 Byr dates the reheating event and not the formation of the lithic fragment or the Bovedy breccia. This reheating event renders the fragment's and host's metallographic cooling rate of ~ 5 C/Myr (through 500°C) imprecise. However, the absence of martensite and the presence of kamacite. zoned taenite and tetrataenite in the fragment and host are consistent with such slow cooling through 500°C. This cooling rate must have resulted from burial of the fragment-host assemblage beneath insulating material on the Bovedy parent body. If the thermal diffusivity (κ) of this overburden was approximately comparable to that of the lunar regolith (10?4cm2/sec), then the fragment was buried at a depth ≌ 6.5 km; if K = 10?2 cm2/sec (similar to chondritic material), then the fragment was buried at a depth ?65 km.  相似文献   

5.
In order to gain a better understanding of the formation of plessite in iron meteorites, various electron optical techniques were employed to study the range of plessite structures observed in the Carlton fine octahedrite. Compositional and structural studies of twins in clear taenite and the cloudy zone were made. Transmission electron microscopy studies of martensitic and duplex α + γ plessite regions show the presence of γ-taenite rods, 10–200 nm wide, in an α-kamacite matrix. Scanning transmission electron microscope X-ray analyses showed Ni contents in the y rods of ≥43wt% and Ni contents in the a matrix of 3 wt% Ni. The reaction path involves the decomposition of α2 martensite into α + γ and these reactions occur below 200°C and possibly below 100°C. Apparently the formation of plessite is intimately related to the formation of martensite and the further decomposition of martensite during the cooling history of the meteorite. It is quite probable that the martensite decomposition reaction has occurred in a large number of iron meteorites and is responsible for many of the observed plessite structures.  相似文献   

6.
Small live individuals of Globigerinoides sacculifer which were cultured in the laboratory reached maturity and produced garnets. Fifty to ninety percent of their skeleton weight was deposited under controlled water temperature (14° to 30°C) and water isotopic composition, and a correction was made to account for the isotopic composition of the original skeleton using control groups.Comparison of. the actual growth temperatures with the calculated temperature based on paleotemperature equations for inorganic CaCO3 indicate that the foraminifera precipitate their CaCO3 in isotopic equilibrium. Comparison with equations developed for biogenic calcite give a similarly good fit. Linear regression with Craig's (1965) equation yields: t = ?0.07 + 1.01t? (r= 0.95) where t is the actual growth temperature and t? Is the calculated paleotemperature. The intercept and the slope of this linear equation show that the familiar paleotemperature equation developed originally for mollusca carbonate, is equally applicable for the planktonic foraminifer G. sacculifer.Second order regression of the culture temperature and the delta difference (δ18Oc ? δ18Ow) yield a correlation coefficient of r = 0.95: t? = 17.0 ? 4.52(δ18Oc ? δ18Ow) + 0.03(δ18Oc ? δ18Ow)2t?, δ18Oc and δ18Ow are the estimated temperature, the isotopic composition of the shell carbonate and the sea water respectively.A possible cause for nonequilibnum isotopic compositions reported earlier for living planktonic foraminifera is the improper combustion of the organic matter.  相似文献   

7.
The Bovedy meteorite fell on 25 April 1969 in Northern Ireland; the main mass of 4·94 kg was found at Bovedy (54°57′N, 06°37′W). It is an L3 chondrite with abundant chondrules clearly visible in hand specimen. Bulk chemical analyses are presented, the total Fe content being 22·5%. The olivines are homogeneous (Fa24) but the pyroxenes are not equilibrated (Fs8–28). Brown glass is common within chondrules but a clear glass of composition An85 is present interstitially in a few orthopyroxene-rich (Fs17–28) chondrules. A bleb, 2 mm across, of clear glass, again of composition An85 was found in one stone of the meteorite and in the glass five REE (rare earth elements), (La, Sm, Eu, Yb, Lu) were determined. The low REE abundances coupled with a large positive Eu anomaly are characteristic of plagioclase, but the finer details of the pattern suggest that this glass has a closer affinity to the lunar anorthosites than to plagioclases from lunar mare basalts or eucritic meteorites. There is also evidence that the magnitude of the Eu anomaly for plagioclases and anorthosites from extra-terrestrial sources is inversely related to trivalent REE content. The existence of anorthositic material and, as a consequence, a differentiated planetary body prior to the formation of the Bovedy meteorite is suggested.  相似文献   

8.
DH and 18O16O ratios have been measured for whole-rock samples and mineral separates from the mafic and ultramatic rocks of the Cambro-Ordovician Highland Border Suite. The H- and O- isotopic compositions of these rocks record individual stages in a relatively complex 500 Myr old hydrothermal/metamorphic history. Lizardite serpentinites (δD ~ ? 105‰; δ18O ~ + 6.2‰) record a premetamorphic history and indicate that parent harzburgites, dunites, and pyroxenites were serpentinized through low-temperature interaction with meteoric waters during cooling. The other rocks of the Highland Border Suite record subsequent interaction with metamorphic fluids. Amphibolite facies hornblende schists were produced through thrust-related (dynamothermal) metamorphism of spilitic pillow lavas. During dehydration, D-enriched fluids were driven off from the spilites thus leaving the hornblende schists to equilibrate with a relatively D-depleted internal fluid reservoir (δD ~ ? 45‰). The expelled D-enriched fluids may have mixed with more typical Dalradian metamorphic waters which then exchanged with the remaining mafic rocks and lizardite serpentinites during greenschist facies regional metamorphism to produce antigorite serpentinites (δD ~ ? 62‰; δ18O ~ + 8‰) and greenschist metaspilites (δD ~ ? 57‰; δ18O ~ + 7.3‰) with similar H- and O-isotopic compositions. Serpentinites which have been only partially metamorphosed show intermediate H-isotopic compositions between that of metamorphic antigorite (δD ~ ? 62‰) and non-metamorphic lizardite δD ~ ? 105‰) end members.  相似文献   

9.
The dehydration of a natural goethite to hematite is accompanied by a systematic hydrogen isotope fractionation. Closed system dehydration at, and below, 250°C results in a significantly greater degree of isotopic fractionation than does open system dehydration. This relationship is apparently reversed at 300°C. Both processes produce a progressive decrease in the DH ratio of the mineral hydrogen with increasing degree of dehydration. At temperatures of 160°C to 250°C the closed system mineralvapor fractionation factor is independent of temperature, while above 250°C, it varies strongly with temperature. The mineral-vapor fractionation factor associated with open system dehydration appears to be independent of temperature over the interval 160°C to 300°C. The closed system DH fractionation suggests that natural goethite undergoing dehydration in the presence of water can isotopically exchange with that water.CO2 loss from goethite during dehydration is correlated with the loss of H2O. The CO3 is thought to be present in carbonates which exist as impurities in the goethite. Loss of both H2O and CO2 appears to be diffusion-controlled.  相似文献   

10.
Isotopic measurements in polar ice core have shown a succession of rapid warming periods during the last glacial period over Greenland. However, this method underestimates the surface temperature variations. A new method based on gas thermal diffusion in the firn manages to quantify surface temperature variations through associated isotopic fractionations. We developed a method to extract air from the ice and to perform isotopic measurements to reduce analytical uncertainties to 0.006 and 0.020 for δ15N and δ40Ar. It led to a 16±1.5 °C surface temperature variation during a rapid warming (?70000 yr). To cite this article: A. Landais et al., C. R. Geoscience 336 (2004).  相似文献   

11.
The isotope ratios 33S/32S and 34S/32S have been measured in sulphur fractions extracted from samples of the meteorites Allende and Eagle Station by leaching at successively greater acid concentrations and higher temperatures. On a three isotope plot of δ33Svsδ34S most of the data lie on or close to the mass fractionation line. The last fraction of sulphur extracted from a bulk Allende sample lies off the line and has an approximately 1%. excess in the 33/32S ratio.Previous searches for anomalous abundance patterns of 32S, 33S, 34S and 36S have been reported by HULSTON and THODE (1965a,b), THODE and REES (1971), and REES and THODE (1972). No isotope abundance variations were found, in the meteorite and lunar samples studied, which could not be explained on the basis of either mass dependent isotope fractionation or, in the special case of iron meteorites, cosmic ray production of 33S and 36S. We report here preliminary results of a renewed search for isotopically anomalous sulphur in which we are concentrating on the Allende and Eagle Station meteorites, both of which contain anomalous oxygen (CLAYTON etal., 1973, 1976). In a first attempt to distinguish between normal sulphur and any possible anomalous sulphur, we have leached both bulk samples and hand separated components of these meteorites with hydrochloric acid.CLAYTON and RAMADURAI (1977) suggested that the presence of isotopically anomalous sulphur would be evidence for the existence of presolar grains which are relics of nucleosynthesis in certain zones of supernova expansion. In particular they suggested that sulphides of titanium are good candidates for isotopic analysis. These are not expected to exist in conventional solar equilibrium condensation sequences, but might be abundant in condensates from silicon burning shells of supernovae. Our chemical procedures were already completed when CLAYTON and RAMADURAI'S suggestions came to our attention and it must be stressed that so far, in all cases but one we have examined only sulphur from sulphides which are decomposed by HC1. Thus we may not have sampled sulphides of the type suggested by CLAYTON and RAMADURAI.All samples of the Allende meteorite were ground finer than 50μm before acid extraction of sulphur. Samples of sulphur were extracted from the various phases of the meteorites by using successively stronger hydrochloric acid leaches, longer times and higher temperatures of reaction. Sulphur initially released as H2S was successively converted to CdS, Ag2S and SF6, this latter compound being analysed mass spectrometrically (THODE and REES, 1971). Analyses of nine SF6 samples prepared from Ag2S originally derived from Canyon Diablo troilite were also performed in order to monitor fluorination and mass spectrometry precision and to establish the zero points ofthe isotope variation scales. The results are shown in Table 1. The sulphur contents of the various samples were determined gravimetrically as Ag2S. The bulk and matrix samples are probably a few percent low because of mechanical losses. The percentages of sulphur in each fraction of a sample extracted during each leaching stage are given in the table. The total sulphur content in the bulk and matrix samples of the Allende meteorite i.e., the sum of the sulphur contents of the individual fractions, varies from 1.8 to 2.08%, the highest percentage being in the matrix. These values compare with about 2 to 2.1% obtained by CLARKE etal. (1970).  相似文献   

12.
Hydrogen which is highly enriched in deuterium is present in organic matter in a variety of meteorites including non-carbonaceous chondrites. The concentrations of this hydrogen are quite large. For example Renazzo contains 140 μmoles/g of the 10,000‰ δD hydrogen. The DH ratios of hydrogen in the organic matter vary from 8 × 10?5 to 170 × 10?5 (δD ranges from ? 500‰ to 10,000‰) as compared to 16 × 10?5 for terrestrial hydrogen and 2 × 10?5 for cosmic hydrogen. The majority of the unequilibrated primitive meteorites contain hydrogen whose DH ratios are greater than 30 × 10?5. If the DH ratios in these compounds were due to enrichment relative to cosmic hydrogen by isotope exchange reactions, it would require that these reactions take place below 150 K. In addition the organic compounds having DH ratios above 50 × 10?5 would require temperatures of formation of < 120 K. These types of deuterium enrichments must take place by ion-molecule reactions in interstellar clouds where both ionization and low temperatures exist. Astronomically observed DH ratios in organic compounds in interstellar clouds are typically 180 × 10?5 and range between about 40 × 10?5 and 5000 × 10?5. The DH values we have determined are the lower limits for the organic compounds derived from interstellar molecules because all processes subsequent to their formation, including terrestrial contamination, decrease their DH ratios.In contrast, the DH ratios of hydrogen associated with hydrated silicates are relatively uniform for the meteorites we have analyzed with an average value of 14 × 10?5; very similar to the terrestrial value. These phyllosilicates values suggest equilibration of H2O with H2 in the solar nebula at temperatures of about 200 K and higher.The 13C12C ratios of organic matter, irrespective its DH ratio, lie well within those observed for the earth. If organic matter originated in the interstellar medium, our data would indicate that the 13C12C ratio of interstellar carbon five billion years ago was similar to the present terrestrial value.Our findings suggest that other interstellar material, representing various inputs from various stars, in addition to the organic matter is preserved and is present in the meteorites which contain the high DH ratios. We feel that some elements existing in trace quantities which possess isotopic anomalies in the meteorites may very well be such materials.  相似文献   

13.
The LL-group chondrites Krähenberg (Krbg) and Bhola are heterogeneous agglomerates containing a variety of lithic fragments and chondrules as well as crystal fragments. The FeFe + Mg content of most olivine grains is uniform (Fa28), although a few with distinctly lower Fe contents were found (Fa19). Both meteorites contain large, cm-sized, fragments with high enrichments of K (~12×), Rb (~45×) and Cs (~70×) relative to LL-chondrites, while the REE concentrations are normal (except for a negative Eu anomaly); Na and Sr are depleted (~0.5×) and the NaK weight ratio is 0.33 compared to 11 in the host. However, there is no difference in the sum of Na + K atoms. Also, the major elements, Si, Al, Mg, Ca and Fe, are nearly the same in fragments as in the host material. The K-rich igneous lithic fragments have a microporphyritic texture of euhedral to skeletal olivines in a partly devitrified glass with ~4% K2O. The main pans of both Krbg and Bhola contain mesostasis glasses in porphyritic chondrules and lithic fragments with varying K content (0.1–8.6% K2O) and NaK ratios (0.2–100). Crystalline plagioclase is depleted in K with an average NaK ratio of 22, i.e. higher than that for ordinary chondritic plagioclase, 8.4. Olivines in the large, K-rich fragments and in the host meteorites have the same iron content (Fa28), indicating that both formed under the same oxygen fugacity and probably on the same parent body.Conceivable mechanisms for the formation of the K-rich rocks from normal LL-chondrite parent material are: 1, magmatic differentiation: 2. Na-K exchange via a vapor phase; 3. silicate liquid immiscibility; 4. volatilization and condensation in impact events. Process 2 appears most feasible for forming a rock enriched only in K and heavier alkalies and depleted in Na without noticeably changing other elements including the REE.  相似文献   

14.
Concentrations and isotopic compositions were determined for H2, N2 and C extracted by stepwise pyrolysis from powdered meteorites, from residues of meteorites partially dissolved with aqueous HF, and from residues of meteorites reacted with HF-HCl solutions. The meteorites treated were the carbonaceous chondrites, Orgueil, Murray, Murchison, Renazzo and Cold Bokkeveld. Data determined for whole rock samples are in approximate agreement with previously published data. Acidification of the meteorites removed the inorganic sources of H2, so that H2 in the HF-HCl acid residues came primarily from insoluble organic matter, which makes up 70–80% fraction of the total carbon in carbonaceous meteorites. The δD in the organic matter differs markedly from previously determined values in organic matter in meteorites. The δD values of organic matter from acid residues of C1 and C2 carbonaceous chondrites range from +650 to + 1150%. The acid residues of the Renazzo meteorite, whose total H2 has a δD of +930‰, gave a δD value of +2500‰. Oxidation of the HF-HCl residue with H2O2 solution removes the high δD and the low δ15N components. The δ13C values range between ?10 and ?21 and δ15N values range between +40 and ?11. The δ15N of Renazzo is unusual; its values range between +150 and ?190.There is good correlation between δD and the concentration of H2 in the acid residues, but no correlation exists between δD, δ13C and δ15N in them. A simple model is proposed to explain the high δD values, and the relationships between δD values and the concentration of H2. This model depends on the irradiation of gaseous molecules facilitating reaction between ionic molecules, and indicates that an increase in the rate of polymerization and accumulation of organic matter on grains would produce an increase in the deuterium concentration in organic matter.  相似文献   

15.
Silver in the metal phases of Cape York (IIIA) and Grant (IIIB) has been determined after an extensive surface cleaning process. The 107Ag109Ag was found to be enriched over that found in terrestrial Ag by ~7%. to 19%., demonstrating the presence of excess 107Ag (107Ag1) in this class of meteorites. An effort was made to find schreibersite with a distinctive 108Pd/109Ag ratio in order to establish a three-point isochron, but the results are not markedly different from those obtained for the bulk metal. The Ag isotopic ratio of sulfides from the same meteorites were nearly normal in composition. These results demonstrate correlations of 107Ag109Ag with 108Pd109Ag between coexisting phases of two iron meteorites that are associated with planetary differentiation processes. The ratios 107Ag1108Pd were found to be 1.7 × 10?5 and 1.2 × 10?5 for Cape York and Grant, respectively. These observations are in support of the widespread presence of 107Pd in the early solar system. The difference in isotopic composition between metal and sulfide phases demonstrates that silver diffusion was small (over 6.5 × 106 y) indicating a cooling rate much greater than 150°C/my for meteorites which have been attributed to small planetary cores. Uranium determinations were carried out on the metal phases and concentrations of ~ 1 × 10 12 g U/g and 2 × 10?10g U/g were found for Cape York and Grant, respectively. The Pb in these meteorites was determined using the improved cleaning procedures and chemical separations with low blank levels. The results confirm the presence of variable proportions of radiogenic Pb in both the metal and sulfide phases of iron meteorites. No simple explanation for the presence of radiogenic lead is apparent; while terrestrial contamination may appear to be the obvious explanation, it is possible that this effect could result from relatively recent metamorphism in the meteorite parent body.  相似文献   

16.
Acid-resistant residues were prepared by HCl-HF demineralization of three H-type ordinary chondrites: Brownfield 1937 (H3), Dimmitt (H3,4), and Estacado (H6). These residues were found to contain a large proportion of the planetary-type trapped Ar, Kr, and Xe in the meteorites. The similarity of these acid residues to those from carbonaceous chondrites and LL-type ordinary chondrites suggests that the same phase carries the trapped noble gases in all these diverse meteorite types. Because the H group represents a large fraction of all meteorites, this result indicates that the gas-rich carrier phase is as universal as the trapped noble-gas component itself. When treated with an oxidizing etchant, the acid residues lost almost all their complement of noble gases. In addition, the Xe in at least one oxidized residue, from Dimmitt, displayed isotopic anomalies of the type known as CCFX or DME-Xe, which is characterized by simultaneous excesses of both the lightest and heaviest isotopes. The anomaly in the Dimmitt sample differs from that observed in carbonaceous-chondrite samples, however, in the relative proportions of the light- and heavy-isotope excesses.The results of this study do not show an inverse correlation between trapped 20Ne36Ar and trapped 36Ar abundance, as has been reported for acid-resistant residues from LL-chondrites. The results of this work therefore fail to support the hypothesis that meteoritic trapped noble gas abundances were established at the time of condensation.  相似文献   

17.
Nine LL-chondrites were studied by a selective etching technique, to characterize the noblegas components in three mineral fractions: HF-HCl-solubles (silicates, metal, troilite, etc.; comprising ~ 99% of the meteorite), chromite and carbon (~ 0.3–0.7%) and Q (a poorly characterized mineral defined by its solubility in HNO3, comprising ~ 0.05% of the meteorite but containing most of the Ar, Kr, Xe and a neon component of 20Ne22Ne = 10.9 ± 0.8). The 20Ne36Ar ratio in Q falls wi petrologic type and rising 36Ar content, as expected for condensation from a cooling solar nebula, but contrary to the trend expected for metamorphic losses. Chondrites of different petrologic types therefore cannot all be derived from the same volatile-rich ancestor, but must have formed over a range of temperatures, with correspondingly different intrinsic volatile contents.The CCFXe (carbonaceous chondrite fission) component varies systematically with petrologic type. The most primitive LL3s (Krymka, Bishunpur, Chainpur) contain substantial amounts of CCFXe in chromite-carbon, enriched relative to primordial Xe as shown by high 136Xe132Xe (0.359–0.459, vs 0.310 for primordial Xe). These are accompanied by He and by Ne with 20Ne22Ne ≈ 8.0 and by variable amounts of a xenon component enriched in the light isotopes. The chromite in these meteorites is compositionally peculiar, containing substantial amounts of Fe(III). These meteorites, as well as Parnallee (LL3) and Hamlet (LL4) also contain CCFXe in phase Q, heavily diluted by primordial Xe (136Xe132Xe = 0.317–0.329). On the other hand, LL5s and 6s (Olivenza, St. Séverin, Manbhoom and Dhurmsala) contain no CCFXe in either mineral. This deficiency must be intrinsic rather than caused by metamorphic loss, because Q in these meteorites still contains substantial amounts of primordial Ne.If CCFXe comes from a supernova, then its distribution in LL-chondrites requires three presolar carrier minerals of the right solubility properties, containing three different xenon components in certain combinations. These minerals must be appropriately distributed over the petrologic types, together with locally produced Q containing primordial gases, and they must be isotopically normal, in contrast to the gases they contain. On the other hand, if CCFXe comes from fission of a volatile superheavy element, then its decrease from LL3 to LL6 can be attributed to progressively less complete condensation from the solar nebula. Ad hoc assumptions must of the host phase Q, its association with ferrichromite and the origin of the associated xenon component enriched in the light isotopes.Soluble minerals in LL3s and LL4s contain a previously unobserved, solar xenon component, which, however, is not derived from the solar wind. Three types of ‘primordial’ xenon thus occur side-by-side in different minerals of the same meteorite: strongly fractionated Xe in ferrichromite and carbon, lightly fractionated Xe in phase Q, and ‘solar’ Xe in solubles. Because the first two can apparently be derived from the third by mass fractionation, it seems likely that all were trapped from the same solar nebula reservoir, but with different degrees of mass fractionation.  相似文献   

18.
Nitrogen concentrations and isotopic compositions were measured by ion microprobe scanning imaging in two interplanetary dust particles L2021 K1 and L2036 E22, in which imaging of D/H and C/H ratios has previously evidenced the presence of D-rich macromolecular organic components. High nitrogen concentrations of 10-20 wt% and δ15N values up to +400‰ are observed in these D-rich macromolecular components. The previous study of D/H and C/H ratios has revealed three different D-rich macromolecular phases. The one previously ascribed to macromolecular organic matter akin the insoluble organic matter (IOM) from carbonaceous chondrites is enriched in nitrogen by one order of magnitude compared to the carbonaceous chondrite IOM, although its isotopic composition is still similar to what is known from Renazzo (δ15N = +208‰).The correlation observed in macromolecular organic material between the D- and 15N-excesses suggests that the latter originate probably from chemical reactions typical of the cold interstellar medium. These interstellar materials preserved to some extent in IDPs are therefore macromolecular organic components with various aliphaticity and aromaticity. They are heavily N-heterosubstituted as shown by their high nitrogen concentrations >10 wt%. They have high D/H ratios >10−3 and δ15N values ≥ +400‰. In L2021 K1 a mixture is observed at the micron scale between interstellar and chondritic-like organic phases. This indicates that some IDPs contain organic materials processed at various heliocentric distances in a turbulent nebula. Comparison with observation in comets suggests that these molecules may be cometary macromolecules. A correlation is observed between the D/H ratios and δ15N values of macromolecular organic matter from IDPs, meteorites, the Earth and of major nebular reservoirs. This suggests that most macromolecular organic matter in the inner solar system was probably issued from interstellar precursors and further processed in the protosolar nebula.  相似文献   

19.
Lunar fines 15012,16 and 15013,3 were analyzed by stepwise pyrolysis and acid hydrolysis as well as complete combustion in oxygen to determine carbon, nitrogen and sulfur. In addition, hydrogen was analysed during pyrolysis as well as during hydrolysis. In the former case, it was released by mineral grains to which it was adsorbed or from cavities within which it had been captured. Hydrogen released during hydrolysis had largely resulted from dissolution of metallic iron.By comparison of the distribution frequencies of C, N, S, H2 and Fe with 4He, considered to have arisen from solar wind contribution, it is concluded that nitrogen and hydrogen have largely a solar origin. Carbon has a significant solar contribution, and metallic iron may have resulted from solar wind interaction with ferrous minerals on the lunar surface. Sulfur probably has a predominantly lunar origin. There is no direct evidence for meteoritic contribution to these samples.Solar wind interaction also has a marked effect on the stable isotope distribution of 13C/12C, 15N/14N, and 34S/32S. In all cases, the heavy isotope was most enriched in the smallest grain-size fraction. During stepwise pyrolysis, CH4, CO2, CO and N2 were obtained at different temperatures and displayed different isotopic ratios. The carbon fraction most enriched in 13C, was CH4 liberated at 600–800°C with δ13C = +45.7%.. Between 400 and 600°C, N2 was liberated with (δ15N ≈ +119% and at 600–800°C, N2 was liberated with δ15N = +75%. relative to terrestrial atmospheric nitrogen.  相似文献   

20.
We report new mineralogical, petrographic and noble gas analyses of the carbonaceous chondrite meteorites Y-82162 (C1/2ung), Y-980115 (CI1), Y-86029 (CI1), Y-86720 (C2ung), Y-86789 (C2ung), and B-7904 (C2ung). Combining our results with literature data we show that these meteorites experienced varying degrees of aqueous alteration followed by short-lived thermal metamorphism at temperatures of >500 °C. These meteorites have similar mineralogy, textures and chemical characteristics suggesting that they are genetically related, and we strongly support the conclusion of Ikeda (1992) that they form a distinct group, the CYs (“Yamato-type”). The CY chondrites have the heaviest oxygen isotopic compositions (δ17O ˜12‰, δ18O ˜22‰) of any meteorite group, high abundances of Fe-sulphides (˜10 ‒ 30 vol%) and phosphates, and contain large grains of periclase and unusual objects of secondary minerals not reported in other carbonaceous chondrites. These features cannot be attributed to parent body processes alone, and indicate that the CYs had a different starting mineralogy and/or alteration history to other chondrite groups, perhaps because they formed in a different region of the protoplanetary disk. The short cosmic-ray exposure ages (≤1.3 Ma) of the CY chondrites suggest that they are derived from a near-Earth source, with recent observations by the Hayabusa2 spacecraft highlighting a possible link to the rubble-pile asteroid Ryugu.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号