首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Exact Bianchi type II, VIII and IX String cosmological models are obtained in Einstein’s theory of gravitation and Barber’s (1982) second self-creation theory of gravitation. Some physical and geometrical properties of the models are also discussed.  相似文献   

2.
Exact Bianchi type-II, VIII and IX cosmological models are obtained in a scalar tensor theory proposed by Saez and Ballester (Phys. Lett. A 113:467, 1986) with perfect fluid as a source. Some physical and geometrical properties of the models are studied. It is observed that the models are free from initial singularities and they are expanding with time.  相似文献   

3.
Bianchi type-I string cosmological models are obtained in bimetric theory of gravitation proposed by Rosen (Gen. Relativ. Gravit. 4:435, 1973). Established the existence of string cosmological models, unlike the earlier authors, in this theory and studied some physical and geometrical properties.  相似文献   

4.
Exact Bianchi type-V cosmological models are obtained in a scalar-tensor theory of gravitation proposed by Brans and Dicke (Phys. Rev. 124:925, 1961) in the presence of perfect fluid distribution. Some physical and geometrical properties of the models are also discussed.  相似文献   

5.
In this paper, we constructed some cosmological models in five dimensional LRS Bianchi type-V space time based on general theory of relativity. Further, it is shown that source density of the meson field does not survive either in massive scalar field or in mass less scalar field. Some physical and geometrical properties of the models are discussed.  相似文献   

6.
A Bianchi type-I string cosmological model in Brans-Dicke theory in five dimension space-time has been investigated. For the determinate solution it has been assumed that the sum of energy density and tension density of the cosmic string dust source vanishes. Some physical and kinematical parameters are also discussed.  相似文献   

7.
We have studied cosmological model generated by perfect fluid coupled with mass less scalar field for Kantowski–Sachs space–time in general theory of relativity. Two different physically viable models of the universe are obtained by using a special law of variation for Hubble’s parameter that yields a constant value of deceleration parameter. Some physical consequences of the models have been discussed in case of Zel’dovich fluid.  相似文献   

8.
This paper presents anisotropic, homogeneous two-fluid cosmological models in a Bianchi type I space–time with a variable gravitational constant G and cosmological constant Λ. In the two-fluid model, one fluid represents the matter content of the universe and another fluid is chosen to model the CMB radiation. We find a variety of solutions in which the cosmological parameter varies inversely with time t. We also discuss in detail the behavior of associated fluid parameters and kinematical parameters. This paper pictures cosmic history when the radiation and matter content of the universe are in an interactive phase. Here, Ω is closing to 1 throughout the cosmic evolution.   相似文献   

9.
In this paper, we have attempted to construct five dimensional string cosmological models in Riemannian and Lyra geometries. It is found that cosmic string models do not survive in both the theories. Subsequently, the vacuum cosmological models are constructed and discussed.  相似文献   

10.
In this work, the Bianchi type-II anisotropic cosmological models have been investigated in the context of Brans–Dicke (BD) theory in the presence as well as absence of a magnetic field. The energy conditions of the models have been examined. The physical and kinematical behaviors of the models have also been discussed.  相似文献   

11.
This paper deals with the collapse and expansion of relativistic anisotropic self-gravitating source. The field equations for non-radiating and non-static plane symmetric anisotropic source have been evaluated. The non-radiating property of the fluid leads to evaluation of the metric functions. We have classified the dynamical behavior of gravitational source as expansion and collapse. The collapse in this case leads to the final stage without the formation of apparent horizons while such horizons exists in case of spherical anisotropic source. The matching of interior and exterior regions provides the continuity of masses over the boundary surface.  相似文献   

12.
Einstein’s field equations with variable gravitational and cosmological “constant” are considered in presence of perfect fluid for Bianchi type-I space-time. Consequences of the four cases of the phenomenological decay of Λ have been discussed which are consistent with observations. The physical significance of the cosmological models have also been discussed.   相似文献   

13.
The effect of a time-dependent cosmological constant is considered in a family of scalar-tensor theories. The Bianchi type I, III, V, VIo and Kantowski-Sachs models for vacuum and perfect fluid matter are found. The gravitational constant decreases with time so that these models satisfy the Dirac hypothesis. The “cosmological constant” also decreases with time, therefore it can have a very small value at the present time.  相似文献   

14.
In this paper, we constructed some five dimensional LRS Bianchi type-I string cosmological models based on Lyra geometry and studied some physical and geometrical properties of the models.  相似文献   

15.
The solutions of Einstein’s equations with cosmological constant (Λ) in the presence of a creation field have been obtained for general class of anisotropic cosmological models. We have obtained the cosmological solutions for two different scenarios of average scale factor. In first case, we have discussed three different types of physically viable cosmological solutions of average scale factor for the general class of Bianchi cosmological models by using a special law for deceleration parameter which is linear in time with a negative slope. In second case, we have discussed another three different forms of cosmological solutions by using the average scale factor in three different scenarios like Intermediate scenario, Logamediate scenario and Emergent scenario. All physical parameters are calculated and discussed in each physical viable cosmological model. We examine the nature of creation field and cosmological constant is dominated the early Universe but they do not survive for long time and finally tends to zero for large cosmic time t. We have also discussed the all energy conditions in each cases.  相似文献   

16.
Five dimensional LRS Bianchi type-I effective stiff fluid cosmological models in scalar tensor theory of gravitation proposed by Saez and Ballester (Phys. Lett. A 113:467, 1986) are constructed. Further, some physical and geometrical features of these models are discussed.  相似文献   

17.
We investigate a class of solutions of Einstein equations for the plane symmetric perfect fluid case. If these solutions have shear, they must necessarily be non-static. Some physical and geometric properties of the models are also discussed.   相似文献   

18.
On getting motivation from increasing evidence for the need of a geometry that resembles Bianchi morphology to explain the observed anisotropy in the WMAP data, Einstein’s field equations with variable cosmological “constant” are considered in presence of perfect fluid for a homogeneous and anisotropic Bianchi type-I space-time. Einstein’s field equations are solved by considering a time dependent deceleration parameter which affords a late time acceleration in the universe. The cosmological constant Λ is found to be a decreasing function of time and it approaches a small positive value at the present epoch which is corroborated by consequences from recent supernovae Ia observations. From recently developed Statefinder pair, the behavior of different stages of the evolution of the universe has been studied. The physical significance of the cosmological models have also been discussed.  相似文献   

19.
A locally rotationally symmetric Bianchi type-II (LRS B-II) space-time with variable equation of state (EoS) parameter and constant deceleration parameter have been investigated in the scalar-tensor theory proposed by Saez and Ballester (Phys. Lett. A 113:467, 1986). The scalar-tensor field equations have been solved by applying variation law for generalized Hubble’s parameter given by Bermann (Nuovo Cimento 74:182, 1983). The physical and kinematical properties of the model are also discussed.  相似文献   

20.
Field equations are obtained in the scalar–tensor theory of gravitation proposed by Saez and Ballester (Phys. Lett. A 113:467, 1986) with the aid of spatially homogenous and anisotropic Kantowski–Sachs space–time in the presence of bulk viscous fluid containing one dimensional cosmic strings. A determinate solution of the field equations is obtained, using some plausible physical conditions, which represents a Kantowski–Sach’s bulk viscous Cosmological model in the new scalar–tensor theory. Physical and kinematical properties of the model are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号