首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Physical effects ordinarily neglected suggest that, even ignoring three-and higher-body collisions, a self-gravitating system of stars, such as a globular cluster, does not necessarily want to relax completely towards an isothermal distribution. Even if one neglects evaporation and the gravothermal instability, one might anticipate deviations from a Maxwellian distribution of velocities manifest on a time scalet S(logN)t R, wheret R is the ordinary binary relaxation time andN is the number of stars.  相似文献   

2.
An idealized model of a hierarchy of clusters is considered, and the number-count asymmetry measure in two different directions,R 1 |N +-N -|/(N ++N -), is evaluated, for values ofl I /c I =(distance between cluster centres)/(cluster diameter). Providedl I /c I 10, theory predictsR I 0.1, in agreement with the symmetry of high-redshift radio sources.  相似文献   

3.
Equations for the chemical evolution of the Galaxy are derived, accounting for (i) the dynamical evolution of the Galaxy (i.e. the collapse of the proto-galaxy), and (ii) either a variable mass-spectrum in the birth-rate stellar function of the type (m, t)=(t)(m, t), or a constant mass-spectrum with variable lower mass limit for star birth:m mf=mmf(Z). Simple equations are adopted for the collapse of the proto-galaxy, accounting for the experimental data (i.e. axial ratio and major semi-axis) relative to the halo and to the disk, and best fitted for a rapid collapse; gas density is assumed to be always uniform. Numerical computations of several cases show that there is qualitative agreement with the experimental data relative to theZ(t) function when: (i) the mass-spectrum is nearly constant in time: (m, t)(m)=m –2.35; (ii) the efficiency (t) is sufficiently high; moreover, the super metallic effect (SME) takes place for greater than a given value (1.5); (iii) the shorter the collapse timeT c, the more rapid is the initial increase of metallicity, the asymptotic value being left nearly unaltered. The theoretical present-day values of gas density and metallicity so obtained differ from the experimental values by a factor of 2 or 3. Leaving aside other possible explanations, such a discrepancy is within the range of the uncertainties concerning the amount of gas returned back into space by the decay of the stars. Our theoretical results are not in complete agreement with the observed data bearing on theN n(Z) function (N n is the number of stars whose Main-Sequence lifetime is not less than the age of the Galaxy), while a hypothesis of star formation with different efficiencies in different zones of the Galaxy, and successive stellar mixing from zone to zone, is not inconsistent with such data.  相似文献   

4.
In a simple approximation, the evolution of a stellar system can be described in terms of the solutions to a diffusion equation for motion in a harmonic potential. This paper presents a discussion and characterization of the normal modes for this equation. These solutions are of particular interest in that they provide a simple example of the interplay between dynamical and relaxation phenomena. For the case of a large system, in which the relaxation timet r is much greater than the dynamical timet d,there exists a well-defined sense in which the effects of relaxation may be viewed as a perturbation of motion in the fixed field: the dynamical effects give rise to a purely oscillatory behavior, whereas collisions among stars provide a dissipative mechanism that drives the system towards the unique isothermal equilibrium. Alternatively, the presence of the fixed potential serves to alter the e-folding time for the various modes. In the limit thatt r t d , all characteristic relaxation times are essentially doubled. This suggests a danger in the use of velocity space equations to model the effects of evaporation.  相似文献   

5.
Steven T. Suess 《Solar physics》1982,75(1-2):145-159
Polar coronal plumes are modeled using concentrations of magnetic flux at 1.01R , and assuming the field is current-free, or a potential field. Identifying the density enhancement of plumes with magnetic flux concentration produces good agreement between 1.01R and 1.10R , for model conditions of a large background magnetic field and a plume separation of 50 000 to 70 000 km at the base. Beyond 1.10R , both plumes and the potential field diverge very nearly as r 2.Also Department of Astrogeophysics, University of Colorado, Boulder, Colo. 80309, U.S.A. Presently visiting Stanford University Institute for Plasma Research, Via Crespi, Stanford, Calif. 94303, U.S.A.  相似文献   

6.
The orbital perturbations induced by the librational motion and flexural oscillations are studied for satellites having large flexible appendages. Using a Lagrangian procedure, the equations for coupled motion are derived for a satellite having an arbitrary number of appendages in the nominal orbital plane and two flexible members normal to it. The formulation enables one to study the influence of flexibility on both the orbital and attitude motions. The orbital coordinates are expanded as perturbation series in =(l/a 0)2,l anda 0 being a characteristic length of the satellite and unperturbed semi-major axis of the orbit, respectively. The first order perturbation equations are solved in terms of elastic deformations and librational angles using the WKBJ method in conjunction with the variation of parameter technique. Existence of secular perturbations is noted for certain librational flexural motions. Three specific examples, Alouette II, Radio Astronomy Explorer and Tethered Orbiting Interferometer, are considered subsequently and their possible secular drifts estimated.List of Symbols A ij, Bij coefficients in the eigenfunction expansion ofv i andw i respectively, Equation (10) - C k, Dk constants, Equation (21) - EI i flexural rigidity of theith appendage - E(u0) 2(1+e 0 cosu 0)2 h 0 3 - F(u0) perturbation function, Equation (17b) - F ,F ,F functions of librational angles and flexural displacements, Equation (11i) - F ,F ,F F ,F ,F with change of independent variable fromt tou 0 - I xx, Iyy, Izz principal moments of inertia of the undeformed satellite - [J i] inertia dyadic of the deformedith appendage - [J d] inertia dyadic of the deformed satellite - M mass of the satellite - P R, Pu functions of librational angles and flexural displacements, Equation (15d) and (15e), respectively - R c magnitude ofR c - R c0, R1 unperturbed value and first order perturbation ofR c, respectively - R c ,R 0 position vectors of the c.m. of the deformed and undeformed satellite, respectively - T kinetic energy of the satellite - U potential energy of the satellite - U e, Ug elastic and gravitational potential energy, respectively - X, Y, Z orbital co-ordinate axes, located at the c.m. of the deformed satellite - Y 1(u0), Y2(u0) functions ofu 0, Equation (18b) and (18c), respectively - a semi-major axis - a 0 unperturbed value ofa - e eccentricity - e 0 unperturbed value ofe - h 0 unperturbed angular momentum per unit mass of the satellite - i inclination of the orbital plane to the ecliptic - i, j, k unit vectors alongx (or ),y (or ) andz (or ) axes, respectively - l characteristic length of the satellite - l i length of theith appendage - [l i] matrix of direction cosines ofx i, vi andw i - l ,l ,l direction cosines ofR c - m 0, mi mass of the main body andith appendage, respectively - p i 2 - q m, Qm generalized co-ordinate and force, respectively - r 1 R 1/Rc0 - r position vector of an element of the body referred toxyz axes - r u position vector of an element after deformation, referred to axes - r c x c i+y c j+z c k, position vector of the c.m. of the deformed body referred toxyz axes - s x i/li - t time - u true anomaly - u 0, u1 unperturbed value and the first order perturbation ofu, respectively - u elastic displacement vector - u c ur c - velocity of an element relative to axes - v i, wi flexural deformations - x, y, z body co-ordinate axes with origin at the c.m. of the undeformed satellite - x i distance of an element of theith appendage from the root - j jth eigenfunction (normalized) of a cantilever - angle between the line of nodes and vernal equinox - , , components of nondimensionalized angular velocity of the satellite - , , pitch (spin), yaw and roll, respectively - i nominal inclination of theith appendage in the orbital plane - - small parameter, (l/a 0)2 - j jth eigenvalue of a cantilever - gravitational constant - jk constant, Equation (11j) - , , body co-ordinate axes with origin at the c.m. of the deformed satellite - ( i + j + k), angular velocity of the satellite  相似文献   

7.
Pioneer 11 magnetic field data at 20 AU are analysed by the computational method of Moussas, Quenby, and Webb (1975), Moussas and Quenby (1978), and Moussas, Quenby, and Valdes-Galicia (1982a, b) to obtain the parallel mean free path , and the diffusion coefficient parallel to the magnetic field line K . This method is the most appropriate for the mean free path calculation at large heliodistances since the alternative method which is based on fitting of energetic particle intensities cannot be easily and accurately be used because the association of energetic particles with their parent flares is not precise. The results show that the mean free path has values between 0.85 and 0.98 AU, linearly increasing with energy according to (Tkinetic) = + MT, where = 0.846 AU and M = 4.44 × 10 –5 AU MeV–1 for energies between 10 MeV and 3 GeV for protons. These values of the parallel mean free path are much larger than the values estimated by previous studies up to 6 AU. The diffusion coefficient dependence upon energy follows a relation which simply reflects an almost constant mean free path and a linear dependence on the velocity of the particle, so that at 20 AU heliodistance K (T kin) = K , 1 MeV(T kin)T kinetic , with = 1/2. The distance dependence of the parallel diffusion mean free path follows a power law, (R) = , 1 AU R , where is 1 ± 0.1. While the parallel diffusion coefficient obeys a power-law relation with heliodistance R, K (R, T kin) = K , 1 AU(T kin)R , with = 1 ± 0.1. The radial diffusion coefficient of cosmic rays is not expected to strongly depend upon the parallel diffusion coefficient because the nominal magnetic field at these large heliodistances (20 AU) is almost perpendicular to the radial direction and the contribution of the diffusion coefficient perpendicular to the magnetic field is expected to play a dominant role. However, the actual garden hose angle varies drastically and for long time periods and hence the contribution of the diffusion parallel to the field may continue to be important for the small scale structure of intensity gradients.  相似文献   

8.
The profiles of H and Ca ii K lines of a arch quiescent prominence on April 1, 1971 have been analyzed and the two-dimensional distributions of electron temperature T e , micro-turbulence velocity v t and the column number density of hydrogen along the line-of-sight N H have been obtained. T e , t , and N H are found to be 7500 K, 6 km s–1 and 2.2 × 1018 cm–2 on an average, respectively. The electron temperature at the central part of the prominence and along the two arcades are greater than that at the edges, while the distribution of the micro-turbulence velocity in these regions is opposite. There is no systematic variation in T e and v t , from the center to the periphery as described by Hirayama (1971). The column number density in the central region is lower than that at the two edges.The contour lines of T e , t , and N H are predominantly vertical rather than horizontal. This implies that the height-variation of physical parameters in filamentary structure is small. The arrangement of this structure in the prominence is likely to be arched and is probably in the direction of magnetic field lines.Operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.  相似文献   

9.
The maximum volume of the closed Friedmann universe is further investigated and is shown to be 22 R 3 (t), instead of 2 R 3 (t) as found previously. This discrepancy comes from the incomplete use of the volume formula of 3-dimensional spherical space in the astronomical literature. Mathematically, there exists the maximum volume at any cosmic timet in a 3-dimensional spherical case. However, the Friedmann closed universe in expansion reaches its maximum volume only at the timet m of the maximum scale factorR(t m ). The particle horizon has no limitation for the farthest objects in the closed Friedmann universe if the proper distance of objects is compared with the particle horizon as it should be. It will lead to absurdity if the luminosity distance of objects is compared with the proper distance of the particle horizon.  相似文献   

10.
The relative abundances of cool neutral hydrogen, carbon monoxide and formaldehyde are studied using all the available observational data in the literature. The obtained mean valuesN H 1/ ,N H 1/N CO,N CO/ are approximately constant in the dark clouds of the solar neighbourhood and in the distant molecular clouds.The observed correlationsN CO,A v and ,A v show that formaldehyde can also be used as an indicator of molecular hydrogen. The ratioN H1/A v depends on densities and decays considerably in the ranges of visual absorptions in which the molecules become detectable (A v 2 mg); an average of /N H 110 is calculated for the dense dark clouds.Indications of systematic temperature gradiens T/A v are found for formaldehyde and neutral hydrogen inside the dark clouds, and qualitative comparisons are made with theoretical quantum mechanics calculations.The observed carbon monoxide and formaldehyde abundances, the free electron layer in the Galaxy, the distribution of neutral hydrogen in different states are only compatible if an ionization rate of 10–16 is accepted, provided presumably by 2 MeV protons of cosmic radiation.Three main states for neutral hydrogen and dust are identified from different kinds of observational data (21 cm line in emission, absorption in galactic radio sources and self-absorption in the hot gas background): (1) a homogeneous intercloud stratum of tenuous gas and dust with a galactic halfwidth of 350 pc and mean parametersn H=0.2 atom cm–3, spin temperatureT s 10000 K andn d 0.3 mg kpc–1; (2) cool gas and dust concentrated in spiral features with a galactic half-width of less than 100 pc, probably forming clouds with diffuse and indefinite limits, with mean parametersn H2 atom cm–3,T s <1100 K (probable average,T s =135 K) andn d 3 mg kpc–1; (3) dense gas and dust clouds with a mean diameter of 7 pc and mean parametersn H700 atom cm–3 (90% in a molecular state),T s 63 K andn d 1 mg pc–1 on which molecules as CO and H2CO are formed.The application of the Jeans criteria for gravitational instability shows that the dense clouds are gravitationally bound while the gas in the intermediate state (2) can be protected against collapse by the total internal energy in the medium increasing due to cosmic rays and the magnetic field in the Galaxy.The observed velocity halfwidths and galacticZ-halfwidths in states (1) and (2) are compatible with a total mass density in the galactic layer of 90M pc–2 (gas plus stars) according to the barometric equation.The relative abundancesN H 1/N CO, calculated from C12O and C13O data and comparisons with studies in the 21 cm emission line, show that the antenna temperatureT A + in the 2.6 mm line of C12O is a good indicator of the cool gas densities in the Galaxy. The possible application of this for studies in galactic structure is discussed and hypothetical distributions of carbon monoxide in the zones outside the galactic planeB=0° are presented.From a synthesis based on the results obtained, a cycle is postulated for the neutral hydrogen in the Galaxy: condensation and cooling of gas molecular formation gravitational collapse and star formation gas dissipation and heating by cosmic rays and UV radiation.  相似文献   

11.
In this paper the relation between the uncertainty of the Moon's mean moment of inertia (I/Ma 2) and that of the core density c is discussed with a two-layer model of the Moon - a mantle obeying Roche's law of the density distribution and a homogeneous core (Fe-core or Fe-FeS-core). When the uncertainty of I/Ma 2 is 0.0023 (that is the accuracy in present observation), a core with radius of 450 km will be appropriate to the limitation of c about 1 g cm–3. Considering the accuracy obtained in space explorations, and the compressibility and the quasi-homogeneity of the Moon, we suggest that the parameters C 20, , , a, and GM of the Moon should define as primary constants, but C 22 and C/Ma 2 as derived constants. Therefore, the ratio of mass of Moon to that of Earth in the IAU (1976) system of astronomical constants will become a deducible constant.  相似文献   

12.
On the basis of the solutions obtained in the previous paper, the changes in the scenario of the standard model of the Big Bang are found. The chaos degree (constrainst on fluctuation spectra) is obtained, which could be still preserved by the initially completely chaotic Universe at the time of light elements nucleosynthesist es. The time boundaries of hadron and lepton eras and the time the electron neutrinos and neutrons become frozen in reactions of weak interaction may be shifted up to 1.4 times. The corresponding temperatures may shift off from the standard ones 0.88 times if the mean-square level of fluctuations is close to unity. If the density of the energy of fluctuations concentrated in the short-wave region of the spectrum is less than 1.5 , the nucleosynthesis leads to a helium abundance coinciding with the observe one. If at the timet es the maximum of the spectral density of the energy is in the long-wave region, that is max ct es the level of the chaos during the period of nucleosynthesis is restricted to 1.76 (where |C K |2 d3 K,C K is Fourier component of the amplitude of metric fluctuations). In particular, the protogalactic vortical disturbances with a wide spectrum 4 × 103 -1( = K/K, = /crit) are compatible with the observed helium abundance.  相似文献   

13.
Observational data of the solar diameter in Italy during 1876–1937 and in Greenwich during 1851–1937 were analyzed. The Whittaker operator with different smoothing coefficients was used. The average data sets for the analysis of the possible oscillations of the solar diameter during 1876–1937 were obtained. Average values of the solar radius R(t) and absolute values of its time derivative ¦dR(t)/dt¦ were compared with the Wolf number, W(t), and with the integral A(t) = 0 t W(t)dt + constant. A good correlation r(R, W) = ¦dR(t)/dt¦, W(t) and r(R, A) = R(t), A(t) was found. It was shown that the frequency spectra of R(t) and A(t) are similar. It was found that during odd 11-yr cycles, the solar diameter decreases, whereas during even cycles it increases. A hysteresis-like behavior in the variation of R(t) during the 22-yr solar magnetic cycle was demonstrated.  相似文献   

14.
Eselevich  V.G.  Fainshtein  V.G.  Eselevich  M.V. 《Solar physics》2001,200(1-2):259-281
A technique is proposed for separating the rays of the streamer belt with quasi-stationary and non-stationary solar wind (SW) flows. It is shown that the lifetime of rays with a quasi-stationary SW can exceed 20 days. A new method has been developed for measuring the relative density distribution of a quasi-stationary slow SW flowing along the streamer belt's ray of increased brightness, based on the LASCO/SOHO data. It is shown that the density n for such SW flows varies with the radius R according to the relationship nR , where =13.3–3.9 within 4 R 0 R 6 R 0 (here R 0 is the solar radius), and decreases gradually further away. It is also shown that the V(R)-profiles in some rays of the streamer belt differ little from each other, although the value of the mass flow density, j E, at the Earth's orbit in them can vary more than by a factor of 4. This distinguishes in a crucial respect a slow SW in the streamer belt's rays from a fast SW originating in coronal holes, for which j Econstant and the dependences V(R) in different fast flows can differ greatly.  相似文献   

15.
In this paper the magnetic superstar model is used to discuss QSO luminosity and density evolution. Our main hypotheses are that (i) mass loss from old stars in massive galaxies cools and then falls into the centre to form a nuclear disc (Bailey, 1980); and (ii) magnetic superstars in galactic nuclei condense out of gaseous material at the centre of a supermassive-magnetised disc (Kundt, 1979). On this generalised model we find that the non-thermal (synchrotron) optical luminosity scales asL opt L 3 t –7/3, whereL is the total blue luminosity of old stars in the galaxy and t is cosmic time. In addition we show that QSO co-moving density follows the lawD(t)exp-(t/t Evol)16/15 with an evolution timescalet Evol = 1.95 × 109 yr. The model as a whole is in good agreement with observations.  相似文献   

16.
In the present problem, acceleration covariance in MHD turbulent flow of dusty fluid with Coriolis force have been obtained.The obtained result shows that the defining scalars (r,t), (r, t), (r, t) of the acceleration covariance in the presence of Coriolis force depends on the defining scalars of tensorsQ ij, Hij, i,j,S ik,jandT ij,kalready defined in the text.  相似文献   

17.
I discuss the use of Very Long Baseline Interferometer (VLBI) phase scintillations to probe the conditions of plasma turbulence in the solar wind. Specific results from 5.0 and 8.4 GHz observations with the Very Long Baseline Array (VLBA) are shown. There are several advantages of phase scintillation measurements. They are sensitive to fluctuations on scales of hundreds to thousands of kilometers, much larger than those probed by IPS intensity scintillations. In addition, with the frequency versatility of the VLBA one can measure turbulence from the outer corona 5–10R to well past the perihelion approach of the Helios spacecraft. This permits tests of the consistency of radio propagation and direct in-situ measurements of turbulence. Such a comparison is made in the present paper. Special attention is dedicated to measuring the dependence of the normalization coefficient of the density power spectrum,C N 2 on distance from the sun. Our results are consistent with the contention published several years ago by Aaron Roberts, that there is insufficient turbulence close to the sun to account for the heating and acceleration of the solar wind. In addition, an accurate determination of theC N 2 (R) relationship could aid the detection of transients in the solar wind.  相似文献   

18.
Intensities and profiles of the H, H, H, K, and D3 lines are measured in a solar prominence. From the profiles of these lines we estimate T = 6400 K and t = 5.7 km s–1. We construct a simple isothermal model which explains the H intensity and profile for an assumed total particle density n T = 3 × 1011 cm–3, and a filling factor, = 1/6.From this model we find that the source function in the H line is nearly constant through the prominence. We estimate from the model that the radiative energy loss at the center of the prominence is of the order of 107 erg s–1 g–1.  相似文献   

19.
20.
We prove existence and multiplicity of T-periodic solutions (for any given T) for the N-body problem in m (any m 2) where one of the bodies has mass equal to 1 and the others have masses 2,..., N , small. We find solutions such that the body of mass 1 moves close to x = 0 while the body of mass i moves close to one of the circular solutions of the two body problem of period T/k i, where ki is any odd number. No relation has to be satisfied by k 2,...,k N.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号